
Homography

Dr. Gerhard Roth

Winter 2011

2

Linear Mappings

• linear mappings from one particular space to

the other, also called transformations

• Different types of transformations from a 2d

image to another 2d images
• Translation, rigid, similarity, affine, projective

• Next one in the list includes all the previous members

• i.e. Perspective transformation is a superset of all previous

• A 2d perspective transformation is commonly

called an image warp or a homography

• Warp takes a 2d image and produces another

2d image
• Maps from a pixel in source image to a pixel destination

Homography = Linear warp

•Consider a point x = (u,v,1) in one image and

x’=(u’,v’,1) in another image

•A homography is a 3 by 3 matrix M

•

•The homography relates the pixel co-ordinates in the

two images if x’ = M x
•Works on pixel co-ordinates (pixels) not camera co-ordinates (mm)

•When applied to every pixel the new image is a

warped version of the original image



















333231

232221

131211

mmm

mmm

mmm

M

Two images related by homography

2D image transformations

These transformations are a nested set of groups

• Closed under composition and inverse is a member

6

Affine example

7

Perspective transformation

a straight line is a straight line

Homography conditions

• Two images are related by a homography if

and only if (2 conditions)

• Both images are viewing the same plane from

a different angle (was on your assignment)

• Both images are taken from the same camera

but from a different angle
• Camera is rotated about its center of projection without any

translation

• Note that the homography relationship is

independent of the scene structure
• It does not depend on what the cameras are looking at

• Relationship holds regardless of what is seen in the images

Homography does not work in general!

• Normal projection matrix

• All world points on a plane, choose Z = 0 to

be on the plane

• Final matrix relates points on world plane to

image plane

Homography when viewing a plane





















































1
34323231

24232221

14131211

Z

Y

X

mmmm

mmmm

mmmm

w

y

x





















































1

0
0

0

0

343231

242221

141211

Y

X

mmm

mmm

mmm

w

y

x



















































1343231

242221

141211

Y

X

mmm

mmm

mmm

w

y

x

Homography when rotating camera

•No translation, here X is a 3d point, and x,x’ projection

•Home position – projection equation

•Rotation by a matrix R – projection equation

•So where K is calibration matrix

•Where is a 3by3 matrix M called a homography

  KX
1

X
0 | IK x 










  KRX
1

X
0|RKx' 










xKRKx' -1
-1KRK

•Compute homography

•If we know rotation K, R, then homography H can be
computed directly

• Applying this homography to one image gives image that we would
get if the camera was rotated by R

• If we know, K, R and T and are looking at a plane
we can also compute the homography
• Just look at your last assignment, where you have the full projection

matrix (p. 134 of book)

• Now drop the 3d column, then we have a homography matrix

• If we know fx, fy, ox, oy, R and T we can define this matrix

• So if we have this info we can always compute
the homography

• But what if we only have two images, and a set of
correspondences?

xKRKx' -1

Computing M: The four point Algorithm

Input: n point correspondences (n >= 4)
• Construct homogeneous system Ax= 0 from

– x = (m11,m12, ,m13, m21,m22,m23 m31,m32, m33) : entries in m

– Each correspondence gives two equations

– A is a 2xnx9 matrix

• Obtain estimate M by Eigenvector with smallest eigenvalue

– Do not have any singularity constraint as we did with the fundamental matrix

– Finding the homography that solves Ax = 0 subject to the constraint that

– x is a unit vector ||x|| =1

Output: the homography matrix, M that is the best least

squares solution to this problem

•Similar to how you compute a projection matrix, but the

correspondences are 2d pixels to 2d pixels, and not 3d

points to 2d pixels!

xMx ' 

Recover Homography matrix from correspondences

Mark Fiala 2010

H
11

H
12

H
13

H
21

H
22

H
23

H
31

H
32

H
33

H
11

u
1
+ H

12
v

1
+ H

13
u

2

v
2

w
2

=

Multiply up denominators

H
31

u
1
+ H

32
v

1
+ H

33

H
21

u
1
+ H

22
v

1
+ H

23

H
31

u
1
+ H

32
v

1
+ H

33

u2=

v2=

H
31

u1u2 + H
32

v1u2 + H
33

u2 = H
11

u1 + H
12

v1 + H
13

H
31

u1v2 + H
32

v1v2 + H
33

v2 = H
21

u1 + H
22

v1 + H
23

Solving for AX=0 -gives us 2 equations/correspondence –need 4 correspondences

H
31

u1u2 + H
32

v1u2 + H
33

u2 - H
11

u1 - H
12

v1 - H
13

= 0

H
31

u1v2 + H
32

v1v2 + H
33

v2 - H
21

u1 - H
22

v1 - H
23

= 0

Each correspondence provides two rows of A matrix

[-u1 -v1 -1 0 0 0 u1u2 v1u2 u2]

[0 0 0 -u1 -v1 -1 u1v2 v1v2 v2]

H
11

H
12

H
13

…

u
1

v
1

w
1

Here u = x, and v = y

Recover Homography matrix from correspondences

Mark Fiala 2010

-u11 -v11 -1 0 0 0 u11u21 v11u21 u21

0 0 0 -u11 -v11 -1 u11v21 v11v21 v21

-u12 -v12 -1 0 0 0 u12u22 v12u22 u22

0 0 0 -u12 -v12 -1 u12v22 v12v22 v22

-u13 -v13 -1 0 0 0 u13u23 v13u23 u23

0 0 0 -u13 -v13 -1 u13v23 v13v23 v23

-u14 -v14 -1 0 0 0 u14u24 v14u24 u24

0 0 0 -u14 -v14 -1 u14v24 v14v24 v24

H
11

H
12

H
13

H
21

H
22

H
23

H
31

H
32

H
33

= 0

8 equations, 9 unknowns (from 4 correspondences)

AX=b X=column vector of homography matrix elements
Get last vector using SVD

Each correspondence provides two rows of A matrix

[-u1 -v1 -1 0 0 0 u1u2 v1u2 u2]

[0 0 0 -u1 -v1 -1 u1v2 v1v2 v2]

Uses of a homography

• Consider two images (two different views of a

plane, or two different rotated views)

• We can synthesize second image from first!

• Take the first image
• With appropriate homography we can create equivalent of

the second image without needing to take that image!

• In other words, just compute the proper homography and

then apply it to the first image to get a new image

• This new image is the image we would get if we actually

physically captured the second image

• Can not do this in general (only when we are not looking at a

plane or when we translate)

• What can we do with this fact?

Image rectification (square views)

To unwarp (rectify) an image

• Find the homography H given a set of p and p’ pairs

• How many correspondences are needed?

• Tricky to write H analytically, but we can solve for it!

• Find such H that “best” transforms points p into p’

• Use least-squares!

p
p’

Original camera view

Downward rotation via homography

Sideways rotation via homography

Image Rectification using a homography matrix (from Lec 8)

Correspondences

See matlab_lec9_solve_for_homog_matrix.txt

H

Hinv

view_homog_matrix.exe

Image Rectification

• What are the uses of image rectification

• For a rectified image it is easy to compute

object dimensions (given a known dimension
• Can not do this if the image is not rectified (even if you know

the dimensions of an object in the image

• A rectified image is straight on to the camera

(along the z axis)
• This geometry makes matching between two such images

easier (called simple stereo matching)

• Rectification is often done with two images in general

position to place them in this standard position

• Then stereo matching is much easier (will discuss this in the

stereo section)

Automatic Mosaicing – Input

Automatic Mosaicing - Output

Automatic Mosaicing - Output

Automatic Mosaicing - Output

Automatic Mosaicing - Output

Automatic Mosaicing - Output

Automatic Mosaicing - Output

Automatic Mosaicing - Output

Automatic Mosaicing – Output

Mosaics: stitching images together

virtual wide-angle camera

Mosaics

1. Pick one image (red)

2. Warp the other images towards it (usually, one

by one)

3. blend

Computing a mosaic from an image set

• Take a camera on a tripod
• Rotate it around the axis of projection

• Choose one of the images as the base image
• Compute the homography that aligns all the other images

relative to that image

• You get a single large image, a mosaic which

looks like a high resolution image taken from

that viewpoint
• This large image is called a mosaic

• Sometimes mosaics are called panoramas if

they are wide enough (360 degrees or close)
• Both names (mosaic/panorama) are used

mosaic PP

Image reprojection

The mosaic has a natural interpretation in 3D
• The images are reprojected onto a common plane

• The mosaic is formed on this plane

• Mosaic is a synthetic wide-angle camera

Computing special mosaics

• You can synthesize any view (not a fixed

reference view) to make a virtual camera
• Need special real-time viewer to take mosaic and synthesize

any rotated view

• Use a speical re-sampling algorithm to create a new view

• Quicktime VR is a panorama creation/viewing

system that can do this (many others)
• Very commonly used in many practical applications

• Microsoft ICE = automatic panorama software
• Rotate camera through any number of views

• Give system views in any order (and views may be zoomed)

• As long as have sufficient overlap, panorama will be created

• Can even create High Definition panoramas!

Augmented Reality

• Print self encoding binary pattern (tags)

• In real-time AR software
• Recognizes the tag, and finds pixel locations of 4 corners

• Computes homography that maps these four corner pixels to

a rectified front facing image

• Uses this homography to compute the camera pose relative

to the tag in the real world

• Draws a virtual oboject on top of the tag in the world

• Virtual content can be any 3d model, etc.

• Very common systems in practice and

available on cell phones
• ARToolKit and ARTag

• Bit string with error correction/detection is

used to create a tag ID

• Predefined association of 3d models for each

different tag ID

Typical binary tag pattern

Using Tags for Augmentation

• In real-time find camera pose relative to the

tag, and use this to draw virtual objects

• AR tags get an ID and camera position!

Homography

• Very useful in practice because of mosaics!

• Rectification is also important and will be

used in stereo vision and other applications

• Many common mosaicing systems exist

• But math still depends on basic homography
• Many other issues to create an automatic mosaicing system

• Need to extract features (interest points!)

• Match them between images

• Align all the images with homographies

• Then blend them all together properly

