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Abstract 
Vision-based registration techniques for augmented reality 
systems have been the subject of intensive research recently 
due to their potential to accurately align virtual objects 
with the real world.  The downfall of these vision-based 
approaches, however, is their high computational cost and 
lack of robustness. 

This paper describes the implementation of a fast, but 
accurate, vision-based corner tracker that forms the basis 
of a pattern-based augmented reality system. The tracker 
predicts corner positions by computing a homography 
between known corner positions on a planar pattern and 
potential planar regions in a video sequence.  Local search 
windows are then placed around these predicted locations 
in order to find the actual subpixel corner positions.  
Experimental results show the robustness of the corner 
tracking system with respect to occlusion, scale, 
orientation, and lighting. 

Keywords: Corner tracking, pattern tracking, blob finding, robust, 
computer vision, augmented reality. 
 

1 Introduction 
 
Unlike virtual reality, which encompasses a user in a 
completely computer-generated environment, augmented 
reality is a technology that attempts to enhance a user’s 
view of the real environment by adding virtual objects, such 
as text, 2D images, or 3D models, to the display in a 
realistic manner. 

Clearly, the realism that a user will experience in an 
augmented reality environment is directly related to the 
stability of the registration between the virtual and real-
world objects; if the virtual objects shift or jitter, the 
effectiveness of the augmentation is lost. 

Vision-based augmented reality systems rely on extremely 
accurate optical trackers in order to obtain the required 
registration stability.  Additionally, these accurate trackers 
must operate in real-time. 

One of the most promising vision-based augmented reality 
techniques involves tracking a planar pattern in real-time 
and then augmenting virtual objects on top of the pattern 

based on its pose.  In [5, 7, 9, 10, 14], black and white 
planar patterns are tracked resulting in relatively stable 
registrations, but the tracking algorithms fail to provide any 
robustness to partial pattern occlusions.  Specially arranged 
coloured blobs are tracked in [8] that can handle partial 
occlusions for a brief period of time via Kalman filtering, 
but the blob centroids are less reliable at different scales or 
plane orientations.  Other techniques address robustness 
and occlusion, but only in hybrid configurations involving 
expensive magnetic or inertial trackers and stereo 
configurations [1, 2, 12].  

In this paper we describe the implementation of an optical 
corner tracker for an augmented reality system that is 
precise, fast, and robust, and which can be implemented 
using a standard, consumer-level camera and PC.  In 
Section 2 planar homographies are first reviewed since they 
form the mathematical core of the 2D tracker.  Section 3 
then provides a description of a fast and reliable region 
detector that allows the system to self-identify 
predetermined planar patterns consisting of black and white 
corners.  Section 3.2 then proposes an accurate corner 
tracker which uses a robustly computed homography to 
predict corner positions that are then refined using localized 
search windows.  Experimental results are then presented in 
Section 4, which show the tracker’s stability and robustness 
to occlusion, scale, orientation, and lighting changes.  
Additionally, a comparison between corner tracking and 
commonly used blob tracking techniques is made. 

2 Planar Homographies 
 
Tracking planar patterns are advantageous since they define 
a convenient world coordinate space that can be used for 
augmentations (Figure 1).   

Since we will be tracking such planar patterns, we can make 
the assumption that they are located on the Z=0 plane in 
world (pattern) coordinates.  Thus we can associate our 
original pattern with the viewed pattern in a video frame by 
a 2D-to-2D projective warp.  In other words, if x = (x, y, 1) 
is a homogeneous coordinate in pattern space, and x΄ = (x’, 
y’, 1) is the associated coordinate in image space, x ↔ x΄ 
defines a correspondence that is related by 
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where the 3x3 matrix H is a planar homography. 

This gives us 

x’ (h31x + h32y + h33) = h11x + h12y +h13 

y’ (h31x + h32y + h33) = h21x + h22y +h23 

where hij is the i,j-th element of H. 

Given at least four such correspondences, we obtain a 
system of eight linear equations that can be used to solve 
for the elements of H: 
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where h is a 9-element vector containing the hij elements in 
the form h = [h11 h12 h13 h21 h22 h23 h31 h32 h33]T. 

Since this matrix equation is in the form of Ah=0, the 
solution is the null space of A and can thus be computed 
using known methods, such as singular value 
decomposition [13]. 

The next section outlines how the proposed system makes 
use of such homographies in order to track known planar 
patterns in video sequences. 

 
Figure 1 – World space defined by a planar pattern 

3 System Outline 
 
In our 2D tracker, planar patterns are identified in a live 
video stream, and predetermined corner features for the 
detected pattern are found within each frame of video and 

tracked in real-time.  Figure 2 shows some example 
patterns.   

 
Figure 2 – Example of 2D planar patterns used for 
augmentations. 

 

Patterns consist of a thick black border, inside which white 
rectangles are evenly distributed.  The corners of the white 
rectangles are stored in a data file that is associated with the 
pattern upon system startup.  Although no strict 
arrangement of rectangles is enforced, it is important to 
generate patterns that are uniquely identifiable with respect 
to other existing patterns, as well as under 90 degree 
rotations.  Black and white patterns are preferred over 
colour due to their high contrast, which is important for 
region detection and extraction purposes.  

The following sections cover the 2D tracker in more detail.  
There are two modes of operation for the tracker: Search 
Mode, and Tracking Mode. 

3.1 Search Mode 
 
Before known individual corner features can be tracked 
from frame to frame, the system must first uniquely identify 
any valid pattern(s) within the video frame.  This is known 
as Search Mode, and is the initial state of the augmentation 
system.  Using a method similar to [10], the search 
proceeds as follows: 

! Threshold the frame into a binary image.  Dynamic 
thresholding provides the best results, but static 
threshold values are also sufficient in known 
environments. 

! Find connected regions of black pixels and only accept 
regions whose bounding boxes meet size and aspect 
ratio thresholds of our known black-bordered patterns 
(in order to reject invalid regions).  

! Find the four strongest black corner pixels of the 
connected region and generate a polygon consisting of 
these vertices in clockwise order. 

! Compute a homography from the known boundaries of 
the original pattern to the polygon corners. 

! Using this homography, create a new image consisting 
of unwarped pixels from the video frame. 

 World (pattern) coordinates 

Camera coordinates 

Image coordinates 



! Find the best matching pattern by comparing the 
unwarped image with images of the known patterns (via 
simple binary image subtraction). 

Figure 3 shows an example of unwarping the pixels within a 
connected region, and finding the best matching original 
pattern.  Note that four homographies must be computed for 
each region, followed by four image comparisons, since 
there are four potential orientations of the original pattern.  
As mentioned earlier, the orientation of the original pattern 
should be unambiguous when viewed at 90, 180, and 270 
degrees. 

 
 

Figure 3 – (a) Captured video frame,  (b) unwarped 
region from video, (c) best matching known pattern. 

 

Once we have successfully identified a valid region and its 
associated pattern, we are ready to begin local tracking of 
the individual corner features. 

3.2 Tracking Mode 
 
Tracking Mode consists of the following three steps: 
Corner Prediction, Corner Detection, and Homography 
Refinement. 

3.2.1 Corner Prediction 
 
Based on the homography computed in the previous frame, 
we transform all known corner positions for the detected 
pattern from world space into the current image space.  
Each of the transformed positions defines a predicted 
corner location, but these are not always exact due to 
inaccuracies in the homography.  Therefore a local search 
window is placed around the predicted corner location, and 
the actual corner must be in this window.   

Assuming temporal coherency, the search window for each 
corner is also translated by an amount equal to any motion 
that corner experienced in the previous two frames.   

The search box size represents how much pixel movement 
the tracker can tolerate from frame to frame, assuming 
smooth motion.  Increasing the search box allows for more 
movement, but increases the chances of multiple corners 
being found in the search box (as discussed in the next 
section).  Conversely, decreasing the search box size 
reduces the chance of multiple corners, but increases the 

chance of tracker failure due to rapid motion of the pattern.  
Our system works well with 9x9 boxes on normalized 
320x240 images, with the overall augmentation system 
operating at 20 Hz. 

3.2.2  Corner Detection 
 
To find the actual corner locations with subpixel accuracy, 
we do the following for each predicted corner location: 

! Apply a Harris corner finder [6] with subpixel accuracy 
on the local search window (see Appendix A).  An 
approximation to the Harris corner finder, as presented 
in [3], can be used which increases performance due to 
the removal of a square root operation for each pixel 
location in the search window.  

! Extract the strongest corner within the subwindow to 
determine the actual corner position that corresponds to 
the original corner from the pattern.  If no corner is 
detected, mark the corner’s tracking status as having 
failed for this frame.  This could occur due to the corner 
being off the edge of the screen or temporarily 
occluded. 

Note that at far distances, the subwindow may overlap more 
than one corner feature from the original pattern (as 
depicted in Figure 4).  Extracting only the strongest corner 
from the Harris corner finder would thus cause different 
pattern corners to incorrectly correspond to the same image 
location.  In this case, choosing the closest corner to the 
predicted location is a slightly better heuristic.  For optimal 
results, neighbouring corner positions and edge properties 
from the original pattern should be taken into account to 
determine the best corner location, as outlined in [4]. 

 
Figure 4 – Multiple potential corners in a single 
predicted search window. 
 

3.2.3 Updating the Homography 
 
Using the set of subpixel corner locations found in the 
current frame, a new set of corner correspondences, {x ↔ 
x΄}, from the original pattern into image space is computed.  
Using the well-known RANSAC approach as outlined in 
[11], a new homography is determined as follows: 

! Randomly sample four non-collinear x ↔ x΄ 
correspondences. 

(a) (b) (c) 



! Compute H using this sample. 

! For all correspondences, compute the distance between 
x΄ and Hx. 

! Count the number of pairs for which the distance is 
below some threshold.  A value between 2.0 and 4.0 
works well for our system. 

! Store the H which has the highest number of inliers IH. 

! Refit the homography H using these inliers. 

The motivation behind random sampling is to remove 
inaccurate or mismatched corner locations from the 
homography computation.  This allows the homography to 
be robust to partially occluded features, which is important 
for subsequent corner predictions. 

The number of random samples is capped at the maximum 
number of known corners Imax for the detected pattern.  
Most of our patterns consist of four to eight white 
rectangles, resulting in 16 to 32 corners.  In order to reduce 
the number of samples, however, a threshold is set which 
allows random sampling to stop if the highest number of 
inliers IH is above the following threshold 

maxQH ITI ×≥  

where TQ defines a quality measure between 0 (low) and 1 
(high).  A value above 0.75 seems to provide relatively 
stable homographies. 

The best homography computed after random sampling is 
then used as the corner predictor in the next frame.  Note 
that random sampling can also fail under the following 
instances: 

! There are less than 4 non-collinear x ↔ x΄ 
correspondences. 

! The best computed H fails to meet our TQ criteria 

! IH falls below 4, which is the minimum number of 
correspondences required for computing H in the next 
frame. 

In such cases, the tracking system reports tracker failure 
and reverts back to Search Mode. 

The basic idea behind refining the homography via random 
sampling is to increase the robustness of the pattern tracker.  
With multiple corners being tracked simultaneously, 
occlusions of a subset of the feature points should have 
little or no effect on the corner prediction in the next frame.  
For example, if a detected pattern consisting of 24 corners 
is being tracked, the homography should still be able to 
predict corner positions for the next frame even if 
approximately 16 corners are currently occluded by a user’s 
hand.  The assumption is that the other 8 corners 
interspersed around the pattern area are sufficient to 

accurately determine the pattern’s current orientation.  In 
fact, 4 unoccluded, non-collinear corners are all that is 
necessary.  The predicted locations for the occluded corners 
will still be searched in upcoming frames so as soon as the 
occlusion stops (i.e. the user’s hand is removed from the 
pattern) all 24 corners will be detected again.   

3.3 Tracker Summary 
 
Figure 5 outlines the basic operation of the 2D tracking 
system.   

 
Figure 5 – Block diagram of the augmentation system 

 

Upon initialization, the system is in Search Mode and is 
continuously attempting to find a known planar pattern in 
each frame of video.  Once a valid pattern is detected, a 
homography is computed from the four corners of the 
original pattern and the detected four corners of the region 
in the video.  The system then enters Tracking Mode, which 
uses the previous homography to predict the locations of 
the corner features for the pattern.  These corners are then 
used to compute a new homography for the next frame, 
even if the pattern is experiencing significant occlusion.  
Upon tracking failure, the system returns to Search Mode, 
which attempts to recover the entire pattern again for 
further tracking. 

MPEG videos of the tracking process can be found on our 
web site.  The software itself can also be downloaded from 
this page, along with the patterns to enable anyone to test 
the operation of the tracking and augmentation system. 



4 Results and Discussion 
 
4.1 Performance 
 
One of the major design goals of our augmented reality 
system is real-time performance on standard PCs using off 
the shelf USB camera hardware.  The current 
implementation of our tracking system uses OpenGL to 
augment simple 2D textures and 3D objects onto the planar 
patterns at 20Hz on an Intel Pentium 3 800MHz PC 
equipped with an ATI Rage128 Video card and an Intel 
CS110 USB camera.  Augmentations are currently 
displayed on a desktop monitor, but for immersive 
applications we will eventually attach the camera to a head-
mounted display.  
In order to obtain an accurate estimate of the Search Mode 
time, we modified the implementation to always remain in 
Search Mode and use the computed homography to 
augment 2D polygons onto the pattern.   
The current breakdown of average processing time per 
frame when viewing a static planar pattern consisting of 24 
corners is as follows: 
Search Mode: 29.1ms 
Tracking Mode: 10.7ms 
Augmentation Time: 2.1ms 

Clearly, the global search method is significantly slower 
than tracking 24 localized corner features.  However, the 
system is usually in Tracking Mode so performance is 
directly related to the number of corners being tracked; the 
more corners we have, the longer it takes for the tracker to 
operate.  Figure 6 shows tracking times for a set of patterns 
with varying corner counts.  As can be seen, processing 
time increases approximately linearly with respect to the 
number of corners that need to be tracked. 
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Figure 6 – Corner Tracking Performance 
 

4.2 Tracking Accuracy 
 
The stability and accuracy of the homography is directly 
related to the stability and accuracy of the augmented 

objects.  In other words, if the homography cannot 
accurately recreate the orientation of the pattern in screen 
space, then the pose computations will be similarly 
affected.  In order to test the stability of the system, all 
original pattern corners x are transformed by H, and the 
distance between the computed position Hx and the 
detected position x΄ is determined.   The average of these 
distances over all correspondences is the average 
reprojection error REavg, represented mathematically as 
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where N is the total number of corner correspondences. 
Our current implementation exhibits an average 
reprojection error between 0.8 and 1.4 pixels with various 
patterns (all corners being tracked successfully), which is 
quite good for our normalized 320x240 images and a 
standard USB camera.  Scale and orientation of the pattern 
have no apparent effect on the error, provided all corners 
continue to be tracked successfully.  As soon as some 
corners become occluded, however, the reprojection error 
begins to increase.   

4.2.1  Occlusion Handling 
 
One of the main advantages of our tracking approach is the 
ability to handle significant amounts of occlusion.  Figure 7 
shows a 17 corner pattern experiencing approximately 30% 
occlusion.  The tracker can still detect enough corners so 
that a virtual 2D image can be correctly augmented onto the 
plane.   

 
Figure 7 – Successful augmentation onto a partially 
occluded pattern 
 
Even under motion, the prediction scheme allows corners to 
be correctly recovered after temporary occlusions.  Figure 
8a shows a pattern with all of its 17 corners being tracked 
successfully (indicated by green lines).  Figure 8b then 
shows a hand occluding two of the corners, with red lines 
denoting the predicted locations.  While occluded, the 
pattern is rotated slightly such that one of the occluded 
corners becomes visible again.  The non-occluded corner is 
then recovered, as depicted in Figure 8c.  Note that the 
other corner is still being occluded, but the predicted 



location has changed after rotation.  After removing the 
hand from the scene, the predicted location for the 
remaining corner allows it to be recovered, as depicted in 
Figure 8d. 
One interesting observation was the gradual decrease in the 
stability of the homography as more corners become 
occluded.  Predicted locations for corners begin to jitter 
significantly when the corner counts fall below 10 or so. 
 

 
 

Figure 8 – Corner recovery from occlusion after pattern 
motion 
 

4.2.2 Effects of Scale 
 
The major advantage in using corners for tracking is that 
corners are invariant to scale.  The corner tracker can thus 
continue to track patterns at a large range of distances from 
the camera.  This is where a tradeoff must be considered 
between allowable viewing distances and allowable motion.  
To allow viewing at large distances, the search box should 
be small to reduce the chance of multiple corner detection.  
However, this affects the ability to track fast movements of 
the pattern when viewed close-up.  On the other hand, if the 
search box size is set too large, significant motion is 
allowed from frame to frame but the corner finder will fail 
when viewing the pattern further away. 
One possible approach to solving this problem is computing 
a dynamic search box size which changes based on a 
pattern’s distance from the camera.  If the pattern is 
determined to be far from the viewer, reduce the search box 
size under the assumption that 1) significant motion of the 
pattern has a smaller effect in screen space, and 2) corners 
in the pattern will be closer together.  If the pattern is found 
to be close to the camera, increase the search box size since 

the chance of multiple corner detections is low and pattern 
motion has more effect in screen space. 
Currently, patterns must be visible in at least 25% of the 
view, with no occlusions, in order for Search Mode to lock 
onto the pattern.  This can be adjusted based on size and 
aspect ratio thresholds.  Once the system proceeds into 
Tracking Mode, the pattern is still able to be tracked when 
it occupies between 10% and 150% of the video image on 
average, depending on the number and distribution of the 
corner features. 

4.2.3 Effects of Orientation 
 
Due to perspective distortion, a square on the original 
pattern does not necessarily remain square when viewed at 
a sharp angle and projected into image space.  Thus, 
corners will change their shape which affects the corner 
finder’s detection ability.  However, this is not a problem 
since the Harris corner detector relies on finding intensity 
changes in two directions, which are still evident even at 
severe orientations [13].  

 
 

Figure 9 – Tracking under severe rotation 
 
The major source of orientation problems is once again the 
search box size.  It plays a key role since corner features on 
a planar region begin to converge onto other corners in 
screen space.  For example, Figure 9 shows a 24-corner 
pattern undergoing a gradual rotation of 90 degrees.  As can 
be seen, the corner detection begins to deteriorate since 
corners are beginning to enter search boxes for other 
corners.  As expected, the average reprojection error of the 
homography begins to increase as more corners begin to 
converge.  However, as Figure 9 shows, the tracking 
continues up to almost 75-80 degrees, which is quite robust 
for many types of augmentations.  

(a) (b) 

(a) (b) 

(c) (d) 

(c) (d) 



4.2.4 Variable Lighting Conditions 
 
Another favourable property of the corner feature for 
tracking purposes is its robustness to lighting.  Since 
intensity changes in two directions form the basis of corner 
finding, no special considerations need to be taken into 
account from the tracker’s perspective in order to handle 
significant lighting changes or shadows.  Therefore, as long 
as the black and white features on the planar pattern are 
somewhat distinguishable, the corner tracker continues to 
compute an accurate homography, even under dramatic 
changes in lighting. 

4.3 Comparison to blob trackers 
 
The homography-based tracking approach described in this 
paper could work with black and white blob features on 
planar patterns just as it does with corners.  However, we 
have found corners superior to blobs due to their occlusion, 
scale, orientation, and lighting advantages.   
Up till now, blob-based trackers were the most popular 
tracking primitive for vision-based augmented reality 
systems.  Therefore we conducted a set of experiments 
aimed at comparing blob trackers with the corner tracking 
system. 

4.3.1 Blob Performance 
 
The most obvious reason for using blobs over corners 
involves performance.  Detecting corners has traditionally 
been considered an expensive operation, while blob finding 
algorithms are known to be very fast since they primarily 
deal with finding connected regions of similar pixels.  By 
replacing the “Corner Detection” component of Tracking 
Mode with a “Blob Detection” system (Figure 5), the 
overall tracking time should theoretically be reduced.  
Implementation results, however, showed no significant 
changes in tracking time.  This is largely due to the larger 
search box requirement of blobs, since blobs are typically 
larger than the 9x9 window used for corners. 

4.3.2 Blob Occlusion 
 
Figure 10 shows a finger partially occluding a blob.  As a 
result, the centroid location for the occluded blob will 
become offset from its correct location.  If the foreground 
pixels are added to the search area of the occluded blob, 
then the blob’s pixel set is the union of occluding object 
pixels and actual blob pixels.  On the other hand, if the 
occluding object adds background pixels to the blob when 
overlapping it, the blob’s pixel set will fail to contain all 
pixels that are needed to properly represent the blob (as in 
Figure 10).  In each instance, the blob’s position, size, and 
orientation computation has significant error.  A blob-based 
tracker that handles partial occlusions by using two-colour 

blobs (an inner blob surrounded by a different coloured 
outer ring) is described in [12].  This allows the system to 
more uniquely detect blobs in a scene, as well as predict the 
entire blob shape when it is partially occluded (assuming 
the two colours are partially visible).  The disadvantage 
with this approach is the fact that colour image thresholding 
must be used, which is prone to errors. 

4.3.3 Blob Scale 
 
As the camera’s distance from a blob increases, the blob’s 
pixel set decreases.  Thus, the same blob has less 
representation in pixel space leaving less accuracy for 
characteristics such as position, shape and relative size in 
the image.  At greater distances the pixel set can even be 
empty, leaving no traceable feature.  Corners, on the other 
hand, are robust to scale as discussed in Section 4.2.2 (the 
search box issues are a separate matter that would also be 
apparent in a blob-based tracking scheme.)   

 
 
Figure 10 – Blob detection and centroid location (left 
image is original video frame, right image is after 
binary thresholding): (a) no occlusion, (b) partial 
occlusion has shifted the centroid (the white crosshair) 

 
4.3.4 Blob Orientation 
 
Similarly, orientation of the camera also degrades a blob’s 
pixel set by reducing the representation of the blob in the 
image compared to that in real space.  Additionally, for 
large blobs being viewed at close range, the computed 
centroid position does not take perspective distortion into 
account.  Thus the actual centre of a blob in world space 
and the corresponding blob centre in image space may not 
necessarily correspond.  This would affect relative blob 
positions on a planar pattern, resulting in inaccuracies in 
homography computation. 

(a) 

(b) 



4.3.5 Blob Lighting 
 
Since blob detection typically involves thresholding each 
frame into a binary image, a blob-tracker would thus have 
to implement a dynamic thresholding scheme similar to 
what is required for our tracker’s Search Mode.  The 
simplest approach involves computing a histogram for a 
grayscale representation of the video frame, and choosing 
the threshold to be at the local minimum between the two 
peaks of the histogram.  While this approach works well, it 
is not as convenient as the automatic light and shadow 
handling exhibited by a robust corner detector. 

5 Conclusion 
 
In this paper we described a robust solution for vision-
based augmented reality tracking that identifies and tracks, 
in real-time, known planar patterns made up of corners.  
The major advantages of tracking corners are their 
detection robustness at a large range of distances, their 
reliability under severe planar orientations, and their 
tolerance of lighting changes or shadows.  An overview of 
the tracking system was described, and experiments 
demonstrated the feasibility and reliability of the system 
under various situations, most significantly under partial 
pattern occlusion.  Additionally, a comparison between 
corner-based tracking and blob-based tracking was made. 
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A. Subpixel Corner Detection 
 
The corner finder computes a corner strength value λ for 
each pixel p in a search window, where λ represents the 
smaller of the two eigenvalues for a neighbourhood of 
pixels around p.  Non-maximal suppression is used to 
locate the strongest corner position s = (x, y) in this 
neighbourhood, but a subpixel location can be computed 
based on weighting the corner strengths of the 4-connected 
neighbours 

 
 
 
 

where λi represents the corner strength of pixel i in Figure 
11.
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Figure 11 


