
National Research
Council Canada

Institute for
Information Technology

Conseil national
de recherches Canada

Institut de technologie
de l'information

Using Projective Vision to find Camera Positions in
an Image Sequence *

Roth, G., Whitehead, A.
May 2000

* published in Vision Interface 2000. pp. 87-94, Montréal, Québec, Canada. May 2000.
NRC 45873.

Copyright 2000 by
National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables from this report,
provided that the source of such material is fully acknowledged.

Using Projective vision to Find Camera Positions in an Image Sequence

Gerhard Roth �

Visual Information Technology Group
Building M 50, Montreal Road

National Research Council of Canada
Ottawa, Canada K1J 6H3

Gerhard.Roth@nrc.ca http://www.vit.iit.nrc.ca/roth/home.html

Anthony Whitehead
School of Computer Science

Carleton University
Ottawa, Canada

awhitehe@scs.carleton.ca http://www.scs.carleton.ca/~awhitehe

Abstract

The paradigm of projective vision has recently become

popular. In this paper we describe a system for comput-

ing camera positions from an image sequence using pro-

jective methods. Projective methods are normally used

to deal with uncalibrated images. However, we claim

that even when calibration information is available it is

often better to use the projective approach. By comput-

ing the trilinear tensor it is possible to produce a reliable

and accurate set of correspondences. When calibration

information is available these correspondences can be

sent directly to a photogrammetric program to produce

a set of camera positions. We show one way of deal-

ing with the problem of cumulative error in the tensor

computation and demonstrate that projective methods

can handle surprisingly large baselines, in certain cases

one third of the image size. In practice projective meth-

ods, along with random sampling algorithms, solve the

correspondence problem for many image sequences. To

aid in the understanding of this relatively new paradigm

we make our binaries available for others on the web.

Our software is structured in a way that makes experi-

mentation easy and includes a viewer for displaying the

�nal results.

Keywords

Projective Vision, Motion Problems, Structure from
Motion, Camera Positions, Model Building

�All correspondence should be addressed to this author

1 Introduction

Recently, a great deal of research has been done in the
�eld of projective vision [1, 2]. The idea is to com-
pute information from image sequences without requir-
ing prior camera calibration. A number of systems have
been implemented [3, 4, 5] that can, at least in the-
ory, compute a 3D model automatically from an uncal-
ibrated image sequence.

While the results are impressive there are a num-
ber of outstanding issues. One is the fact that these
programs are not available publicly in either source or
binary form. The only exception we know of is [6]. In
this paper we describe a system that uses the projec-
tive paradigm to go from an image sequence to a trifo-
cal tensor, and then to a set of camera positions. Our
implementation is, to our knowledge, the �rst publicly
available software that computes the trifocal tensor. In
this way we hope to make it possible for others to ex-
plore and experiment with this new paradigm, which we
believe will have a signi�cant inuence on the �eld of
computer vision. However, beyond just describing our
experience in re-implementing published algorithms, we
make a number of other contributions.

In most papers on projective vision, the goal is to
compute a projective reconstruction, assuming that no
camera calibration information is available [3, 4]. This
is followed by a calibration process which enables the
conversion of the projective reconstruction to metric
(Euclidean) form [7]. The implication is that, if a
calibration were available, one should use traditional
structure-from motion-algorithms (SFM) to process the
image sequence. We claim that this is not the case. Sur-

prisingly, for most image sequences it is not necessarily
easier to compute reliable correspondences when cali-
bration information is available. The reason is that the
random sampling algorithms, which are the key to deal-
ing with bad correspondences, are much easier to use in
a projective framework than in a calibrated framework
[8].

Using projective methods in combination with al-
gorithms from the �eld of robust statistics [9, 10], one
can automatically obtain very reliable correspondences
for many image sequences, even those with consider-
able camera motion (i.e. a wide baseline). Producing
such accurate correspondences is a multi-step process,
where the �nal result is the trilinear tensor. We take a
sequence of images and show that the correspondences
that supporting the trilinear tensors are correct and ac-
curate enough to be input directly to a photogrammet-
ric package to compute a set of 3D camera positions,
assuming we have a prior camera calibration.

The trilinear tensor holds only for a triple of images
[1]. To improve the accuracy of projective reconstruc-
tion across an image sequence it is usual to perform a
projective bundle adjustment. However, we believe, as
do others [11], that the non-linear optimization inherent
in the bundle adjustment is better done in metric space
than projective space [12]. For this reason, we do not
use the tensor to create a projective reconstruction, but
only to produce a set of image correspondences. In this
way, the tensor need only be accurate enough to iden-
tify individual matching features in adjacent images; a
required accuracy of only a single pixel. This means
that the cumulative error of the tensor over an image
sequence is not an issue. The correspondences that sup-
port the tensor are used as input to a photogrammet-
ric bundle adjustment program to accurately compute
camera positions [13].

Once we have these camera positions, it is possible
to rectify these images so that the epipolar lines are hor-
izontal. Then one can compute dense depth maps using
traditional stereo algorithms [3]. If the goal is to make
3D models, this is not necessarily the best approach as
stereo algorithms will not work in regions without natu-
ral texture. For this reason, we believe that it is best to
compute dense depth using active methods, since they
will succeed even when there is no texture [14]. How-
ever, passive methods are su�cient for computing cam-
era positions since this requires not dense depth, but
sparse depth, which is much easier to obtain. Our ulti-
mate goal is to create a modeling system that combines
both passive and active sensors. The passive sensors
will be used to �nd the position of the active sensors,
which in turn will be used to actually obtain the dense
depth necessary to make a 3D model. Therefore our
goal is to go from an image sequence to a set of camera

positions using only passive technology.

2 Projective paradigm

Structure from motion algorithms assume that a cam-
era calibration is available. This assumption is removed
in the projective paradigm. To explain the basic ideas
behind the projective paradigm, we must de�ne some
notation. As in [15]; given a vector x = [x; y; : : :]T , ~x
de�nes the augmented vector created by adding one as
the last element. The projection equation for a point
in 3D space de�ned as X = [X;Y; Z]

T
is:

s ~m = P ~X

where s is an arbitrary scalar, P is a 3 by 4 projec-
tion matrix, and m = [x; y]T is the projection of this
3D point onto the 2D camera plane. If this camera
is calibrated, then the calibration matrix C, contain-
ing the information particular to this camera (focal
length, pixel dimensions, etc.) is known. If the raw
pixel co-ordinates of this point in the camera plane are
u = [u; v]T , then:

~u = C ~m

where C is the calibration matrix. Using raw pixel co-
ordinates, as opposed to actual 2D co-ordinates means
that we are dealing with an uncalibrated camera.

Consider the space point, X = [X;Y; Z]T , and its
image in two di�erent camera locations; ~x = [x; y; 1]T

and ~x0 = [x0; y0; 1]T . Then it is well known that:

~x
TE~x0 = 0

Here E is the essential matrix, which is de�ned as:

E = [t]�R

where t is the translational motion between the 3D
camera positions, and R is the rotation matrix. The
essential matrix can be computed from a set of corre-
spondences between two di�erent camera positions [16].
This computational process has been considered to be
very ill-conditioned, but in fact a simple pre-processing
step improves the conditioning, and produces very rea-
sonable results [17]. The matrix E encodes the epipolar
geometry between the two camera positions. If the cal-
ibration matrix C is not known, then the uncalibrated
version of the essential matrix is the fundamental ma-
trix:

~u
TF ~u0 = 0

Here ~u = [u; v; 1]T and ~u
0 = [u0; u0; 1]T are the raw

pixel co-ordinates of the calibrated points ~x and ~x
0.

The fundamental matrix F can be computed directly
from a set of correspondences by a modi�ed version of

the algorithm used to compute the essential matrix E.
As is the case with the essential matrix, the fundamen-
tal matrix also encodes the epipolar geometry of the
two images. Once E is known, the 3D location of the
corresponding points can be computed. Similarly, once
F is known the 3D co-ordinates of the corresponding
points can also be computed, but in a projective space.
The di�culty is that there are fewer invariants in a pro-
jective space than a Euclidean space. However, there
are still many useful quantities, such as co-linearity, co-
planarity and certain other invariants that can be com-
puted in a projective space. Be that as it may, it is
the case that the actual supporting correspondences in
terms of pixel co-ordinates are identical for both the
essential and fundamental matrices. Having a camera
calibration simply enables us to move from a projective
space into a Euclidean space, that is from F to E.

There is a similar but more elegant concept for three
views, called the trilinear tensor. Assume that we see
the point X = [X;Y; Z]T , in three camera views, and
that 2D co-ordinates of its projections are ~u = [u; v; 1]T ,
~u
0 = [u0; v0; 1]T , ~u00 = [u00; v00; 1]T . In addition, in a

slight abuse of notation, we de�ne ~ui as the i'th ele-
ment of u; ie. u1 = u, and so on. It has been shown
that there is a 27 element quantity called the trifocal
tensor T relating the pixel co-ordinates of the projec-
tion of this 3D point in the three images [1]. Individual
elements of T are labeled Tijk , where the subscripts
vary in the range of 1 to 3. If the three 2D co-ordinates
(~u; ~u0; ~u00) truly correspond to the same 3D point, then
the following four trilinear constraints hold:

u00Ti13~ui � u00u0Ti33~ui + u0Ti31~ui � Ti11~ui = 0

v00Ti13~ui � v00u0Ti33~ui + u0Ti32~ui � Ti12~ui = 0

u00Ti23~ui � u00v0Ti33~ui + v0Ti31~ui � Ti21~ui = 0

v00Ti23~ui � v00v0Ti33~ui + v0Ti32~ui � Ti22~ui = 0

In each of these four equations i ranges from 1 to
3, so that each element of ~u is referenced. The trilin-
ear tensor was previously known only in the context of
Euclidean line correspondences [18]. Generalization to
projective space is recent [2, 1].

The estimate of the tensor is more numerically sta-
ble than the fundamental matrix, since it relates quan-
tities over three views, and not two. Computing the
tensor from its correspondences is equivalent to com-
puting a projective reconstruction of the camera posi-
tion and of the corresponding points in 3D projective
space. One very useful characteristic of the tensor is im-
age transfer (also called image reprojection). Given any
two of ~u; ~u0; ~u00, and the tensor that holds between the
three images, one can compute where the third point
must be if these points correspond and the tensor is
correct. The fundamental matrix and trilinear tensor

can be calculated directly from pixel co-ordinates, and
have many important and useful characteristics. We
believe that there are four reasons for the recent rapid
advances in the projective framework.

1. Basic theoretical work de�ning the fundamental
matrix, trilinear tensor and their characteristics.

2. Simple and reliable linear algorithms for comput-
ing these quantities from a set of 2D image corre-
spondences.

3. Robust random sampling algorithms for �ltering
noisy and inaccurate correspondences.

4. A suite of algorithms for doing auto-calibration us-
ing only the projective camera positions.

This combination of advances has made it possible
theoretically to create a 3D VRML model of a scene
from image sequence. It is important to note that, in
practice, this process is divided into two distinct phases.
The �rst phase computes from the overlapping image
sequence a series of fundamental matrices and trilinear
tensors, and consists of the following steps:

� Corner like points are found in each image using a
local interest point operator [19, 20] (3.1).

� A feature matcher �nds a set of potential corner
pair matches between two adjacent images in the
sequence [6] (3.2).

� These potential matches are pruned using some
type of local consistency �lter (3.3).

� A fundamental matrix is computed from the
pruned matches using a random sampling algo-
rithm [6, 8, 15] (3.4).

� A set of potential triple matches across three con-
secutive images are found from the supporting
matches from the fundamental matrix (3.5).

� A trilinear tensor is computed from these poten-
tial triple matches, again using a random sampling
algorithm [21] (3.5).

Producing the trilinear tensor is equivalent to creat-
ing a projective reconstruction of the camera position,
along with a projective reconstruction of the match-
ing corner points. What is impressive is that the �-
nal set of correspondences that support the tensor are
in practice, error free, in the vast majority of cases.
There are a number of reasons for this result. First,
unlike the fundamental matrix, the tensor encodes the
constraints among three image pairs. It can therefore

produce correct correspondences in the degenerate situ-
ation in which the epipolar lines of the two image pairs
of the image triple happen to be collinear. The other
reason for the reliable results is the use of robust meth-
ods to discard bad correspondences. The process be-
gins with a large number of possibly unreliable corner
matches and continually prunes these to a smaller set
of more reliable matches.

If the �nal goal is to produce a dense reconstruction
of the scene, then once the trilinear tensor is computed
the next phase of the reconstruction process typically
consists of the following steps:

� Rectify the image pairs in the sequence so that the
epipolar lines are horizontal [3].

� Run a stereo algorithm to compute dense depth
from the recti�ed image pairs [3].

� Auto-calibrate the image sequence to move from a
projective to a metric reconstruction [7].

The set of steps in this last phase makes a number
of assumptions. The �rst is that the goal is actually
to create a dense 3D metric reconstruction of what has
been viewed by the image sequence. However, for some
applications, the output of the �rst phase, a set of pro-
jective camera positions, may be su�cient. An example
occurs the �eld of augmented reality in which the goal
is to place synthetic objects in an image of a real scene.
In this case, the computed tensors can be used to place
these synthetic objects in appropriate positions without
having either dense depth or metric camera positions.

As previously noted, we believe that for obtaining
dense depth it is best to use active, not passive meth-
ods. However, for obtaining the position of an active
sensor it is feasible to use only an image sequence from
a passive co-mounted sensor [22]. Also, in many model
building applications it is not di�cult to obtain camera
calibration, and we assume this information is available.
Our goal is to �nd the 3D camera positions from an
image sequence using projective methods to solve the
correspondence problem. The details of the procedure
are described in the next section.

3 Processing Steps

We now describe the details of the process that takes an
overlapping image sequence and computes a set of 3D
camera positions. In doing so, we highlight the changes
and additions that we have made over what is described
in the literature.

3.1 Finding corners/interest points

The �rst step is to �nd a set of corners or interest points
in each image. These are the points where there is a
signi�cant change in image gradient in both the x and y
direction. We use the public domain Susan software for
this function [19]. Instead of setting a corner thresh-
old, we return a �xed number of corners. This tends
to stabilize the results when the images have di�erent
contrast and brightness because the proper threshold is
selected automatically. In the future we plan to make
the required number of corners a function of the average
image gradient. The �nal results are not particularly
sensitive to the number of corners. Typically there are
in the order of 800 corners found in an image.

3.2 Matching corners

The next step is to match corners between adjacent im-
ages. A local window around each corner is correlated
against all other corner windows in the adjacent im-
age that are within a certain distance. This distance
represents an upper bound on the maximum disparity.
We set this upper bound to 300 pixels in x and y for
an image size of 750 by 500. Any corner pair between
two adjacent images which passes a minimum correla-
tion threshold and has less than the maximum dispar-
ity, is a potential match. All such potential matches
must then pass a symmetry test. Consider a corner
p in the left image of an image pair, and a corner q
in the right image. Assume that the strongest match
for p in the opposite image, the right image, is labeled
Right(p). Similarly for q the strongest match in the left
image, is labeled Left(p). The symmetry test requires
the correlation be a maximum in both directions; from
image a to image b, and vice-versa. In other words a
match (p; q) is acceptable if and only if q = Left(p),
and p = Right(q).

The symmetry test reduces the number of possible
matches signi�cantly and forces the remaining matches
to be one-to-one. The total number of possible matches
between images is therefore less than or equal to the
total number of corner points. Typically, there are only
200 to 500 acceptable matches between 800 pairs of
corners. Without the symmetry test constraint there
are far more matches; but these matches are much less
reliable. For wide baseline images, it is useful to relax
the symmetry test and to accept the n best matches
(usually in the order of 4). Even in this case we still
require that the results be symmetric, that is that each
of these matches actually be one of the n best in a
symmetric fashion.

3.3 Local consistency testing

The next step is to perform some type of local �lter on
these matches. The idea is that just by looking at the
local consistency of a match relative to its neighbors it
is possible to prune many false matches. This is not
always done in the literature, but is sensible, since the
computational cost of using a local �lter is low. One
possible approach to prune matches is to use relaxation
[15]. We use a simpler relaxation-like process to prune
false matches, one based on the concept of disparity
gradient [23]. The disparity gradient is a measure of the
compatibility of two correspondences between an image
pair. Assume the �rst correspondence maps a corner
(alx; aly) in the left image to another corner (arx; ary),
in the right image. Similarly, a second correspondence
maps corners (blx; bly) into (brx; bry). The disparity of
these two correspondences are the vectors da = (arx �
alx; ary � aly) and db = (brx � blx; bry � bly). The
point az is the midpoint of the line segment joining
al, and ar, and similarly bz is the midpoint of the line
segment joining bl, and br. The vector that joins az
and bz is called the cyclopean separation, dcs(a; b). The
disparity gradient is the ratio of the magnitude of these
two vectors; dgr = jda � dbj=jdcs(a; b)j.

Corner points that are close together in the left im-
age should have similar disparities, and the disparity
gradient is a measure of this similarity. Thus, the
smaller the disparity gradient, the more the two cor-
respondences are in agreement and vice-versa. The dis-
parity gradient measure has been used in many stereo
algorithms to prune invalid correspondences. Typically,
these algorithms reject any correspondence with a dis-
parity gradient greater than 1.5. In our case, we com-
pute the disparity gradient of each correspondence with
respect to every other correspondence. The sum of all
these disparity gradients is a measure of how much this
particular correspondence agrees with its neighbours.
We iteratively remove correspondences until they all
satisfy the condition that the correspondence with max-
imum disparity gradient sum is within a small factor
(usually 2) of the correspondence with minimum dis-
parity gradient sum. Using this simple disparity gradi-
ent heuristic we are able to remove signi�cant numbers
of bad correspondences at a very low computational
cost. Typically, at least 20% of the total number of
correlation matches are removed by this process.

3.4 Computing the fundamental matrix

The original matches between image i and j produced
by the correlation process are labeled as the set Mij ,
and the �ltered matches that pass the disparity gra-
dient test as the set DMij . The next step is to use

these �ltered matches to compute the fundamental ma-
trix which is the uncalibrated version of the essential
matrix. This process must be robust, since it can not
be assumed that all of the correspondences in DMij are
correct. Robustness is achieved by using concepts from
the �eld of robust statistics, in particular, random sam-
pling. Random sampling is a \generate and test pro-
cess" in which a minimal set of correspondences, in this
case the smallest number necessary to de�ne a unique
fundamental matrix (7 points), are randomly chosen
[9, 10, 24, 8, 15]. A fundamental matrix is then com-
puted from this best minimal set. The set of all corners
that satisfy this fundamental matrix is called the sup-
port set. The fundamental matrix Fij , with the largest
support set SFij is returned by the random sampling
process.

While this fundamental matrix has a high probabil-
ity of being correct, it is not necessarily the case that
every correspondence that supports the matrix is valid.
This is because the fundamental matrix encodes only
the epipolar geometry between two images. A pair of
corners may support the correct epipolar geometry by
accident. This can occur, for example, with a checker-
board pattern when the epipolar lines are aligned with
the checkerboard squares. In this case, the correctly
matching corners can not be found using only epipo-
lar lines (i.e. computing only the fundamental matrix).
This type of ambiguity can only be dealt with by com-
puting the trilinear tensor.

3.5 Computing the trilinear tensor

The trilinear tensor relates the image coordinates of
matching corners in three images instead of two im-
ages. It is therefore inherently a more stable, and more
discriminating quantity that the fundamental matrix
[1]. We compute the trilinear tensor from the corre-
spondences that form the support set of two adjacent
fundamental matrices in the image sequence. Consider
three adjacent images, i, j and k and their associated
fundamental matrices Fij and Fjk . Each of these ma-
trices has a set of supporting correspondences, which
we call SFij and SFjk . Say a particular element of
SFij is (xi; yi; xj ; yj) and similarly an element of SFjk is
(x0j ; y

0

j ; x
0

k; y
0

k). Now if these two supporting correspon-
dences overlap, that is if (xj ; yj) equals (x0j ; y

0

j) then
the triple created by concatenating them is a member
of CTijk , the possible support set of tensor Tijk . The
set of all such possible supporting triples is the input to
the random sampling process that computes the tensor.
The result is the tensor Tijk , and a set of triples (corner
in the three images) that actually support this tensor,
which we call STijk.

We have gone from a set of corner points Ci; Cj , and

Ck; to a set of matchesMij , andMjk; to a set of �ltered
matches DMij , and DMjk; to a pair of fundamental
matrices Fij ; Fjk and support SFij and SFjk ; to a set
of computed tuples CTijk , to a tensor Tijk with sup-
port STijk. Note that the cardinality of the supporting
matches always decreases, but the con�dence that each
match is correct increases. The entire process begins
with many putative matches, and re�nes these to a few
high con�dence matches. The �nal matches that sup-
port the tensor, that is STijk, range in cardinality from
20 to 100, and in practice, have a very high probability
of being correct.

As we stated in the introduction, the goal is to
compute the 3D camera positions from the image se-
quence, not to compute dense depth. We therefore do
not perform the steps in the second phase; recti�ca-
tion, stereo and auto-calibration. Instead, we take the
correspondences that supports the overlapping tensors
and send them to a photogrammetric bundle adjust-
ment program. Assume that we have a sequence of
images numbered from 1 to n, and have computed a
set of overlapping tensors T123; T234; : : : ; T(n�2)(n�1)(n).
Consider the tensors Tijk and Tjkl which have support-
ing correspondences (xi; yi; xj ; yj ; xk; yk) in STijk and
(x0j ; y

0

j ; x
0

k; y
0

k; x
0

l; y
0

l) in STjkl. Those correspondences
for which (xj ; yj ; xk; yk) equals (x

0

j ; y
0

j ; x
0

k; y
0

k) represent
the same corner in images i, j, k and l. In such cases
we say that this corner identi�ed in Tijk is continued
by Tjkl. Each 2D corner point is given a unique identi-
�er, and its continuation is tracked as long as possible
in the sequence of tensors. The input to this track-
ing process is the set of supporting correspondences for
the overlapping tensors. The output is a �le of num-
bered corners, where each corner is identi�ed by its 2D
co-ordinates in a set of consecutive images. This cor-
ner list is then sent directly to the commercial bundle
adjustment program Photomodeler [13] using a Visual
Basic routine that communicates through a DDE in-
terface. Since we know the camera calibration we use
these correspondences to compute the 3D camera posi-
tions, along with the 3D co-ordinates of the matching
features by running the Photomodeler program.

4 Experiments

We have performed a number of experiments in which
we automatically compute the correspondences for a
sequence of images using the projective paradigm. We
have noticed that the photogrammetric bundle adjust-
ment software will sometimes not converge if the spac-
ing between the image sequence is too small. For this
reason we manually skip images in a sequence to main-
tain an average disparity of at least twenty pixels.

Figure 1: Four images in the castle sequence.

Because of space limitations we describe only two
experiments. The �rst uses the castle sequence that
appears in other projective vision papers. This is a set
of approximately thirty images in a video sequence of a
castle [7]. In Figure 1 are some of the original images in
the sequence, while in Figure 2 are the camera positions
and the 3D locations of the corner points. In all the im-
ages showing the �nal reconstruction the corner points
are the bright dots, and the camera positions are the
box-like objects. There are only six camera positions,
since we discard intermediate images in the video se-
quence to make the baselines wide enough for the bun-
dle adjustment program to converge. It should be noted
that we have chosen the camera calibration in a rather
ad-hoc fashion, simply to make the walls of the castle
appear to be 90 degrees. However, even with this ad-
hoc calibration our reconstruction compares well to the
�gures in the literature (see Figure 7.2 of [7]). There-
fore it seems that we have computed approximately the
same camera positions from this image sequence.

The second example is of a longer sequence of im-
ages of an indoor room. In Figure 3 are eight equally
spaced images, out of a total of 33 actually used in the
experiment. Figure 4 shows two views of the camera
position reconstruction. The �rst image (of the Apple
computer) in the sequence is the leftmost camera po-
sition. The set of compact dots on the left hand side
of the reconstruction �gure represent the corner points
found on the bookshelf.

There is no doubt that reliable results can be ob-
tained for a wide variety of images, both indoor and
outdoor. The software runs on most Unix systems,
along with Windows NT, and Windows 98. The input
is a sequence of overlapping images, and the output is
a series of fundamental matrices and trilinear tensors.

Figure 2: The 3D reconstruction of the camera posi-
tions and the corner points for the castle sequence.

The binaries and a number of examples are available on
the web site http://www.vit.iit.nrc.ca/roth/home.html.
The software is written in a modular form so that each
step of the process outputs a �le, which is then used as
the input to the next step. The software is also able
to read many di�erent types of input �le formats. We
invite the reader to download and test the software on
their own image sequences.

5 Conclusions and Discussions

We have implemented a modular system for computing
a reconstruction of the camera position in an image se-
quence. Since our goal is to �nd the metric camera posi-
tion we do not need to create a dense 3D reconstruction.
We assume that we have a camera calibration available,
but do not use this calibration when computing the
correspondences. Instead reliable correspondences are
computed using the un-calibrated projective method.
However, the calibration information is used for com-
puting the 3D camera positions from these correspon-
dences. The �nal correspondences, those that support
the trilinear tensor, are error free in the vast majority
of cases. The results are demonstrated experimentally
on a number of examples.

In performing our experiments we have drawn some
conclusions about the best approaches for each step of
the projective reconstruction process. We have also de-
scribed a new way to locally �lter invalid correspon-
dences based on the disparity gradient. We believe
that projective methods in combination with random
sampling solve the correspondence problem for many
image sequences. The support set of the fundamental

Figure 3: Eight equally spaced images (out of thirty-
three) in the room sequence.

Figure 4: The 3D reconstruction of the camera posi-
tions and the corner points for the room sequence.

matrix and trilinear tensor are correct correspondences
in the vast majority of cases. If the goal is to compute
the metric camera positions and the camera calibration
is known, we believe that it is best to send the sup-
porting correspondences of the tensor directly to the
photogrammetry software. Our justi�cation for this is
that a bundle adjustment process is necessary to com-
pute these positions accurately and we believe that this
is better done in metric space, rather than projective
space. In the future we plan to perform more system-
atic experiments where the ground truth is known.

Acknowledgements

The authors would like to thank Dr. Toshio Ueshiba of
ETL in Japan for many helpful discussions and useful
software when starting our work on projective vision.

References

[1] A. Shashua, \Algebraic functions for recognition,"
IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 17, no. 8, pp. 779{789, 1995.

[2] R. Hartley, \A linear method for reconstruction from
lines and points," in Proceedings of the International

Conference on Computer Vision, pp. 882{887, Cam-
bridge, Mass., June 1995.

[3] R. Koch, M. Pollefeys, and L. VanGool, \Multi view-
point stereo from uncalibrated video sequences," in
Computer Vision-ECCV'98, pp. 55{71, 1998.

[4] M. Pollefeys, R. Koch, M. Vergauwen, and L. Van-
Gool, \Automatic generation of 3d models from pho-
tographs," in Proceedings Virtual Systems and Multi-

Media, 1998.

[5] A. Fitzgibbon and A. Zisserman, \Automatic cam-
era recovery for closed or open image sequences," in
ECCV'98, 5th European Conference on Computer Vi-

sion, (Freiburg, Germany), pp. 311{326, Springer Ver-
lag, June 1998.

[6] Z. Zhang, R. Deriche, O. Faugeras, and Q.-T. Luong,
\A robust technique for matching two uncalibrated im-
ages through the recovery of the unkown epipolar ge-
ometry," Arti�cial Intelligence Journal, vol. 78, pp. 87{
119, October 1995.

[7] M. Pollefeys, Self-calibration and metric 3d reconstruc-

tion from uncalibrated image sequences. PhD thesis,
Catholic University Leuven, 1999.

[8] P. Torr and D. Murray, \Outlier detection and motion
segmentation," in Sensor Fusion VI, vol. 2059, pp. 432{
443, 1993.

[9] P. J. Rousseeuw, \Least median of squares regression,"
Journal of American Statistical Association, vol. 79,
pp. 871{880, Dec. 1984.

[10] R. C. Bolles and M. A. Fischler, \A ransac-based ap-
proach to model �tting and its application to �nd-
ing cylinders in range data," in Seventh International

Joint Conference on Arti�cial Intelligence, (Vancouver,
British Colombia, Canada), pp. 637{643, 1981.

[11] H. Sawhney, Y. Guo, J. Asmuth, and R. Kumar,
\Multi-view 3d estimation and applications to match
move," in 1999 IEEE Workshop on Muli-View Mod-

elling and Analysis of Visual Scenes, pp. 21{28, 1999.

[12] P. Mclauchlan, \Gauge invariance in projective 3d re-
construction," in IEEE Workshop on Multi-View Mod-

elling and Analysis of Visual Scenes, pp. 37{44, IEEE
Computer Society, 1999.

[13] Photomodeler by EOS Systems Inc.

http:/www.photomodeler.com.

[14] P. Besl, \Active, optical range imaging sensors," Ma-

chine Vision and Applications, vol. 1, no. 1, pp. 127{
152, 1988.

[15] G. Xu and Z. Zhang, Epipolar geometry in stereo, mo-

tion and object recognition. Kluwer Academic, 1996.

[16] H. Longuet-Higgins, \A computer algorithm for re-
constructing a scene from two projections," Nature,
vol. 293, pp. 133{135, 1981.

[17] R. Hartley, \In defence of the 8 point algorithm," in
IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 19, 1997.

[18] M. Spetsakis and J. Aloimonos, \Structure from mo-
tion using line correspondences," International Journal
of Computer Vision, vol. 4, pp. 171{183, 1990 1990.

[19] S. Smith and J. Brady, \Susan - a new approach to
low level image processing," International Journal of

Computer Vision, pp. 45{78, May 1997.

[20] C. Harris and M. Stephens, \A combined corner and
edge detector," in Proceedings of the 4th lvey Vision

Conference, pp. 147{151, 1988.

[21] P. Torr and A. Zisserman, \Robust parameterization
and computation of the trifocal tensor," Image and Vi-

sion Computing, vol. 15, no. 591-605, 1997.

[22] P. Jasiobedski, \Fusing and guiding range measure-
ments with colour video images," in Proceedinsg Inter-

national Conference on Recent Advances in 3-D Digital

Imaging and Modelling, (Ottawa, Ontario), pp. 339{
347, IEEE Computer Society Press, 1997.

[23] R. Klette, K. Schluns, and A. Koschan, Computer Vi-

sion: three-dimensional data from images. Springer,
1996.

[24] G. Roth and M. D. Levine, \Extracting geometric
primitives," Computer Vision, Graphics and Image

Processing: Image Understanding, vol. 58, pp. 1{22,
July 1993.

