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Robust Object Pose Estimation From
Feature-Based Stereo

Robert Laganière, Member, IEEE, Sébastien Gilbert, and Gerhard Roth, Senior Member, IEEE

Abstract—This paper addresses the problem of computing the
three-dimensional (3-D) path of a moving rigid object using a
calibrated stereoscopic vision setup. The proposed system begins
by detecting feature points on the moving object. By tracking
these points over time, it produces clouds of 3-D points that
can be registered, thus giving information about the underlying
camera motion. A novel correction scheme that compensates for
the accumulated error in the computed positions by automatic
detection of loop-back points in the movement of the object is
also proposed. An application to object modeling is presented in
which a handheld object is moved in front of a camera and is
reconstructed using silhouette intersection.

Index Terms—Camera calibration, feature matching, feature
tracking, pose estimation, shape-from-silhouette, stereovision,
three-dimensional (3-D) reconstruction.

I. INTRODUCTION

ONE OF the main challenges inherent in using images
from a large number of viewpoints is the issue of camera

pose estimation. For three-dimensional (3-D) reconstruction to
be possible, the location and orientation of the cameras at differ-
ent capture instants must be accurately known. Several applica-
tions can benefit from the knowledge of the position of a camera
with respect to some rigid reference frame. Among them are
virtual or augmented reality systems, scene reconstruction,
object modeling, and robotics. In a video sequence in which
a camera is moving inside a fixed environment, keeping track
of the camera/object’s respective positions can be challenging.
In the case of a moving camera, a workable solution consists of
installing calibration targets, precisely registered with respect
to a global reference frame. By having them visible inside the
scene, it becomes possible to compute the camera position as
the camera moves with respect to the global reference frame
[5]. Alternately, in an object-based solution, a computer-aided
design (CAD) model of the observed objects can be created, and
by registering that model to the observations, the spatial relation
between the scene and the camera can be determined [1]. In
practice, however, these solutions are not always feasible. It is
therefore desirable to develop a method to compute the camera
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motion in an unprepared scene for which no a priori knowledge
is available.

In 3-D reconstruction, bundle adjustment is a widely ac-
cepted approach [2], and commercial software tools are now
available. The technique most often relies on a human oper-
ator who has to supply the matches since there is typically a
small number of widely separated views. Bundle adjustment
is used for a wide spectrum of applications, such as accident
reconstruction, animation and graphics, archaeology, forensics,
engineering, and architecture. The main drawback of bundle
adjustment is its instability. In many situations, the algorithm
will fail to converge to an accurate solution. To overcome this
problem, it is recommended that the user starts with a small
subset of available pictures and a small number of feature points
that can be seen in many pictures. Once the algorithm suc-
ceeded in converging to a first reasonable solution, additional
intermediate pictures and more feature points can be added to
improve the accuracy. This lack of robustness can be related to
the iterative nature of bundle adjustment, which implies initial
estimates of the camera positions. If these estimates are very far
from the actual solution, the algorithm may fail to converge.

This problem is amplified when one wants to automate the
whole process. Matches between narrowly separated views
can be found automatically through correlation. Unfortunately,
nothing can guarantee that the matches will all be good. Bad
matches will definitely negatively affect any structure and mo-
tion estimation process. While the use of more widely separated
views would help to improve the accuracy of the reconstruction,
the matching process would become much more difficult and
error prone.

The method proposed in this paper aims at resolving these
issues using a calibrated stereoscopic vision setup. This system
is observing a rigid object in motion on which feature points are
detected. Because they are seen by a stereo setup, these points
can be 3-D reconstructed when they are matched. By tracking
these points over time, the resulting clouds of 3-D points can
be registered, thus giving information about the underlying
camera motion. This is the idea that is exploited in this paper to
robustly keep track of the camera/object’s relative motion along
a sequence. Camera position computation from reconstructed
points has been used in the past but was generally limited
to few images, long image sequences posing the problem of
error accumulation error. The scheme proposed here overcomes
this problem because 1) it includes a novel correction scheme
that compensates for the accumulated error in the computed
positions, and 2) it exploits the automatic detection of loop-
back points in the movement of the object. An application to
object modeling is presented in which a handheld object is
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moved in front of a camera and is reconstructed using silhouette
intersection.

The path of a binocular or trinocular stereoscopic setup
is computed in [4]. In this approach, points are matched at
each camera location. In addition, points in one view are
tracked from image to image. The method uses trilinear tensors
and/or fundamental matrix constraints for robust tracking and
matching over views. The computed transformations are then
cascaded to place them in a common coordinate frame. To
overcome the problem of error accumulation, it is proposed
to add an extra step where the final 3-D transformation for all
cameras would be computed simultaneously.

In [7], the goal is to compute the registration of two consecu-
tive scene captures along with the extrinsic calibration parame-
ters of the stereo setup and the 3-D location of a minimum of
four matched and tracked feature points. The essential matrix
of the stereo setup is calculated from the eight correspondences
given by the four feature points in both captures; nonlinear
methods are used to enforce its constraints. It is decomposed to
retrieve the extrinsic calibration parameters up to a scale factor
of the translation vector. At this point, 3-D reconstruction can
be applied to the feature points, yielding two clouds of a mini-
mum of four 3-D points. The registration between the two 3-D
point clouds can then be calculated. It differs from the proposed
method in that they do not compute the extrinsic calibration
parameters of the stereo setup prior to the computation of the
registration. As a consequence, the matching process cannot be
guided by the epipolar constraint. No experimental results along
a sequence were shown to display the accumulation of error.

The method in [20] tracks points in each view of a stereo rig.
It introduced binocular matching constraints. Camera motion
is recovered from the left and right temporal fundamental
matrices. Stereo correspondences are then inferred by com-
bining stereo geometry and motion correspondences through
projective mapping. A similar approach is presented in [8];
stereoscopic vision and shape-from-motion are combined in
an attempt to exploit the strengths of both approaches, i.e.,
accurate 3-D reconstruction for stereo and easy feature tracking
for visual motion. The result is a 3-D reconstruction of feature
points and the camera motion in two separate steps. In this
paper, the experiments were limited to short sequences where
the viewpoints do not change dramatically from the first to the
last capture.

Stereo and motion correspondences are computed simultane-
ously in [24]. They defined a coarse-to-fine algorithm in which
local surface parameters and rigid-body motion parameters are
iteratively estimated. They were able to extract local range
information from a sequence of a few stereo images.

In [6], self-calibration and Euclidean reconstruction from
a stereo rig are achieved through a stratified approach that
proceeds by upgrading a projective reconstruction to affine and
to metric reconstruction. The results are shown for images taken
before and after a single rigid motion.

A strategy based on active stereo is proposed in [11] for
simultaneous localization and mapping in a robotic application.
As the robot moves inside the scene, the stereo head is actively
moved to select the feature measurement that will best improve
the current robot position estimation. The solution is based on

the definition of measurement and motion models predicted
using a Kalman filter.

Finally, a 3-D model acquisition system is proposed in [12],
in which an object is also freely rotated in front of a camera.
The method, however, uses a structured-light rangefinder to
extract the required 3-D information. The images are then
geometrically aligned using an iterative closest point (ICP)-like
algorithm that identifies the best rigid body transformation.

The rest of this paper is organized as follows. Section II
reviews the concepts of 3-D reconstruction. Section III presents
the used feature matching and tracking strategy. Section IV
discusses the problem of previously visited locations while
Section V is concerned with accumulated error correction.
Finally, Section VI presents the experimental results and
Section VII the conclusion.

II. STEREO RECONSTRUCTION

Three-dimensional reconstruction requires the computation
of the Euclidean coordinates of image features from the visual
data observed in multiple views. Stereoscopic vision involves
the use of two cameras for which there is a fixed rigid transfor-
mation between them.

A. Calibration

Stereo calibration aims at computing the projection matrices
of the two cameras. When a set of 3-D points at precisely known
locations is available, the projection matrices can be obtained
straightforwardly. Indeed, a point Xi and its corresponding
image coordinates xi satisfy the relationship

x =PX = K[R|T ]X
x

y
1


 =λ


 p00 p01 p02 p03

p10 p11 p12 p13

p20 p21 p22 p23






X
Y
Z
1


 . (1)

Eliminating λ and rearranging the expressions yield a pair
of homogeneous linear equations in 12 unknowns, which are
the entries of the projection matrix. Putting together the in-
formation of n 3-D points (n ≥ 6) gives 2n homogeneous
linear equations in 12 unknowns: p00, p01, . . . , p23. This system
can be solved up to a scale factor through singular value
decomposition (SVD). The quality of the computed projection
matrix depends on the linearity of the camera model and the
accuracy in the measured 3-D location of the points. Once the
projection matrices are computed for both cameras, they can be
decomposed to retrieve their intrinsic and extrinsic calibration
parameters [3].

In practice, however, it is more convenient to use a planar
configuration object with known metric pattern. By exploiting
the homographic constraints that exists between the calibration
plane and the corresponding images, it is possible to build a
linear system of equations. This is the approach proposed in
[16] and [17], where several views of the planar calibration
pattern are used to calibrate a single camera. The procedure has
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Fig. 1. Average reconstruction error for three different baselines.

been extended to the case of a stereo setting in [19]. The method
makes use of the additional constraint provided by the stereo rig
configuration. The constraint is also expressed in the form of
a homography: the one that links the image of the calibration
plane as a function of the rigid transformation between the
cameras of the stereo head, i.e., [18]

H = K

[
R − Tn�

d

]
K−1. (2)

Here, n is the normal of the calibration, and d is the distance
from the camera to the plane.

To determine the optimal stereo configuration of the cameras,
we performed an experiment in which we used three stereo
setups with different baselines (0.139, 0.416, and 0.756 m). The
angles between the z-axes of the two cameras were adjusted
in such a way that a given working volume was preserved,
resulting in angles of 0.112, 0.463, and 1.05 rad, respectively.
A checkerboard calibration pattern was used, allowing easy
detection of its feature points with subpixel resolution. The
position of the calibration pattern with respect to the table was
measured with a ruler. This procedure provides the ground truth
value of the feature point position, with an estimated accuracy
of 0.3 mm.

Fig. 1 shows the reconstruction error (|�xcalculated −
�xmeasured|) averaged over the 20 feature points of a calibra-
tion pattern as a function of the z-position of the calibration
pattern for three different baselines. It can be observed that
the reconstruction error is higher for the stereo setup with the
smallest baseline, as expected. No significant difference can be
observed by comparing the results of the stereo setups with
baselines of 0.416 and 0.756 m. Because matching is facilitated
when the baseline is shorter, we can conclude that there is no
need to increase the baseline of our stereo setup above 0.4 m
as it does not seem to provide any significant improvement in
reconstruction accuracy and would make the matching process
more difficult.

B. Three-Dimensional Point Reconstruction

Once the stereo rig is calibrated, and consequently the pro-
jection matrices P1 and P2 are known, it is possible to compute
the 3-D position of any point seen by the two cameras. Using
the projective relation in (1), the 3-D location X of a feature
point whose image coordinates in the two images are x1 and x2

can be obtained by solving the system of four linear equations
in three unknowns as




(p00 − xp20)1 (p01 − xp21)1 (p02 − xp22)1
(p10 − yp20)1 (p11 − yp21)1 (p12 − yp22)1
(p00 − xp20)2 (p01 − xp21)2 (p02 − xp22)2
(p10 − yp20)2 (p11 − yp21)2 (p12 − yp22)2


 .


X

Y
Z




=




(xp23 − p03)1
(yp23 − p13)1
(xp23 − p03)2
(yp23 − p13)2


 . (3)

This system can be solved through a least square method.
Even if this approach, involving the minimization of algebraic
quantities, works well in practice, a geometric triangulation
formulation is often preferred. The method finds the 3-D point
that minimizes its 3-D distance with two noncrossing lines in
space. In other words, it returns the middle point of the segment
perpendicular to both rays.

Fig. 2 shows the geometry of two cameras projecting the
images x1 and x2 of the 3-D point X. In an ideal situation, the

extension of the lines
−−−−−−→
O1K

−1
1 x1 and

−−−−−−→
O2K

−1
2 x2 should cross

each other in space at the location of the projected 3-D point
X. In reality, the two lines may not cross. The best solution
is therefore to search for the point X that is the middle of the
segment perpendicular to both lines. From Fig. 2, we have

X1 =
1
λ1

K−1
1 x1 (4)

X2 =
1
λ2

K−1
2 x2. (5)
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Fig. 2. Geometry of the triangulation procedure.

Expressing point X2 in the reference frame of the first camera
gives

X2|cam1 =RX2 + T

=
1
λ2

RK−1
2 x2 + T. (6)

Let us now define the vector �d that is proportional to the cross
product of X1|cam1 and (X2|cam1 − T )

�d ≡λ1λ2X1|cam1 × (X2|cam1 − T )

=K−1
1 x1 ×RK−1

2 x2. (7)

The vector �d is therefore parallel to the vector
−−−→X1X2. Let

us now define three scalars a, b, and c such that the path
O1X1X2O2O1 forms a closed loop

aK−1
1 x1 + b�d + cRK−1

2 x2 − T =0 (8)

aK−1
1 x1 + b

[
K−1

1 x1 ×RK−1
2 x2

]
+ cRK−1

2 x2 =T. (9)

Equation (9) provides three linear equations in three unknowns:
a, b, and c. Once this system is solved for a given match (x1,
x2), the location of the point X can be calculated as

X|cam1 = aK−1
1 x1 +

1
2
b
[
K−1

1 x1 ×RK−1
2 x2

]
. (10)

III. FEATURE-BASED STEREOKINEOPSIS

To keep track of the position of an object that moves in
front of a set of cameras, we used a match-and-track paradigm.
At one instant, feature points are detected and matched across
views. The matched points are then independently tracked in
each view until a new matching process is initiated. Proceeding
this way, we benefit from both the accuracy of the recon-
struction provided by stereo-matching and the reliability and
efficiency of image tracking. Robustness of the process to the
unavoidable presence of outliers is ensured by the 3-D regis-
tration procedure that is applied between each stereo-matching
phase. Note that matching is typically applied every X frames,
while tracking is performed at full frame rate. In fact, the
matching rate is determined by the frequency at which a given

application requires new object position data. The following
subsections detail each of these steps. Another important diffi-
culty related to sequential pose estimation approaches concerns
the error accumulation problem; this aspect is addressed in
Sections IV and V.

A. Tracking

Feature point tracking is achieved using the Intel OpenCV
implementation of the Lucas–Kanade tracker [15]. It is an
accurate and robust tracker that can run at several frames per
second. To reduce the computational load, the tracker uses
a pyramid of resolutions in the computation of displacement
vectors.

When Harris corners are used, the tracker performs reliably
over quite long sequences. However, it is unavoidable to have
some false tracks occurring. Occlusion boundaries, for instance,
are particularly problematic as they tend to produce moving
corners on the image. Consequently, even when starting with
an exact match set, the independent tracking of the features in
each view will most probably cause the introduction of some
false matches; therefore, the 3-D registration process has to be
robust to outliers.

B. Matching

Because the epipolar geometry is available through a pre-
liminary calibration phase, it is used to guide the matching of
features. Thus, only points from the second image that lie close
to the epipolar line of a point in the first image are considered
as possible matches.

Feature comparison is done using variance normalized cor-
relation (VNC), which is designed to produce reliable results
over a wide range of viewing conditions. VNC is defined for a
candidate match (x1, x2) as

VNC(x1,x2) =

∑
k1,k2

[
I1(k1)−I1(x1)

][
I2(k2)−I2(x2)

]
N
√

σ2
I1

(x1)σ2
I2

(x2)
(11)

where the sum is taken over the points k1 and k2 in the
neighborhoods of x1 and x2 and where I(x) and σ2

I (x) are,
respectively, the mean and the variance of the pixel intensities
over the neighborhoods.

The point pairs found through correlation along the epipolar
lines are not necessarily accurate correspondences. This is why
additional matching constraints must be applied. In particular,
the uniqueness and symmetry constraints have been shown to
be simple and advantageous [14]. Uniqueness requires that only
the best match in the second image be kept for a given point
in the first image. Symmetry requires that the point in the first
image also be the best match for the other point.

Finally, to prune additional mismatches that might still be
present, the disparity gradient is used, as in [21]. The dis-
parity gradient is a measure of the compatibility of matched
points. For two pairs (x1, x2) and (y1, y2) having disparities
d(x1,x2) and d(y1,y2), respectively, the cyclopean separation



1274 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 55, NO. 4, AUGUST 2006

dcs(x1,x2;y1,y2) is the vector joining the midpoints of the
line segments x1x2 and y1y2, and their disparity gradient is
defined as

∆d(x1x2;y1y2) =
|d(x1,x2) − d(y1,y2)|
|dcs(x1,x2;y1,y2)| . (12)

This compatibility measure is used in a constraint that ac-
cepts pairs that share disparity gradients below some threshold
value, with at least two of their three closest neighbors. This
eliminates false matches as long as they are not surrounded by
other similar false matches.

C. Robust Registration

After having found matches and tracked the corresponding
points in both sequences, 3-D points can be reconstructed.
Based on the matches at a given instant M and their tracked
correspondents at a latter instant N , the resulting two clouds
of 3-D points can be registered to find the rigid motion of
the object (or, reciprocally, the rigid motion of the stereo
setup when the reference frame is attached to the object).
Unfortunately, in identifying the motion complying with the
observations, one cannot simply use the complete data set
because the false matches, and the tracking errors will corrupt
the result. Instead, it is necessary to introduce a random sample
consensus (RANSAC) algorithm [9] to filter out the corrupted
pairs of 3-D points.

A minimum of three pairs of noncollinear 3-D points is
necessary to compute an unambiguous 3-D registration. As
a consequence, the first step of the algorithm will consist of
finding a triplet of 3-D matches.

To make sure that a randomly selected triplet of 3-D matches
does not constitute a degenerate case (i.e., is not in a collinear
configuration), two conditions are imposed.

1) The distance between any two points of the trio must be
greater than a given minimum.

2) The area defined by the three points must be greater than
a given minimum.

The first item alone is not sufficient because three collinear
points that are located far apart would satisfy it, while the
second item alone would allow a triplet constituting of two
points close from each other with a third point far away, such
that the area of the triangle is sufficient.

Once corresponding triplets have been identified as being
noncollinear, the rotation and the translation that best describe
the rigid movement of the points can be computed. This now
constitutes a candidate registration (RN/M , TN/M ).

Given such a candidate registration, a count of the number of
supporting matches can be obtained as follows. For each 3-D
match, if the distance between XN and RN/MXM + TN/M

is less than the maximum distance, then this match is said to
agree with or support the candidate registration. This procedure
is repeated several times with the number of trials set so that the
probability of success is above a desired value. The candidate
registration having the highest number of supporting matches is
declared the best candidate registration.

Finally, all the matches that support the best candidate regis-
tration are used to compute the final output registration through
least square fitting of the two sets of points [10], i.e.,

QN/M =
[
RN/M TN/M

0T 1

]
(13)

From the computed homogeneous transformation QN/M , the
new world coordinates of the cameras can be computed as

QN = QN/MQM . (14)

The main problem associated with this technique resides in the
accumulation of errors, because every new position is computed
from the previous one. Because it is assumed that no special
target points that could allow recalibration are available on
the object, the only information that can be used here is the
knowledge of the approximate camera positions that will allow
us to identify points of view that were previously captured. This
is the information that will be used here to correct for the drift
each time the cameras pass by a location where they have been
before.

IV. DETECTION OF PREVIOUSLY VISITED LOCATIONS

The goal of this procedure is to take a sequence of camera
positions and identify those that are close to their previous
positions in an earlier image capture. Whenever such a loop-
back situation is detected, a connection between earlier and
later views becomes possible. Once this is done, a registration
between the two positions and correction of the accumulated
error can be undertaken.

Because the tracking algorithm described in Section III-A is
used to match the two extreme views of a detected loop, it is
necessary that these views be separated by a relatively short
baseline; this requirement can be expressed by the following
two conditions.

1) The z-axes of the two views must be nearly parallel.
2) The distance between the center of projection of the views

must be sufficiently small.

At first sight, these conditions might appear to be insufficient
for loop-back detection to work properly as this test is not com-
pletely rotationally invariant. Indeed, it is also necessary that
the y-axes (or the x-axes) be nearly parallel for correct neigh-
borhood matching. Nevertheless, we can relax this constraint
since our knowledge of the approximate camera positions will
allow us to derotate the images around their z-axes in such a
way that they become adequately aligned.

A. Detection of Close Views

The distance between the center of projection of the views
is directly calculated from the length of the vector going from
one center to the other. To calculate the maximum distance we
can tolerate, we must take into consideration the fact that the
two views may be collinear along their parallel z-axes (i.e., one
view may be in front of the other), resulting in a scale difference
between the two images.
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The angle between the z-axes of two views can be computed
through a scalar product of unit vectors parallel to the z-axes of
the two cameras, as expressed in the world reference frame

k̂M =QM




0
0
1
0


 (15)

k̂N =QN




0
0
1
0


 (16)

cos(θ) = k̂M · k̂N . (17)

In a sequence, the minimal angle (or distance) with respect to
a given frame may not happen at the same frame for the left
and right cameras. When trying to identify the best capture to
be matched with an earlier capture, we must find a compromise
between the two cameras.

Whenever a view is detected as being close to a previously
captured view, the drift of the later view can be compensated.
Of course, it is assumed that the earlier the view, the better
the accuracy, since its location has been computed from a
smaller number of cascaded transformations. This is discussed
in Section V.

B. Identification of the Rotation Angle Around the z-Axis

As discussed previously, two views are similar if their
z-axes are nearly parallel; they can, however, have a wide
angular difference around their z-axes. Because the tracking
algorithm is not rotation invariant, this situation could prevent
the identification of correspondences. We can overcome this
difficulty by making use of the knowledge we have of the
approximate positions of the camera; that is, we can determine
the rotation that must be applied to the images of the later view
such that it is as aligned as possible with the earlier view.

In the first approach, we will aim at minimizing the angle
between the y-axes of two views by applying a rotation around
the z-axis of the second view. Let us state the result:

Let rij be the element (i, j) of the rotation matrix link-
ing the view N with the view M , i.e., RN/M . If r10 sin
(arctan(−r10/r11)) < r11 cos(arctan(−r10/r11)), then

αY = arctan
(
−r10

r11

)
(18)

else

αY = arctan
(
−r10

r11

)
+ π. (19)

Proof: The rotation component of a reference system built
with a pure rotation α around the z-axis of the second reference
system is

RN/MR(α,0,0)

=


 r00 cos(α)+r01 sin(α) −r00 sin(α)+r01 cos(α) r02

r10 cos(α)+r11 sin(α) −r10 sin(α)+r11 cos(α) r12

r20 cos(α)+r21 sin(α) −r20 sin(α)+r21 cos(α) r22


.

(20)

A unit vector oriented along the y-axis of the camera N will be
expressed in the reference frame of camera 1 as

ĵN |M =RN/MR(α,0,0)


 0

1
0


 (21)

(20)
=


−r00 sin(α) + r01 cos(α)
−r10 sin(α) + r11 cos(α)
−r20 sin(α) + r21 cos(α)


 . (22)

We aim at maximizing the scalar product between the y-axes of
the two cameras

ĵN |M · ĵM |M = ĵN |M ·

 0

1
0




= − r10 sin(α) + r11 cos(α). (23)

To maximize the scalar product (23), we pose its first deriv-
ative with respect to α equal to 0 and its second derivative
negative to

∂

∂α
(ĵN |M · ĵM |M ) =

∂

∂α
(−r10 sin(α) + r11 cos(α))

= − r10 cos(α) − r11 sin(α)

= 0 (24)

∂2

∂α2
(ĵN |M · ĵM |M ) =

∂

∂α
(−r10 cos(α) − r11 sin(α))

= r10 sin(α) − r11 cos(α)

< 0. (25)

Together, constraints (24) and (25) yield (18) and (19).
Alternatively, one can aim at minimizing the angle between

the x-axes of the two cameras by applying a rotation αX

around the z-axis of the later view. It can be shown that,
in the case where the z-axes are perfectly aligned, the two
angles αY and αX are equal (the two reference frames can
be made to coincide). In the general case where the z-axes
are not perfectly parallel, the optimal angles αY and αX will
not be equal. The optimal angle αX that will minimize the
angle between the x-axes is given by the following relations. If
−r00 cos(arctan(r01/r00)) < r01 sin(arctan(r01/r00)), then

αX = arctan
(

r01

r00

)
(26)

else

αX = arctan
(

r01

r00

)
+ π. (27)

The proof is similar to the one given for αY . �
Because there is no a priori reason to believe that it is more

important to align the x-axes nor the y-axes, we will use a
rotation angle that is the average value of αX and αY . The
center of the rotation that must be applied to the image is the
principal point of the camera. Fig. 3 shows an example where
the described image rectification scheme is applied on an image
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Fig. 3. (a) Initial left image. (b) Initial right image. (c) Left image after 17
registrations. (d) Right image after 17 registrations. (e) Optimally rotated left
image. (f) Optimally rotated right image. These two transformed images can
now be matched with images (a) and (b).

pair to make it similar to a previously captured pair. This result
is further discussed in Section VI.

V. ACCUMULATED ERROR CORRECTION

Let us assume the view N has been identified as being
close to the earlier view M . Then, it is possible to compute
a correction matrix that can be premultiplied to the initially
computed location of the view N , i.e.,

Q′
N(corrected) ≡ Qcorrection,NQN . (28)

The problem we would like to address now is how to correct
the intermediate views. We assume there is a high level of
confidence in the knowledge of the location of the view M
(and therefore in the corrected location of view N ). The goal is
therefore to correct the intermediate views using Qcorrection,N .

Let us assume that the drift in the calculated location of
the views was uniformly distributed over all the registration
steps. Furthermore, let us assume that the individual registration
steps along with the error in the registration had small rotation
components. Let us model the uniform error in the follow-
ing way, rewriting (14) with the introduction of Qerror, the
unit error transformation matrix that happened at every regis-
tration, i.e.,

Qn =QerrorQn,n−1Qn−1

=

(
M∏

i=n−1

QerrorQi

)
QM (29)

with (M < n < N). Under the assumption of small rotation
components of {Qi} and Qerror, we can commute the matrices
in such a way that we gather the error matrices to the left and
take them out of the product, that is

Qn = Qn−M
error

(
M∏

i=n−1

Qi

)
QM . (30)

The correction matrix is assumed to annihilate the error of the
view N . Therefore

Qcorrection,N =
(
QN−M

error

)−1
= QM−N

error (31)

Qerror =Q
1

M−N

correction,N . (32)

The correction matrix at view n will have to annihilate the error
at view n, i.e.,

Qcorrection,n =
(
Qn−M

error

)−1
= QM−n

error

(32)
= Q

M−n
M−N

correction,N

=Q
n−M
N−M

correction,N . (33)

Equation (33) gives the correction matrix that must be pre-
multiplied to the calculated location of a camera at view n,
given the correction matrix at view N , under the assumption
of uniform distribution of the error along the registration steps,
and under the assumption of small rotation components of both
the registration matrices and the error transformation matrix.

It should be noted that the uniform distribution of the correc-
tion can be extended to the case of nonuniform distribution of
the error. One can have some information about which regis-
tration steps contributed most to the overall error, according to
some suspicion level. In this scheme, the ratio n−M/N −M
in (33) would be replaced by some factor α. This factor would
increase monotonously between 0 (for view M ) and 1 (for view
N ) according to the suspicion level of each registration step.
For instance, the number of 3-D pairs of points that were used in
the robust registration procedure could be used as a measure of
the suspicion level (a high number of 3-D pairs corresponding
to a low suspicion level). In all cases, the correction matrix takes
care of the average component of the error.

VI. EXPERIMENTAL VALIDATION OF THE ERROR

CORRECTION SCHEME

In the first experiment, the movement of a Russian headstock
was recorded by the stereo setup. Four images of this sequence
have been presented in Fig. 3.

The projection matrices of the cameras at each position have
been computed by matching, tracking, and 3-D registration of
reconstructed points. The estimated angles between the z-axes
and distances between the centers of projection, with respect
to the first capture, have been plotted in Fig. 4. The minimum
angle and distance happen at Capture 19 for the left camera.
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Fig. 4. (a) Angle and distance of the left camera with respect to the first capture. (b) Angle and distance of the right camera with respect to the first capture.

Fig. 5. Russian headstock sequence recorded by the right camera augmented with an attached reference frame (after recorrection).

For the right camera, the minimum distance happens at Capture
15, while the minimum angle happens at Capture 16. For the
sake of illustration, we will correct the error at Capture 18, but
it probably could have been done for Captures 16 to 19.

The rotation angles around the z-axes of the left and right
cameras were estimated to be −1.54 and −1.49 rad, respec-
tively. Fig. 3 shows the first pair of views of a sequence, the 18th
pair of views, and the rotated 18th images such that tracking
is possible with the first images. Error was corrected at view
18 through tracking of matched points from the initial views
to the rotated 18th views. The error correction matrices were
then uniformly distributed along the sequence. Fig. 5 shows

the Russian headstock sequence, augmented with an attached
reference frame projected on each image after recorrection of
the camera positions. The natural movement of the augmented
reference frame confirms the validity of the corrected projection
matrices.

The second set of experiments tries to evaluate the quality of
the 3-D information obtained. To this end, a bundle adjustment
program was used. Bundle adjustment is an iterative method
of computing the camera pose and the 3-D location of feature
points given a set of matches from different cameras and the
intrinsic calibration parameters of the cameras. The problem is
to minimize the sum of the Euclidean-squared distance between
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Fig. 6. Some images of the duck sequence recorded by the left camera (frames 1, 11, 17, 24, 32, 40, 49, 59, and 64).

the reprojection of the 3-D points and their corresponding
image points [22], [23] by varying the cameras and the 3-D
points locations, i.e.,

min


∑

i

∑
j

∥∥∥xj
i − PiXi

∥∥∥2


 (34)

where Pi are the projection matrices, and xj
i is the image of the

jth point at view i.
Bundle adjustment is difficult to automate because it is very

sensitive to false matches and initial camera pose estimates, but
when it converges correctly, bundle adjustment gives an optimal
solution, i.e., the 3-D configuration that best explains the obser-
vations. For this reason, the bundle adjustment solution will be
used here to generate the “ground truth” in our experiments to
validate our error correction scheme.

Most commercial implementations of bundle adjustment rely
on the manual selection of matches. PhotoModeler1 is a com-
mercial software that implements bundle adjustment from a set
of manually identified matches in a set of images; it has been
used to process a subset of the Duck sequence (see Fig. 6).
Fourteen images were manually matched with 68 feature points.
The returned camera positions are displayed in Fig. 7 along
with the 3-D location of the selected feature points. Because
a good match set was used and the bundle software was run
with judiciously chosen optimization parameters, we were able
to obtain a small reprojection error. This solution can therefore
be safely considered to be accurate.

The camera path forms two loops, namely 1) 360◦ in the x−y
plane and 2) a half-turn under the duck. These loops allow us
to apply our error correction scheme. Following the procedure
defined in Section IV, frames 1 and 40 were detected as the

1EOS Systems Technology (www.photomodeler.com).

Fig. 7. Positions of the left camera in the duck sequence as computed by
PhotoModeler.

two extreme views of a looping sequence (and similarly for
17 and 64). These were then matched and their 3-D point sets
registered.

Fig. 8(a) and (b) shows the disagreement (in the position
and orientation of the cameras) between PhotoModeler and
the proposed method without error correction. The position
disagreement is the distance between the computed centers of
projection. The orientation disagreement is the angle between
the z-axes of the camera reference frames. As expected, the
magnitude of the disagreement increases with the number of
registrations, as the proposed method accumulates error. The
PhotoModeler project had matches between the first and the
last image, allowing for a closed-loop configuration and thus
preventing error accumulation.

It is worth noticing the fact that, as opposed to the proposed
method, bundle adjustment does not grant any special status
to the first capture. It can be adjusted like every other camera
position. In contrast, the proposed method gives a higher level
of confidence in the earlier captures. The discrepancy between
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Fig. 8. (a) Position disagreement between bundle adjustment and the proposed method without error correction. (b) z-axis orientation disagreement between
bundle adjustment and the proposed method without error correction. (c) Position disagreement between bundle adjustment and the proposed method after error
correction. (d) z-axis orientation disagreement between bundle adjustment and the proposed method after error correction.

the two methods at the first capture is most probably related to
errors in the bundle adjustment solution.

Fig. 8(c) and (d) shows the disagreement between Photo-
Modeler and the proposed method after the two passes of error
correction through uniform distribution of the correction ma-
trix. It can be seen that the disagreement magnitude increases a
lot more slowly with the number of registrations, as compared
with Fig. 8(a) and (b), indicating that error correction provided
an improvement in the projection matrices.

The computed locations of the cameras can be used to build
a volumetric representation of the object through shape-from-
silhouette [13]. Fig. 9 shows the model obtained by silhouette
intersection of 82 images. The model contains approximately
12600 voxels, each having dimensions of 5 × 5 × 5 mm that
roughly correspond to the precision of the system. Some inac-
curacies in the model are visible (in the wheels for example),
but the resulting 3-D shape is clearly consistent with the real
object. The presence of the hand in the images did not pose a
problem here because view registration is robustly computed.
Indeed, matches on the hand surface were filtered out, as their
reconstructions were not moving rigidly with respect to the
surface of the object. As can be seen, our error correction
scheme gave object pose information of sufficient accuracy to

Fig. 9. Views of the duck 3-D model obtained from a sequence of 82 images
(each square voxel having a dimension of 5 mm).

obtain a model of relatively good accuracy. Object modeling is
therefore achieved in a very convenient way by simply moving
an object in front of a stereo setup in a totally unconstrained
manner.
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VII. CONCLUSION

In this paper, we addressed the problem of 3-D registration
of a rigid object moving in front of two cameras, which is
equivalent to the problem of camera pose estimation. We used
a calibrated stereoscopic vision setup to track the camera posi-
tions along sequences of a moving rigid object. We proposed a
robust 3-D registration procedure that exploits the rigidity of the
scene to automatically filter out the reconstructed points orig-
inating from false matches and errors in feature tracking. An
error correction scheme was introduced, which takes advantage
of loops in the movement of the cameras to compensate for the
accumulated error. Through experimental results, we showed
the validity of the obtained projection matrices and that their
accuracy was sufficient for tasks such as model building or
scene augmentation.
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