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The Model & Basic Computations

The Model

Broadcast

Spanning Tree Construction

Traversal

Wake-up

Chapter 1 and 2
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Distributed Environment

Multiplicity

Autonomy

Interaction

1+2 =3

computing capabilities

memory

clock

typically by 
exchange of messages
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The Model

Collection of entities that communicate 
by exchanging messages

entity, node, site ...

(processor, process,
object ….)

communication 
link
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The Model

Collection of entities that communicate 
by exchanging messages

entity, node, site ...

(processor, process,
object ….)

communication 
link

message-passing
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Possible operations:

- local storage and processing

- transmission of messages

- (re)setting the clock

-  changing the value of the registers

In memory:

Entity x

state(x)    value(x)

registers
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Entity x

state(x)

Finite set of possible system states
(ex: {idle, computing, waiting, processing ….})

Always defined
At any time an entity is in one of these states
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External Events

  clock tick 
receiving a message
spontaneous impulse

Possible events: 

The behavior of an entity is reactive:
        triggered by events
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clock ring
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message arrival
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spontaneous impulse
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The reaction of an entity 
depends on  the event and on its state

State x Event Action
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Action:    sequence of activities, e.g., 
computing
sending message
change state

an action is atomic  
the activities cannot be interrupted

Actions

an action is terminating  
the activities must terminate within finite time
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Entity Behavior

State x Event Action

Behavior B(x) =  set of rules  of entity x  for all
possible events and all possible states

Rule

COMPLETE
(∀ (state, event)  ∃ an action)

DETERMINISTIC
(state, event) --> only ONE  action
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System Behavior

B = { B(x) : x ∈ E}

A system is SYMMETRIC (or homogeneous)
 if all the entities  have the same behavior

B(x) = B(y), ∀ x,y ∈ E

Property: Every system can be made symmetric
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Server
Workstation

Workstation

Workstation

Workstation

Very different rules, states ….

If role = workstation 
ActionW(s,e)

else
ActionS(s,e)

s x e

role =(workstation/server )
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Communication Network:

Message: finite sequence of bits

Communication
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Communication  

Point-to-point Model

No(x) = out-neighbors of entity x
Ni(x) = in-neighbors of entity x

N(x) = No(x) ∪ Ni(x) 

Graph describing the 
COMMUNICATION TOPOLOGY

G = (V, A) V: Entities  
A: Arcs defined by N

x

y

z

w
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An entity x    can send a message only to its
out-neighbors No(x)

and receive from the in-neighbours Ni(x)
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In absence of faults a message
reaches its destination in finite time

Axioms

Finite Transmission Delays

Each entity distinguishes 
among its neighbors

Local orientation
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1
2

3

distinct labels
=
(out) port numbers

Each entity distinguishes among its out-neighbors

Local orientation: more precisely

Send Message to 3
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Local orientation: more precisely

Each entity distinguishes among its in-neighbors

a
2

5
b

When a message arrives,  the entity can detect from
which port

distinct labels
=
(in) port numbers
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Local orientation: more precisely

a 31

for an edge (x,y) there are two labels:

x y

λx(x,y) λy(x,y)

Topology = labeled graph (G, λ)
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Communication Restrictions 

Message Ordering

In absence of failures, msgs transmitted
along the same link arrive in the same
order.

queue

(FIFO)

Restrictions of the model: examples
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Bidirectional Links

∀ x, Ni(x) = No(x) =N(x) and
∀ y ∈ N(x): λx(x,y) = λx(y,x)

Communication Restrictions 

a

a
a

bb

c
c

c

b

a
a

a

d

d d
b b b

Restrictions of the model: examples
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Reliability Restrictions:

1.  Guaranteed delivery:
Any message that is sent will be received uncorrupted

2.  Partial Reliability:
There will be no failures  

3.  Total Reliability:
No failures have occurred nor will occur

…..

Restrictions of the model: examples
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Topological restriction:

The graph G is strongly connected

Knowledge Restrictions

Knowledge of number of nodes
Knowledge of number of links
Knowledge of diameter ….
…..

…..

Restrictions of the model: examples
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Bounded Communication Delay:
There exists a constant Δ such that, in absence of failures, 
the communication delay of any message on any link is 
at most Δ

Synchronized clocks: 
All local clocks are incremented by  one unit simultaneously 
and interval are constant 

Time restriction:

…..

Restrictions of the model: examples
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Complexity measures - Performance

1. Amount of communication

2. Time

point of view
of  SYSTEM

point of view
of  USER

number of messages exchanged
(finer granularity: number of bits)

Ideal time:
1 unit of time to transmit 1 message 

Communication delays are in general 
unpredictable !!!
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Example - Broadcast

Unique Initiator
Total reliability
Bidirectional links
G is connected

Assumptions = Restrictions
By definition of problem

Simplifying assumptions

Otherwise unsolvable
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The idea: If an entity knows something, it sends the
info to its neighbours

INITIATOR 
spontaneously

send(I) to N(x)
 

SLEEPING  
receiving(I)

send(I) to N(x)

One entity is INITIATOR, the others are SLEEPING

Algorithm FLOOD

Paola Flocchini

INITIATOR 
spontaneously

send(I) to N(x)
 

SLEEPING  
receiving(I)

send(I) to N(x) - {sender}

It does not terminate

The idea: If an entity knows something, it sends
it to its neighbours except the sender
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S = {initiator, sleeping, done}

INITIATOR 
spontaneously

send(I) to N(x)
become(DONE)

SLEEPING  
receiving(I)

send(I) to N(x) – {sender}
become(DONE)

Algorithm for node x:
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Algorithm for node x:

DONE

INITIATOR 
spontaneously

send(I) to N(x)
become(DONE)

SLEEPING  
receiving(I)

send(I) to N(x) – {sender}
become(DONE)

Algorithm FLOOD
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If DONE
do-nothing

If INITIATOR 
   spontaneously

send(I) to N(x)
become(DONE)

If SLEEPING  
   receiving(I)

send(I) to N(x) – {sender}
become(DONE)

State

Algorithm FLOOD
Algorithm for node x:
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If DONE
do-nothing

If INITIATOR 
   spontaneously

send(I) to N(x)
become(DONE)

If SLEEPING  
   receiving(I)

send(I) to N(x) – {sender}
become(DONE)

Algorithm for node x:

Event
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If DONE

do-nothing

If INITIATOR 
   spontaneously

send(I) to N(x)
become(DONE)

If SLEEPING  
   receiving(I)

send(I) to N(x) – {sender}
become(DONE)

Algorithm for node x:

Action
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Example
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Correctness

It follows from: G connected and total reliability

The Algorithm terminates in finite time

Termination

Local Termination: when DONE

Global Termination: when?
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Message complexity

Messages: ≤ 2 on each link

≤ 2m
O(m)

m = number of links

More precisely:

Let s be the initiator
|N(s)| + Σ (|N(x)|-1)

 x≠ s

 =  2m - (n-1)

Σ |N(x)|  = 2m
x 

= Σ |N(x)|   - Σ 1
x  x≠ s

Worst Case

Worst for all possible initiators
and for all possible executions
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Time: (ideal time)

Max{d(x,s)} = eccentricity of s 
≤ Diameter(G) ≤  n-1

O(n)

Time Complexity - Ideal Time Worst Case

Worst for all possible initiators
and for all possible executions

x
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Time and Events

External events:
spontaneously
receiveing
when (clock)

send           generates    receiving
set-clock    generates    when

Actions may generate events

Generated events might not occur (in case of faults). 
If they occur, they occur later.

In the case of receiving with some unpredictable delay.
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Different delays   ---> different executions

Different executions could have different outcomes     

An executions is fully described by the sequence of events 
that have occurred  

(Spontaneous events are considered generated 
before execution starts: initial events)

Paola Flocchini

x

y

Time x Event diagram

receiving event

Spontaneous event

time

as seen by an observer
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x

y

z

Example: Time x Event diagram of Flooding

One possible execution

x y

z
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x

y

z

Example: Time x Event diagram of Flooding

Another execution

x y

z
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• Local knowledge  LK
   P ∈ LK(x).

• Implicit knowledge IK
  P ∈ IK(S) if ∃x ∈ S: P ∈ LK(x).

• Explicit knowledge EK
P ∈ EK(S) if ∀x ∈ S: P ∈ LK(x).

Knowledge

P = fact; x = entity; S = set of entities.

P

x P

S

P

P

P

P

P

S

x P
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•Common knowledge CK
   P ∈ CK(S) if
∀x ∈ S, P ∈ LK(x) ∧
∀x ∈ S (∀x ∈ S, P ∈ LK(x)) ∈ LK(x) ∧
∀x ∈ S ((∀x ∈ S, P ∈ LK(x)) ∈ LK(x)) ∈ LK(x) ∧ ...

Paola Flocchini

Examples

I am in a ring

Implicit knowledge

I am in a ring

I am in a ring
I am in a ring

I am in a ring

Explicit knowledge
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Common knowledge

I know I’m in a ring,
everyone knows it,
everyone knows that
everyone knows it, ...
….
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How to reach common knowledge in FINITE TIME ?

P ∈ CK(S) if
∀x ∈ S, P ∈ LK(x) ∧
∀x ∈ S (∀x ∈ S, P ∈ LK(x)) ∈ LK(x) ∧
∀x ∈ S ((∀x ∈ S, P ∈ LK(x)) ∈ LK(x)) ∈ LK(x) ∧ ...

muddy forehead

t=1
t=2

t=3

t=4

I can see you
disobeyed
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Some types of knowledge

Topological knowledge
Graph type (“G is a ring”...), adjacency matrix of G ...

Metric knowlege
Number of nodes, diameter, eccentricity...

Sense of direction
Information on link labels
Information on node labels

As the available knowledge grows, the algorithm becomes less
portable (rigid). Generic algorithms do not use any knowledge.
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In specific topologies flooding can be avoided
and broadcast can be much more efficient
(if the topology is known).

What is the complexity of flooding in a complete graph ?
How can it be done more efficiently ?

What is the complexity of flooding in a tree ?
Can  it be done more efficiently ?

Example: impact of knowledge
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Example: The labeled hypercube

Each link between two nodes is labeled by the dimension of the
bit by which the nodes‘ name differ.

010 011

101

000 001

111110

100 1

3
2

1

2

3

3 2

1 1

3

1 1

2

1
2

3

3 2

1
3

2
2 3

10 110100 11

1110 11

2 2

22
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xkxk-1 ….. x1x0X=

010 011

101

000 001

111110

100 1

3
2

1

2

3

3 2

1 1

3

1 1

2

1
2

3

3 2

1
3

2
2 3

K-bit name

x2x1x0

first bit
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0000 0001

0010

1000

0011

1011

01110110

0100 0101

1101

1001

1111

1010

1110

1100
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A hypercube of dimension k has n = 2k nodes

Each node has k links

  m  = n k/2 =    O(n log n)

Flooding would cost O(n log n) 
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HyperFlood - Efficient Broadcast

1) The initiator sends the message to all its 
      neighbours
2) A node receiving the message from link l,
     sends it only to links with label l’ < l
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Correctness

Every node is touched

Based on the lemma:

For each pair of nodes x and y there exists a path
of decreasing labels

xk,xk-1 ….. x1,x0

yk,yk-1 ….. y1,y0

X=

Y=

Paola Flocchini

Based on the lemma:

For each pair of nodes x and y there exists a path
of decreasing labels

xk,xk-1 ….. x1,x0 yk,yk-1 ….. y1,y0
X= Y=

Consider positions where they differ in decreasing order …

Every node is touched

Correctness
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100010100X=

Y= 110001000

Example:
 x

y

8

5

4

3

3
458
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---> the messages  create a spanning tree ….
and every node is touched
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Complexity: n-1 (OPTIMAL)

Because every entity receives the info 
only ONCE.
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In Special Topologies

General Flooding: 2m - (n-1)

Ad-hoc algorithm in hypercube:   (n-1)

Ad-hoc algorithm in complete network:   (n-1)

In the tree Flooding is optimal:   (n-1)
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Important Facts

State x Event ---> Action

σ(x,t) = internal state of entity x

content of memory (registers, clock, …) at time t

Paola Flocchini

σ1    =  σ2

a
a

E1 E2

E1, E2: different environments

1) If the same event happens to x at time t in two different 
executions  and if the internal states σ1 and σ2 of x  in
the two executions at that time are equal, then 
the new internal state of x will be the same in both 
executions
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σ(x)    =  σ(y)

a a

2) If the same event happens to x and y at time t in the
same execution  and if the internal states σ(x) and σ(y) 
are equal, then  the new internal states of x and y will be 
the same.

x y

Paola Flocchini

Back to Broadcast …

Theorem: Under the set of assumptions:
unique Initiator
G is connected
no failures
bidirectional links

Every generic broadcast protocol requires, in the worst 
case, m messages.

An example
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Lower Bounds for Broadcast

By contradiction.
Let A be an algorithm that broadcasts exchanging
less than m(G) messages (in all executions, and
for any graph G) under those assumption.

Then there is at least a link in G where no messages
are sent.

m(G) = n. of edges in G
Proof.
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Let e = (x,y) be such a link.

y
x

G

y
x

G'

Construct a new graph G’

z

G' =(V∪ {z}, E-e ∪  {(x,z),(y,z)}

G=(V,E)

 Execute the same algorithm on G’ with the same 
time delays, same initial internal states for all
nodes except for z which is sleeping

(remember: n is unknown)
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y
x

G'
y

x

G

E1

Two executions in two environments

z

E2

x and y never send to each other in E1 
                            --->
x and y never send to z in E2 

For all nodes, except z, the two executions are identical 

Paola Flocchinibut in E2 node z will never be reached.

Within finite time the protocol terminates

y
x

G'
y

x

G

E1

z

E2
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1) Dense networks = more messages
 (ex. in complete networks m = n (n-1) …)
2) It is optimum in acyclic graphs

Idea: to solve broadcast.

1. Build a spanning tree of G

2. Execute   flooding

Spanning Tree construction Problem

Observations:


