
1

Spanning Tree Construction

A spanning tree T of a graph G = (V,E) is an
acyclic subgraph of G such that T=(V,E')
and E' ⊂ E.

Assumptions:

single initiator
bidirectional links
total reliability
G connected

Protocol SHOUT

Initially: ∀ x, Tree-neighbors(x) = { }

At the end:

∀ x, Tree-neighbors(x) = {links that belong to
 the spanning tree }

x

x

1.
init

Q?
Q?

Q?

Q? = do you want to be
my neighbour
in the spanning tree ?

2. Q? Q?
Q?

Q?

yes

If it is the first time:

no

If I have already answerd
yes to someone else:

Example

2

INITIATOR
Spontaneusly

root:= true
Tree-neighbours := { }
send(Q) to N(x)
counter:=0
become ACTIVE

States S={INITIATOR, IDLE, ACTIVE, DONE}
Sinit = {INITIATOR, IDLE}
Sterm = {DONE}

IDLE
receiving(Q)

root:= false
parent := sender
Tree-neighbours := {sender}
send(yes) to sender
counter := 1
if counter = |N(x)| then

 become DONE
else

send(Q) to N(x) – {sender}
become ACTIVE

ACTIVE

receiving(Q)
send(no) to sender

receiving(yes)
 Tree-neighbours:=

Tree-neighbours ∪ sender
counter := counter +1
if counter = |N(x)|

 become DONE

receiving(no)
counter := counter +1
if counter = |N(x)|

 become DONE

Note: SHOUT = FLOOD +REPLY

Correctness and Termination

- If x is in Tree-neighbours of y, y is in Tree-neighbours of x

- If x send YES to y, then x is in Tree-neighbour of y
 and is connected to the initiator by a chain of YES

- Every x (except the initiator) sends exactly one YES

The spanning graph defined by the Tree-neighbour
relation is connected and contains all the entities

Note: local termination

3

 SHOUT = FLOOD + REPLY

Messages(SHOUT) = 2 M(FLOOD)

Message Complexity Possible situations

Q yes

Q Q

no no

Impossible situations

no yes

yes yes

Message Complexity - worst case

Total n. of Q:

Total:

only one Q on the ST links

Q QQ yes

m -(n-1) (n-1)

2(m -(n-1)) + (n-1)
= 2m -n +1

on the other links

Total n. of NO: no no

2(m - (n-1))

Total n. of YES:

yes

Exactly: (n-1)

as many as Q---Q

Message Complexity - worst case

4

2m - n + 1 + 2(m - (n-1)) + n-1
= 2m -n +1+2m -2n +2 +n - 1
= 4m -2n + 2

Ω(m) is a lower bound also in this case

Messages(SHOUT) = 4m -2n + 2

Message Complexity - worst case

In fact: M(SHOUT) = 2 M(FLOOD) = 2(2m-n+1)

Without “NO”

Spanning Tree Construction

Protocol SHOUT+

INITIATOR
Spontaneusly

root:= true
Tree-neighbours := { }
send(Q) to N(x)
counter:=0
become ACTIVE

States S={INITIATOR, IDLE, ACTIVE, DONE}
Sinit = {INITIATOR, IDLE}
Sterm = {DONE}

IDLE
receiving(Q)

root:= false
parent := sender
Tree-neighbours := {sender}
send(yes) to sender
counter := 1
if counter = |N(x)| then

 become DONE
else

send(Q) to N(x) – {sender}
become ACTIVE

ACTIVE

receiving(Q) (to be interpreted as NO)

counter := counter +1
if counter = |N(x)|

 become DONE

receiving(yes)
 Tree-neighbours:=

Tree-neighbours ∪ {sender}
counter := counter +1
if counter = |N(x)|

 become DONE

5

Messages(SHOUT+) = 2m

On each link there will be exactly 2 messages:

Q Q

Q yes

either

or

Messages(SHOUT) = 4m -2n + 2

Much better than:

With Notification

Spanning Tree Construction

INITIATOR
Spontaneusly

root:= true
Tree-neighbours := { }
send(Q) to N(x)
counter:= 0
ack-counter:= 0
become ACTIVE

States S={INITIATOR, IDLE, ACTIVE, DONE}
Sinit = {INITIATOR, IDLE}
Sterm = {DONE}

IDLE
receiving(Q)

root:= false
parent := sender
Tree-neighbours := {sender}
send(yes) to sender
counter := 1
ack-counter:= 0
if counter = |N(x)| then
 CHECK
else

send(Q) to N(x) – {sender}
become ACTIVE

receiving(Q)
counter := counter +1
if counter = |N(x)| and not root then
 CHECK

receiving(yes)
Tree-neighbours:=

Tree-neighbours ∪ {sender}
counter := counter +1
if counter = |N(x)| and not root then

 CHECK

ACTIVE

6

receiving(Ack)

ack-counter:= ack-counter +1

if counter = |N(x)| /* indicate tree-neighbors is done
if root then

if ack-counter = |Tree-neighbours|

 send(Terminate) to Tree-neighbours

 become DONE

 else if ack-counter = |Tree-neighbours| - 1

 send(Ack) to parent

receiving(Terminate)

send(Terminate) to Children

 become DONE

ACTIVE (cont)
CHECK

If I am a leaf

 (* that is: Children:= Tree-neighbours – {parent}

 if Children = emptyset *)
 send(Ack) to parent

What happens if there are
multiple initiators ?

Q Q

QQ

Q Q

Q

Q

Q Q

Qyes
yes

An election is needed to have a unique initiator.

NOTE: Election is impossible if the nodes
do not have distinct IDs

Another protocol has to be devised.

or

7

Traversal
 Depth First Search

Assumptions
Single initiator
Bidirectional links
No faults
G connected

S = {INITIATOR, SLEEPING, ACTIVE, DONE}

1) When first visited, remember who sent,
forward the token to one of the unvisited neighbours
wait for its reply

2) When neighbour receives,
if already visited, it will return the token saying it is a

back edge
otherwise, will forward it (sequentially)

 to all its unvisited neighbour before returning it

4) Upon reception of reply, forward the token to another
 unvisited neighbour

3) If there are no more unvisited neighbours, return the token (reply)
 to the node from which it first received the token

One version

Message Complexity:

Complexity

Time Complexity:
(ideal time)

2m = O(m)

2m = O(m)

Ω(m) is also a lower bound

x

ytoken

either
return (if IDLE when received the token first)
or
back

Type of messages: token, back, return

Totally sequential

8

Note:
most messages are on Back Edges

---> most time is spent on Back Edges

Idea: avoid sending messages on back edges

How ?

DF+ Improving Time

vis
ite

d

visited

Message DF+ Complexity

TOT: 4m

Messages: Token, Return, Visited, Ack (ok)

Each entity (except init): receives 1 Token, sends 1 Return:

Each entity:
1 Visited to all neighbours except the sender

2(n-1)

 |N(s)| + Σ (|N(x)|-1)
 x≠ s

= 2m - (n-1)

Let s be
the initiator

(same for Ack)

TOT: 4n -2

Time (ideal time)

DF+ Complexity

Token and Return are sent sequentially: 2(n-1)

Visited and Ack are done in parallel: 2n

9

DF: 2m 2m

DF+: 4m 4n -2

Messages Ideal Time

Summarizing:

DF Traversal

DF++

Do not send the Ack
What happens ?

visi
ted

A token is sent to an already visited node (= back edge)

Both nodes will eventually understand the “mistake”

and pretend nothing happened

DF++ Complexity

Messages = 4m -(n-1)

In the worst case there is a “mistake” on each link
except for the tree links

BUT when we measure ideal time:

“mistakes” will not happen

Time = 2(n-1)

DF: 2m 2m

DF+: 4m 4n -2

DF++ 4m-n+1 2n+1

Messages Ideal Time

Summary

10

Observations

An application:
access permission problems, e.g., Mutual Exclusion

Any Traversal does a Broadcast (not very efficient)
The reverse is not true.

Time ...

Termination ...

Another Traversal: Smart Traversal

1- Build a Spanning Tree with SHOUT+

2- Perform DF Traversal

Messages = 2m

Messages = 2(n-1)

Total Messages = 2(m+n-1)

Another Traversal: Smart Traversal

1- Build a Spanning Tree with SHOUT+

2- Perform DF Traversal

Time = 2(n-1)

Total Time ≤ 2n+d-1

Time ≤ d+1 d: diameter
DF: 2m 2m

DF+: 4m 4n -2

DF++ 4m-n+1 2n+1

Smart 2m+2n-2 2n+d-1

Messages Ideal Time

Summary

11

Computations with Multiple initiator: WAKE-UP

General FLOOD algorithm: O(m)

2m -n + k*

n. of initiators

WHY ?

FLOOD solves the problem.

More precisely:

1 init = broadcast = 2m -n+1 All init =
2m

In special topologies ?

Computations with Multiple initiator: WAKE-UP

TREE

n + k* -2Flood is optimal

COMPLETE GRAPH

Ω(n2)

HYPERCUBE

Ω(n log n)

Computations with Multiple initiator: WAKE-UP

Broadcast Wakeup

O(n2) O(n)
Flood Specific

O(n log n) O(n)
Flood Specific

Flood Specific

Flood Specific

Need additional assumptions
to reduce the complexity

Broadcast Wakeup

