Spanning Tree Construction

A spanning tree T of a graph $G=(V, E)$ is an acyclic subgraph of G such that $T=\left(V, E^{\prime}\right)$ and $E^{\prime} \subset E$.

Assumptions:
single initiator bidirectional links total reliability
G connected

Protocol SHOUT

Initially: $\forall x$, Tree-neighbors $(x)=\{ \}$

At the end:
$\forall x$, Tree-neighbors $(x)=\{$ links that belong to the spanning tree \}

Example


```
ACTIVE
receiving(Q)
    send(no) to sender
receiving(yes)
    Tree-neighbours:=
        Tree-neighbours U sender
    counter:= counter +1
    if counter = |N(x)|
        become DONE
receiving(no)
    counter:= counter +1
    if counter = |N(x)|
        become DONE
```


Correctness and Termination

- If x is in Tree-neighbours of y, y is in Tree-neighbours of x
- If x send YES to y, then x is in Tree-neighbour of y and is connected to the initiator by a chain of YES
- Every x (except the initiator) sends exactly one YES

The spanning graph defined by the Tree-neighbour relation is connected and contains all the entities

Note: local termination


```
Message Complexity - worst case
2m-n+1+2(m-(n-1))+n-1
=2m-n+1+2m-2n+2+n-1
=4m-2n+2
Messages(SHOUT)}=4m-2n+
In fact: M(SHOUT) = 2 M(FLOOD)=2(2m-n+1)
\(\Omega(m)\) is a lower bound also in this case
```

States $\mathrm{S}=\{$ INITIATOR, IDLE Sinit $=\{$ INITIATOR, IDLE $\}$ Sterm $=\{D O N E\}$	ACTIVE, DONE
INITIATOR Spontaneusly root:= true Tree-neighbours := \{ \} send(Q) to $N(x)$ counter:=0 become ACTIVE	IDLE receiving(Q) root:= false parent := sender Tree-neighbours := \{sender\} send(yes) to sender counter := 1 if counter $=\|N(x)\|$ then become DONE else $\operatorname{send}(Q)$ to $N(x)-\{$ sender $\}$ become ACTIVE

ACTIVE

receiving(Q) (to be interpreted as NO)
counter : $=$ counter +1
if counter $=|N(x)|$
become DONE
receiving(yes)
Tree-neighbours:=
Tree-neighbours \cup \{sender $\}$
counter : $=$ counter +1
if counter $=|N(x)|$
become DONE

Spanning Tree Construction

With Notification

```States S={INITIATOR, IDLE Sinit = {INITIATOR, IDLE} Sterm ={DONE}```	CTIVE, DONE
INITIATOR   Spontaneusly   root:= true   Tree-neighbours := \{ \}   send(Q) to $N(x)$   counter:= 0   ack-counter:= 0   become ACTIVE	IDLE   receiving(Q)   root:= false   parent := sender   Tree-neighbours := \{sender\}   send(yes) to sender   counter: := 1   ack-counter:=0   if counter $=\|N(x)\|$ then CHECK   else send(Q) to $N(x)$ - $\{$ sender $\}$ become ACTIVE

## ACTIVE (cont) receiving(Ack)

ack-counter:= ack-counter +1
if counter $=|N(x)| / *$ indicate tree-neighbors is done if root then
if ack-counter $=\mid$ Tree-neighbours $\mid$ send(Terminate) to Tree-neighbours become DONE
else if ack-counter $=\mid$ Tree-neighbours $\mid-1$ send(Ack) to parent

## receiving(Terminate)

send(Terminate) to Children
become DONE

$\square$

An election is needed to have a unique initiator. or

Another protocol has to be devised.

NOTE: Election is impossible if the nodes do not have distinct IDs

## Traversal Depth First Search

## Assumptions

Single initiator
Bidirectional links
No faults
G connected
$S=\{I N I T I A T O R, S L E E P I N G, A C T I V E, D O N E\}$

## One version

1) When first visited, remember who sent,
forward the token to one of the unvisited neighbours wait for its reply
2) When neighbour receives,
if already visited, it will return the token saying it is a back edge
otherwise, will forward it (sequentially)
to all its unvisited neighbour before returning it
3) If there are no more unvisited neighbours, return the token (reply) to the node from which it first received the token
4) Upon reception of reply, forward the token to another unvisited neighbour

```
Complexity
Message Complexity:
 Type of messages: token, back, return
 <c
Time Complexity:
(ideal time)
2m=O(m)
Totally sequentia
 \Omega (m) ~ i s ~ a l s o ~ a ~ l o w e r ~ b o u n d ~
```

Note:
most messages are on Back Edges
---> most time is spent on Back Edges
Idea: avoid sending messages on back edges
How?

## DF+ Improving Time



DF+ Complexity	Time (ideal time)
Token and Return are sent sequentially: $2(n-1)$	
Visited and Ack are done in parallel:	$2 n$


Summarizing:		
	DF Traversal	
	Messages	Ideal Time
$D F:$	$2 m$	$2 m$
$D F+:$	$4 m-2$	

## DF++

Do not send the Ack
What happens?


A token is sent to an already visited node (= back edge)
Both nodes will eventually understand the "mistake" and pretend nothing happened

DF++ Complexity

In the worst case there is a "mistake" on each link except for the tree links

Messages $=4 m-(n-1)$

BUT when we measure ideal time:
"mistakes" will not happen

Time $=2(n-1)$

Observations

Time ...

Termination ..

An application:
access permission problems, e.g., Mutual Exclusion

Any Traversal does a Broadcast (not very efficient) The reverse is not true.

Another Traversal: Smart Traversal

1- Build a Spanning Tree with SHOUT+

$$
\text { Time } \leq d+1 \quad d: \text { diameter }
$$

2- Perform DF Traversal

$$
\text { Time }=2(n-1)
$$

Total Time $\leq 2 n+d-1$

Another Traversal: Smart Traversal

1- Build a Spanning Tree with SHOUT+

$$
\text { Messages }=2 m
$$

2- Perform DF Traversal
Messages $=2(n-1)$

Total Messages $=2(m+n-1)$

Summary		
	Messages	Ideal Time
DF:	2 m	2 m
DF+:	4 m	$4 n-2$
DF++	$4 m-n+1$	$2 n+1$
Smart	$2 m+2 n-2$	$2 n+d-1$



Computations with Multiple initiator: WAKE-UP

In special topologies?

TREE

Flood is optimal $\quad n+k^{\star}-2$

Computations with Multiple initiator: WAKE-UP	
COMPLETE GRAPH	
Broadcast	Wakeup
Flood Specific	Flood Specific
$O\left(n^{2}\right) \curvearrowright O(n)$	$\Omega\left(n^{2}\right)$
	Need additional assumptions to reduce the complexity
Broadcast HYPERCUBE Wakeup	
Flood Specific	Flood Specific
$O(n \log n) \sim O(n)$	$\Omega(n \log n)$

