
1

Chapter 3

Leader Election

Observations

Election in the Ring

Election in the Mesh

Election in the Hypercube

Election in an arbitrary graph

Theorem [Angluin 80]

The election problem cannot be generally solved if
the entities do not have different identities.

Consider the system where:
• Unique entities
• Same state
• Anonymous
• Synchronous

At each moment, they are doing the same thing.

Election

Note: with distinct Ids Minimum Finding is an
election

12
1917

9 7

11
5

13

To each node x is associated a distinct
identifier v(x)

1) Execute the saturation technique,
2) Choose the saturated node holding

the minimum value

Election in the Tree

9 3

A simple algorithm:

2

Ring

• n. of entities = n. of links

• Symmetric topology

• Each entity has two neighbors

56

1

3

4

2

• n entities
• m= n links

left rightWhen there is sense of direction:

Election Algorithms in Rings

• All the way

• As Far

• Controlled distance

• Electoral stages
--- bidirectional version

• Alternating steps

Electing the minimum

 All the way

Basic Idea: Each id is fully circulated in the ring.
---> each entity sees all identities.

• Two versions: unidirectional/bidirectional links.

• Local orientation (i.e. not necessarily a sense of direction)

• Distinct identities.

1

6

3

4

5

2

ASSUMPTIONS

Correctness and Termination

To terminate we need:

either FIFO assumption

or knowledge of n

Note: knowledge of n can be acquired

3

States: S={ASLEEP, AWAKE, FOLLOWER, LEADER}
S INIT={ASLEEP};
S_TERM={FOLLOWER, LEADER}.

ASLEEP

Spontaneously
INITIALIZE
become AWAKE

Receiving(``Election'', value, counter)

INITIALIZE;
send(``Election'', value, counter+1)

to other
min:= Min{min, value}
count:= count+1
become AWAKE

INITIALIZE

count:= 0
size:= 1
known:= false
send(“Election”,id(x),size) to right;
min:= id(x)

AWAKE
Receiving (“Election”, value, counter)

If value ≠ id(x) then
 send (“Election”,value,counter+1) to other
 min:= MIN{min,value}
 count:= count+1
 if known = true then

 CHECK
 endif
else

ringsize:= counter
known:= true
CHECK

endif

CHECK
if count = ringsize then

if min = id(x) then
become LEADER

else
become FOLLOWER

endif
endif

Complexity

Each identity crosses each link --> n2

The size of each message is log(id)

O(n2) messages
O(n2 log (MaxId)) bits

Observations:

1. The algorithm also solves the data collection problem.

2. It also works for unidirectional/bidirectional.

AsFar (as it can)

Basic Idea: It is not necessary to send and receive messages with
larger id’s than the id’s that have already been seen.

3
9

• Unidirectional/bidirectional ring

• Different id’s

• Local orientation

ASSUMPTIONS

4

3
2

Receiving y smaller-than me
send(y) to other neighbour

Receiving y bigger-than me
send(x) to other neighbour

(if not sent already)
3

9

2

3
1

8

6

2

4

3

unidirectional version

1

8

6

2

4

3

bidirectional version States: S={ASLEEP, AWAKE, FOLLOWER, LEADER}
S_INIT={ASLEEP}
S_TERM={FOLLOWER, LEADER}

ASLEEP
Spontaneously

send(“Election”,id(x)) to right
min:= id(x)
become AWAKE

Receiving(“Election”, value)
send(“Election”,id(x)) to right
min:= id(x)
If value < min then

send(“Election”, value) to other
min:= value

endif
become AWAKE

--- unidirectional version

/* this could be avoided if
 id(x)>value

5

AWAKE

Receiving(“Election‘”, value)
if value < min then

send(“Election”, value) to other
min:= value

else
 If value= min then NOTIFY endif
endif

Receiving(Notify)
send(Notify) to other
become FOLLOWER

NOTIFY
send(Notify) to right
become LEADER

Correctness and Termination

• Bidirectional version

Observations:

The leaders knows it is the leader when it receives
its message back.

When do the other know ?
Notification is necessary !

Worst-Case Complexity (Unidirectional Version)

1 ---> n links
2 ---> n - 1 links
3 ---> n - 2 links
… … …
n ---> 1 link

 n
n + (n - 1) + (n - 2) + … + 1 = Σi = (n+1) (n) / 2

 i = 1

Total: n (n+ 1) / 2 + n = O(n2)
Last n: notification

1

3

5

2

6

4

Best-Case Complexity (Unidirectional Version)

1 ---> n links
for all i ≠ 1 ---> 1 link (--> total = n - 1)

Total: n + (n - 1) + n = O(n)
Last n: notification

1

3

5

2

6

4

6

Average-Case Complexity

Entities are ordered in an equiprobable manner.

J-th smallest id - crosses (n / J) links

 n
Σ (n / J) = n * Hn
J = 1 Harmonic series of n

numbers
(approx. 0.69 log n)

Total: n * Hn + n = 0.69 n log n + O(n) = O(n log n)

 Controlled Distance

Basic idea: Operate in stages. An entity maintains
control on its own message.

• Bidirectional ring
• Different id’s
• Local orientation

ASSUMPTIONS

sense of direction only for simplicity - not needed

1) Limited distance (to avoid big msgs to travel too much)

2) Return messages (if seen something smaller does
not continue)

3) Check both sides

4) Smallest always win (regardless of stage number)

Ex: stage i: distance 2i-1

Ingredients
Candidate entities begin the algorithm.

Stage i:
- Each candidate entity sends a message with its own id in both
directions

- the msg will travel until it encounters a smaller Id or reaches a
certain distance

- If a msg does not encounters a smaller Id, it will return back to
the originator

x

- A candidate receiving its own msg back from both directions survives
 and start the next stage

7

 Entities encountered along the path read the message and:

• Each entity i with a greater identity Idi becomes defeated
(passive).

• A defeated entity forwards the messages originating from
other entities, if the message is a notification of termination,
it terminates

More...

22 2
2 2

22 2
2 2 2

2
2

2

22 2
2 2 2

2
2

22
2

2
2

2i-1

Stage 1

Stage 2

Stage i

Distance = 1

Distance = 2

Distance = 2i-1

2
2

2

More...
Candidate - stage i

9
6

6

2
6

2

6
candidate

6

6 6

2

stage i + 1

Becomes passive

6

If a candidate receives its message from the opposite side
it sent it, it becomes the leader and notifies.

Correctness and Termination

-The smallest id will always travel the max distance defeating
 every entity it encounters

-The distance monotonically increases eventually becoming greater than n

-The leader will eventually receive its message from the opposite
 directions

Note: we do not need message ordering.
What happens if an entity receives a message from a higher stage ?

8

Message Complexity

When the distance is doubled at each stage
i.e., dis(i) = 2i-1:

Notion of Logical Stage

If x starts stage i (i.e., survived stage i-1) the Id of x must be
smaller than the Ids of the neighbours at distance up to 2i-2 on each side

 ni entities start stage i

1

 2
passive at
 dist 1

 3
passive at
 dist 2

 4
passive at
 dist 4 5

passive at
 dist 821

22

2320

 ni ≤ n/ (2i-2 +1)

Within any group of 2i-2 +1 consecutive entities
at most one can survive stage i-1.

“Forth” messages:

 each will travel at most 2i-1

 Tot: 2 ni 2i-1

Starting stage i:

“Back” messages:

each survivor will receive one from each side
 2 ni+1 2i-1

each entity that started the stage but did not survive
 will receive none or one ≤(ni+1 - ni) 2i-1

 Tot: 2 ni+1 2i-1 + (ni+1 - ni) 2i-1

in both directions

 Tot: 2 ni 2i-1 + 2 ni+1 2i-1 + (ni+1 - ni) 2i-1

= (3 ni + ni+1) 2i-1

 ≤ (3 n/ (2i-2 +1) + n/ (2i-1 +1)) 2i-1

 ni ≤ n/ (2i-2 +1)

< 3 n 2i-1 + n 2i-1

(2i-2 + 1) (2i-1 + 1)

< 3 n 2i -1 + n 2i-1

 2i-2 2i-1
= 6 n + n = 7 n

 stage i>1

9

The first stage is a bit different:

4 n2 + 3 n- 3n2 = n2 + 3 n

If everybody starts:

4 n2 20

3 (n- n2) 20
2 “forth”, 1 “back”

< 4n= n/2 + 3 n

 n2 ≤ n/ (20+1)

the survivors

the others

2 “forth”, 2 “back”

Total Number of Stages

The ring is fully traversed as soon as
2i-1 is greater than or equal to n

2i-1 ≥ n

That is, when:

----> log n + 1 stages

 i ≥ log n + 1

TOT ≤ Σ 7n + O(n)
 i=1

log n

= n Σ 7 = 7 n log n +O(n)

i=2

log n

O(n log n)

first stage

In unidirectional rings,
the worst case complexity is (n2);

to have a complexity of O(n log n) messages,
bidirectionality is necessary.

Conjecture:

NOT TRUE !

10

Stages

Basic idea:

A message will travel until it reaches another candidate
A candidate will receive a message from both sides

ASSUMPTIONS

•Distinct id’s
•Bidirectional ring (+ unidirectional version)
•Local orientation
•Message ordering (for simplicity only: not needed)

init
8

8 8

Each candidate sends its own Id in
both directions.

When a candidate i receives two messages
Idj (from the right) and Idk (from the left),
it determines if it becomes passive (= it is
not the smallest), or if it remains
candidate (= it is the smallest).

candidate
8

5 2

candidate
8

12 24

passive

candidate
8

When a candidate i receives two messages
Idj (from the right) and Idk (from the left),

candidate
8

5 2

After receiving the first message:
close-port (enqueue messages possibly arriving later)

After receiving the second message, perform the action
and re-open-port

The minimal entity will never cease to send messages.

When an entity knows that it is the leader

candidate
8

8 8

it sends a notification message which
travels around the ring.

Correctness and termination

11

Complexity - Worst Case

At each step: At least half the entities became
passive.

ni+1 ≤ ni
2

n0 = n
n1 ≤ n/2

ni ≤ n/2i

n/2k ≤ 1

when

k ≥ log n

i
>i>i

steps: At most (log n)

Each entity sends or resends 2 messages.
messages: 2n
bits: 2n * (log n)

Last entity: 2n messages to understand that
it is the last active entity, then n notification
messages.

Total: 2n * (log n) + 3 n = O(n log n)
Best Case ? 1

3

5

2

6

4

Stages with Feedback

A feedback is sent back to the originator of the message

9 3
2

9 2

9 3
2

yesno

send YES to the smallest of the two IF it is smaller than me
 (otherwise send NO)
send NO to the other

9 3
21

nono

9 30
2

yesno

12

If x survives, it must have received a feedback from
 both neighbouring candidates …

yes yes nono
x

ni+1 ≤ ni
3

Unidirectional version

Simulation of the bidirectional algorithm with the
same complexity.

The Conjecture is false.

Examples ….

Alternating Steps

Basic idea: Alternating directions.

• Different id’s.

• Bidirectional ring and sense of direction.

• Local orientation.

• Message ordering.
send-left

begin-to-defeat (if possible)
send-right

Algorithm:

1. Each entity sends a message to its right. This message contains the entity’s
own id.

2. Each entity compares the id it received from its left to its own id.

3. If its own id is greater than the received id, the entity becomes passive.

4. All entities that remained active (surviving) send their ids to their left.

5. A surviving entity compares the id it received from its right with its own id.

6. If its own id is greater than the id it received, it becomes passive.

7. Go back to step 1 and repeat until an entity receives its own id and becomes
leader.

13

1

2

3

4

5

7

2

1
3

5

7
4

Step 1: right

Step 2: left

defeated

candidate

1

2

3

4

5

7

1

1

2

2

3

3

Complexity

1Last phase k 1 active entity

Phase k - 1 1

2

at least 2 active
entities

(2) will become passive at
the next step.

Phase k - 2 1

2

3

at least 3 active
entities

(3) must be there;
otherwise, (2) would be killed.

Phase k - 2 1

2
4

3
5

at least 5 active
entities

Analyze # of steps in worst case:

1 2 3 5 8 13 21

steps =
index of the lowest Fibonacci number >= n

F1 = 1
F2 = 2
F3 = 3
F4 = 5
F5 = 8
 . . .

Fk = i = ?
= approx. 1.45 log2 n

Messages = n for each step

Total = approx. 1.45 n log2 n

14

Bidirectional Unidirectional

LeLann (1977) n2 LeLann (1977) n2

“All the way” Unidirectional
simulation

Chang & Roberts
(1979) n2 Chang & Roberts n2

“As far as you can”
average case n log n

Hirshberg & Sinclair 7n log n
(1980)
 stages

message control

Franklin (1982) 2n log n Dolev, Klawe 2n log n
 stages & Rodeh

Unidirectional
simulation

Peterson (1982) 1.44n log n Peterson 1982 1.44n log n
Alternate Unidirectional

 simulation

Dolev, Klawe
& Rodeh (1982) 1.36n log n

Higham, Przytycka
(1984) 1.22n log n

upper bounds

Burns 0.5n log n

Pachl, Korach 0.69n log
Rotem (1984)

lower bounds

Mesh

Asymmetric topology
corners
border
internal

If it is square mesh: n nodes = n½ x n ½

m = O(n)

Idea: Elect as a leader one of the four
corners

Three phases:

1) Wake up

2) Election (on the border) among
 the corners

3) Notification

15

1) Wake up

- Each initiator send a wake-up to its neighbours

- A non-initiator receiving a wake up, sends it to

 its other neighbours O(m) = O(n)

2) Election on the border started by the corners

?

O(√n)

3) Notification

 by flooding
O(m) = O(n)

TOT: O(n)

Torus

