Election in Arbitrary Networks

Mega-Merger

Уо-Уо

Some Considerations

Paola Flocchin

Election in Arbitrary Networks (Gallager, Humblet, Spira '84)

The Mega-Merger

In general networks, the election problem and the spanning tree construction problem are equivalent.
-

The Mega-Merger

Minimum spanning tree construction algorithm.
The root of the spanning tree is the leader

The Mega-Merger
Minimum spanning tree construction algorithm.
The root of the spanning tree is the leader

Issues to consider when merging two cities:
How to name the new city
will depend on several factors
which roads of a city will be serviced by public transports
[the roads serviced in the two cities plus a connecting road]

Paola Flocchini

5) A city must merge with the closest neighboring city. To request a merge, it sends a let-us-merge message on the shortest road connecting the cities
6) The decision to request a merge must come from downtown. There cannot be more than one request at a time

Paola Flocchini

A: city
$D(A)$: downtown
level(A): level of city A
A
$e(A)=(a, b)$: merge link with closest city (let it be B)

When the request arrives:

- the two cities have the same level
- the two chita citiecchini have different levels

Let A send the let-us-merge message to B

8) If level $(A)=$ level (B) AND the link chosen by A is the same as the one chosen by $B(e(A)=e(B))$, then:
friendly merger

9) If level (A) < level $(B) \quad A$ is absorbed in B

In the other cases the decision is postponed
10) If level $(A)=$ level(B) BUT $e(A) \neq e(B)$, then:
the merge is suspended until B
arrives at a level GREA TER than A
11) If level $(A)>$ level (B) then:

the merge is suspended until B arrives at the same level as A

Paola Flocchini

b notifies a about the absorption (putting B's name in the message)
a broadcast the info in A
flip all logical link direction to point to the new downtown

Paola Flocchini

Choosing the merging link

d_{A} needs to find the min length among all
edges exiting the city
5.1) each district a_{i} of A determines d_{i} of the shortest road going to another city (if none, $\mathrm{d}_{\mathrm{i}}=\infty$)

5.2) d_{A} finds the smallest

Paola Flocchini (min in a rooted tree)

the road is not necessarily external (maybe C has been absorbed by A and c does not know : in such a case level (C) < level (A))	
If name $(A) \neq \operatorname{name}(C)$ and level $(C) \geq \operatorname{level}(A)$ then	If name $(A) \neq \operatorname{name}(C)$ and level (C) < level (A) then
reply(external) Paola Flocchini	don't reply

More Details
Discovering a friendly merger

$$
\text { level }(A)=\operatorname{level}(B) \text { and } e(A)=e(B)
$$

To decide, b needs to know $e(A)$ and $e(B)$

How does b know $e(B)$?

$e(B)$ is chosen by $D(B)$, which will send the request through b

$$
\text { When receiving the request, } b \text { will know }
$$

So,
If $e(A)=e(B)$, b will eventually know
If $e(A) \neq e(B), b$ is not the exit point, it will never know what $e(B)$ is.
Paola Flocchini

More Details Discovering a friendly merger

$$
\operatorname{level}(A)=\operatorname{level}(B) \text { and } e(A)=e(B)
$$

Receiving a let-us-merge

If b has already received a let-us-merge from $D(B)$ to be sent to a both b and a will know that this is a friendly merger

Otherwise
b waits
eventually, either it will know that it is a friendly merger or its level will be increased (because of requests from B to other cities) and level(B) will become greater than level(A).
Paola Flocchini [absorption]
[Note: A is waiting,its level cannot increase]

Correctness

If a city of level I will not be suspended, its level will increase (unless it is the mega-city)

Let city C at level I be suspended by a district d in D.
If the level of D becomes greater than I, C will no longer be suspended

No city in C will be suspended by a city of higher level

Protocol Mega-merger is deadlock-free

Paola Flocchini
4) receiving let-us-merge on $e(C)=(c, d)$, d knows that level $(C)=$ level (D) Paola Fbutiridoes not know if it is friendly

Termination

If A is the mega-city, there are no other cities.
All the unused links are internal

The minimum finding will return a special value (∞)
$D(A)$ understands and broadcasts termination

Paola Flocchini

Complexity

Complexity

Number of messages per level : CITY C

$$
C \text { absorbed at level i }
$$

Computation of merge links:
Forwarding of let-us-merge from $D(C)$ to $e(C)$: $n(C)$
Broadcast info about new city:

TOT: $4 n(C)-2$

Complexity

How many levels?
The level is incremented only if
the merger is between two cities with the same level

Level 2 there are at least 2 nodes (maybe MORE)

Paola Flocchini

Complexity

In general, at Level i there are at least 2^{i} nodes
(maybe MORE)
Nodes at level $i \geq 2^{i}$
$n \geq 2^{i}$
$i \leq \log n$
Total: $\leq 2(m-(n-1))+n-1+5 n \log n$
Paola Flocchini
$\leq 2 m+5 n \log n+n+1$

