
Broadcasting on Anonymous Unoriented Tori?

Stefan Dobrev and Peter Ružička

Institute of Informatics
Comenius University

Slovakia
E–mail:{dobrev,ruzicka}@dcs.fmph.uniba.sk

Abstract. We consider broadcasting on asynchronous anonymous to-
tally unoriented n×m torus, where N = n·m is the number of nodes. We
present a broadcasting algorithm with message complexity 1.43N+O(n+
m) and prove the lower bound in the form 1.14N−O(1). This is an impro-
vement over the previous 2N+O(

√
N) upper bound and 1.04N −O(

√
N)

lower bound achieved by Diks, Kranakis and Pelc [DKP96]. Unlike the
algorithm from [DKP96], our algorithm works also on non-square tori,
does not require the knowledge of sizes n and m and uses only messa-
ges of size O(1) bits. This is the first known broadcasting algorithm on
unoriented tori that does not use all edges.

1 Introduction

Broadcasting is one of the most fundamental communication tasks in parallel and
distributed computing. One node of the network, called source, has a message
which has to be transmitted to all other nodes in the network.

The complexity of broadcasting strongly depends on the amount of topo-
logical information available at nodes. If links of a network are globally consi-
stently labelled, forming sense of direction [FMS95,Tel95a], broadcasting is pos-
sible using only linear number of messages w.r.t. the number of nodes [FMS96].
But if a network is unoriented (no consistent global labels on links are availa-
ble), then the lower bound for general networks is linear in the number of links
[FMS96]. This lower bound is achievable by the naive broadcasting algorithm,
in which a node immediately spreads the message to all neighbours except to
the one from which it received it.

While this strategy cannot be improved on general networks, broadcasting
algorithms might exploit the knowledge of special topologies to reduce the num-
ber of messages. For example, on the complete unoriented N–node network the
broadcasting is trivially accomplished by sending only N − 1 messages from the
source to all its neighbours. Another, not so trivial example, is the class of unori-
ented N–node chordal ring networks with chords leading to 2k closest neighbours
in the ring, where the broadcasting can be performed using only O(N) messages
[Pel97].
? The research was partially supported by EU Grant No. INCO-COP 96-0195

”ALTEC-KIT” and by the Slovak VEGA project 1/4315/97.

J. Hromkovič, O. Sýkora (Eds.): WG’98, LNCS 1517, pp. 50–62, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

Broadcasting on Anonymous Unoriented Tori 51

Other results have been obtained for broadcasting on special topologies with-
out orientation. It was stated as an open question (see [Tel95a], cf. also [Mans96])
whether there exists a broadcasting algorithm on unoriented N–node hypercu-
bes using only O(N) messages in the worst case. This question was positively
answered only recently in [DR97,DKP96,DDKPR98], where two different inde-
pendently obtained linear message algorithms for broadcasting on unoriented
anonymous hypercubes were presented. Further improvements of these results
in the time and bit complexity can be found in [DRT98].

We are interested in broadcasting on unoriented tori. Since tori have constant
degree, the naive broadcasting algorithm using 3N+1 messages is asymptotically
optimal. However, it is possible to improve the constant factor, as documented
by the algorithm from [DKP96], which uses 2N +O(

√
N) messages on

√
N ×√

N
tori. In [DKP96] it was also shown that the lower bound is non-trivial (1.04N −
O(

√
N) messages). We further improve these results, both in upper and lower

bounds. We present 1.43N + O(n + m) message broadcasting algorithm which,
unlike the algorithm from [DKP96], works also on non-square torus, does not
need to know its size and uses only messages of size O(1). This is the first
know broadcasting algorithm working on unlabeled tori that does not use every
link. We also present an improved lower bound 1.14N − O(1), using a technique
with potential for further improvement of this lower bound. Our lower bound
is on the number of used links and it applies also for the case of synchronous
communication, regardless whether vertices know the size of torus.

The paper is organized as follows. In Section 2 we present the computational
model. In Section 3 we show 1.43N + O(n + m) broadcasting algorithm. In
Section 4 we prove an 1.14N − O(1) lower bound for broadcasting on unlabeled
N–node tori.

2 The Model

The computational model is the standard model of asynchronous distributed
computing [Tel94b]. Every message will be delivered in a finite but unbounded
time. FIFO on links is not required. All processors are identical and run the
same algorithm.

The underlying topology of the network is anonymous unoriented torus of
size n × m. Anonymity means that processors do not have given distinct iden-
tities. Unorientation means that each processor can distinguish its links only
by uninterpreted labels 1, 2, 3 and 4. However, this labeling is arbitrary at each
processor and labels are thus without any topological meaning. That means that
if a processor sends a message on an unused link, the actual link (from the set
of yet unused links) is chosen by the adversary, as all unused links look alike to
the sender and we are interested in the worst case behaviour.

We are interested in communication complexity, expressed by the number of
messages sent in the worst case. The worst case refers to the adversary decisions
concerning choices of yet unused links, and to the worst possible message delays.

52 S. Dobrev and P. Ružička

We are considering the problem of broadcasting. At the beginning there is a
single active processor – the source of information. Other processors will became
active only after receiving a message. Only active processors can send messages.
At the end of computation we require each processor to be active (it has received
an information).

3 Upper Bound

In this section we present a broadcasting algorithm on asynchronous anonymous
totally unoriented n × m tori using 10

7 n · m + O(n + m) messages in the worst
case.

3.1 Informal Description of the Algorithm

Our algorithm A starts from the source s by sending an initial message in one
direction until it returns back to s. This can be done using handrail technique
from [Pet85,Mans96b] with O(n) messages of size O(1), where n is the size of
the torus in the direction of the initial message. Created path circling around
tori is called equator. From the handrail technique follows that vertices on the
equator can consistently distinguish between their north and south sides.

s s s ss

s
equator

As in the upper part.

launching Diag()

One thick diagonal built by one invocation of Diag().

Possible overlap of the first and the last thick diagonals. Size: O(m).

n

m

w

^

II}Y 6 7

Figure 1.

In the second phase, another message is sent along the equator eastward and
at each 7th vertex it launches northward the subroutine Diag() until it returns
back to the source. The first launch of Diag(), denoted as Diag1(), is done using

Broadcasting on Anonymous Unoriented Tori 53

marked messages, so it will not interfere with the last one, which may overlap
with it. Diag() procedure broadcasts on thick (7 vertex) diagonal in north-east
direction until it returns back to the equator.

The overall message complexity of the broadcasting algorithm is 10
7 N +

O(n + m) and it follows from these facts:

– The cost of the start-up (building the equator and launching Diag() proce-
dures) is O(n).

– Diag() uses 10
7 messages of size O(1) bits per each reached vertex.

– The whole torus can be covered by disjoint thick diagonals built by Diag().
Since Diag() stops on the equator, different invocations of Diag() do not
overlap. The only exception is the first and the last invocation of Diag(),
which can overlap for n non-multiple of 7, where n is the length of the
equator. There are at most 6m vertices in the intersection, that means totally
60
7 m additional messages. (See Figure 1)

3.2 Detailed Description of the Algorithm

StartUp

At the source on start up:

0. For each incident link h:
Send(S1

x), where x is label of h at the source vertex; ?

-�
6S

1
3

S1
4

S1
1S1

2 s

Figure 2.

At arbitrary vertex:

Upon receiving Send See Figure
1. S1

x S2
x on all remaining links 3

2. S2
1 on h and S2

x S3
x on h 4

3. S3
x on h1 and S3

y on h2, U1 on h1, B1 on h2 and 5
let x < y M1 on link on which S2

1 was sent,
but nothing received.

-

?-

?

�

�

?

6
� -

6

6

s

S2
3

S2
1

S2
1

S2
4

?
6s S3

4

S3
3

s

6

?

-

U1

B1

M1

Figure 3. Figure 4. Figure 5.

54 S. Dobrev and P. Ružička

Building the equator:

After receiving message(s) Send See Figure
4a. U1 U on unused links 6
4b. B1 B on unused links 6
4c. M1, not at source M on unused links 1 5,6 and 9
4d. M1 at source L on link with label 1 2 10
5a. U on h and M U on all links except h 7
5b. B on h and M B on all links except h 7
5c. U and B M1 on links on which no 8

M1, U or B was received

s

6
-

?

-?

6
-

U

B
B

U

M

M
M ?

6

6
-

?

-

U

B

B

U
U

B
- M1

6

?

-

M

M

M

Figure 6. Figure 7. Figure 8. Figure 9.

Launching phase

After receiving message(s) Send See Figure
6. L D′

0 where U1 was sent 5 and 10
L1 where M1 was sent

7. Li, not at source L(i+1) mod 7 where M1 was sent 8 and 10
if i = 0, send D0 from where 7 and 10

U message came

Diag() procedure:

After receiving message(s) Send to all unused links 3

8a. D0 D1
4

8b. D1 and not M received before D2
8c. D2 and (D9 or S2

x) D3
8d. Two D2 D4
8e. D4 D5
8f. Two D5 D6
8g. D6 D7
8h. D5 and D7 D3
8i. Two D7 D8
8j. D8 D9
8k. Two D9 D1

1 Links used only by Sy
x messages are considered unused.

2 Starting launching phase.

Broadcasting on Anonymous Unoriented Tori 55

6

66
��
6

-
6

-

�
6

-

?-
6

6
-

?

-
6

6
- -

?

-
66

-�
6

�
6 6 6

�

-

?

-
6
?

-
6

6
-

6
�

6
�

6
-

?

-
6

-

-

?

6
� -

6
-

?

-

-

?

-
6

�
6

6
� -

6

6

6
-

6

?

-

?

-?

-
6

- - - - - - - - - -

6

D0

D1

D2
D2

D3
D3 D2

D4

D1
D2

D2
D5

D4

D5

D5

D5

D3

D5

D7D3

D5

D6

D3

D6

D3
D7

D7
D7

D7
D7 D8

D8

D9

D9
D9

D9D9
D9

D3

D3

D3
D3

D1
D1

D2

D2
D2

D2D2
D2

D4
D4

D5 D5

D5

D5
D5

D3

D3
D7

D6 D7

D3
D3

D3

D3

D5 D6 D7 D9

D7 D8 D9 D2
D7 D7 D8 D9

s L L1 L2 L3 L4 L5 L6 L0 L1 L2 L3

D0

S2
3

I
Repeating pattern

Figure 10.
If D′

0 message is received, D′
i messages will be used, to avoid possible inter-

ference between the first and the last invocation of Diag().
It is easy to see that computation cyclically proceeds in cycle 8a→8b→8d→

→8e→8f→8g→8i→8j→8k→8b with concurrent steps 8c and 8h. In one such cy-
cle altogether 28 new vertices are added to the thick diagonal using 40 messages,
resulting in overall 10

7 messages per vertex.
Diag() terminates when it returns back to the equator from the south –

a vertex that has received M and B message will not send any Diag() message.

3.3 Making Termination Explicit

The algorithm presented in subsection 3.2 terminates implicitly. One way to
make the termination explicit within the same complexity bound is the following:

– Vertices reached by messages of Diag() terminate when they finish their work
in Diag().

– Vertices of the equator terminate when the launching token of the second
phase has passed them.

– The only problem are vertices of the first – Diag1() and the last – Diagq()
thick diagonal. The problem is how to terminate in order to nonblock broad-
casting on the second thick diagonal. One possible solution is the following:

• When Diag1() returns back to the equator, it returns k steps to the
west and launches Diagq() to south-west. Vertices reached by Diagq()

3 Unused links – unused by Di and M messages. No messages are sent from vertices
that received a B and M message – termination of Diag() when equator was reached
from the south.

4 Messages are sent along two links on which no U , D0 or Sy
x message arrived. (see

Figure 6)

56 S. Dobrev and P. Ružička

but not by Diag1() will terminate after finishing their work in Diagq().
When Diagq() reaches the equator, it goes k steps eastward and launches
Diag1() to north-east. Now vertices can terminate after finishing their
work in Diag1(). k can be computed during the construction of the equa-
tor as the length of the equator modulo 7. This additional computation
can be done using O(m) messages.

4 Lower Bound

We will prove the lower bound by letting the algorithm and the adversary play
the following game:

– At the beginning the domain D of the algorithm consists of a single vertex
– the source.

– The goal of the algorithm is to extend its domain to the whole torus.
– The game proceeds in rounds. Each round begins with a move of the algo-

rithm, which is followed by a move of the adversary.
– The algorithm knows the graph D representing its domain, but does not

know how it is embedded into torus.
– The algorithm specifies (during its move) for each vertex of its domain the

number of yet unexplored links it wants to explore.
– The adversary chooses an embedding of D into torus and decides which

of yet unexplored links at given vertex will be explored. (According to the
orders given by the algorithm.)

– At the end of each round all explored links are added to the domain of the
algorithm.

– The game terminates when the domain spans the whole torus.
– The goal of the adversary is to maximize the number of explored links.

Since the game proceeds in synchronous rounds, the lower bound applies also
for the case of synchronous communication. Moreover, this is the lower bound
on the number of used links, not only on the number of used messages.

Our adversary tests all possible embeddings, and for each embedding it tests
all possible ways of choosing explored links. The embedding (and the choice of
explored links) which leads to the smallest new domain is chosen. (See Figure
11)

D
Algorithm turn

0 2

0 1

Adversary response

0

0

0

1

1 0

Algorithm turn Adversary response

�
6

-

-�

Figure 11.

Let Di be the domain of the algorithm after the round i. Di can be divided
to the core graph Ci and hanging trees Ti. The core graph can be defined as the

Broadcasting on Anonymous Unoriented Tori 57

maximal subgraph Ci of Di such that ∀v ∈ Ci, v has at least two neighbours in
Ci. Ti is the rest of the domain. Ti can be viewed as a forest of trees with roots
in Ci. (These roots are not in Ti). We denote these graphs after the termination
of the game by D, C and T .

The following lemma is crucial:

Lemma 1. If Ci 6= ∅, then there are no hanging trees of depth greater than 2.

Proof. By contradiction. Consider the first round (say r) in which there is a hang-
ing tree T (3) of depth 3. That means that in the round r−1 there was a hanging
tree T (2) of depth 2 and from one of its leaves at depth 2 (say from a vertex v)
a new link was explored. Let the root of T (2) be a vertex t ∈ Cr−1. It has two
neighbours in Cr−1. Take the embedding E used by the adversary at round r −1
and modify it locally to embed T (2) such as in Figure 12. This modification is
indeed possible, because the place for the vertex v is either free or is occupied by
another branch of T (2) (which can be exchanged with the branch leading to v).
If this place belongs to Cr−1 or to another tree, then in the previous round the
adversary should have directed the growth of T (2) to this place, thus constructing
smaller domain.

The resulting embedding E ′ (together with the choice of explored link (v, w))
results in smaller domain compared with E , which is the contradiction with
respect to our choice of the adversary.

6
-

?
wt

vu

Figure 12.

It is easy to see that Ci = ∅ holds only at the very beginning of the com-
putation. Using similar arguments as in the proof above we can show that once
there is a tree of depth 4, the adversary will turn its branches to form a cycle.

So far we have shown that the adversary can limit the depth of hanging trees
by looping their branches back to the core graph. Another way to reduce the
depth of hanging trees is to connect two trees, thus eliminating trees that grow
deep. We will refine our adversary by making it prefer the following option:

– If there are several possibilities (for embedment and choice of explored links)
resulting to the domains of the same size, prefer the option in which a tree
branches loop back to the core graph rather than the option in which trees
come in touch. (See Figure 13)

58 S. Dobrev and P. Ružička

1

1

-�
distance 5

Algorithm turn

-�

Adversary response - possible

-�

Adversary response - preferred

Figure 13.
Lemma 1 allows us to examine how the core graph grows:

Lemma 2. If Ci 6= ∅, then there exists an ear decomposition of Ci+1 − Ci such
that each ear has the length at most 4.

More precisely, there exists a sequence of graphs Ci = Ci,0, Ci,1, . . . , Ci,k =
= Ci+1 such that for each j, 0 ≤ j < k, Ci,j+1 − Ci,j is a path of length at most
4 which starts and ends in Ci,j.

Proof. First note that there is an ear decomposition with ears of length at most 6.
See that new vertices are added to the core graph only when branches of some
tree loop back to the core graph or when two trees meet. (The third possibility
occurs when two branches of the same tree meet. But this case is not possible
under our adversary, because the adversary preferes to loop branches back to
the core graph.) In the first case an ear of length at most 3 is formed (since trees
are of depth at most 2, plus newly explored link), in the second case each tree
can contribute by a path of length at most 3, bounding the overall length of the
new created ear by 6.

To form a long ear of length 5 or 6, at least one tree must contribute by a
path of length 3. Our adversary prefers looping back branches of trees to the
core graph. It may happen that adversary cannot loop back branch of length 3,
because that will increase the size of the domain. One such situation is shown
on Figure 14.

1 1

-�
distance 4

Algorithm turn

-�

Adversary response

v u
t

Figure 14.

However, that is possible because the tree of the vertex u contributed by only
2 links ((t, u), (u, v)) and there were overlapping links from different trees ((u, v)

Broadcasting on Anonymous Unoriented Tori 59

and (v, u)). If there are not overlapping links (there is no request for exploration
from u), looping back to the core graph is possible, because it will not enlarge
the domain. Similarly, looping back is possible if both trees contribute by paths
of length 3, as shown in Figure 13.

That means that if there is still a long ear, then it must also have small
loop(s) at its end(s). We can first add an ear formed by this (these) small loop(s),
decreasing the overall length of the long ear to at most 4. (It is easy to see that
an ear of length 6 must have small loops at both of its ends.)

Let EC be the number of links in the core graph C. We will prove our lower
bound by proving the lower bound on the expression

EC + |T |
|C| + |T | =

total number of explored links
N

(1)

Let C0 be the initial core graph (formed when the first loop is closed) and
let EC0 be the number of links in it. Let Ci be the core graph after adding i ears
according to Lemma 2 and let ECi be the number of links in it. Let Ti be the
set of hanging trees at that moment. Following Lemma 1, we can bound |Ti| by
the number of vertices at the distance at most 2 from Ci.

We are interested in the ratio

ECk
+ |Tk|

|Ck| + |Tk| =
EC0 + |T0| +

∑k
i=1(ECi − ECi−1 + |Ti| − |Ti−1|)

|C0| + |T0| +
∑k

i=1(|Ci| − |Ci−1| + |Ti| − |Ti−1|)
(2)

Denote ECi − ECi−1 by ei, it represents the number of links in the i-th ear.
Similarly |Ci| − |Ci−1| = vi, the number of inner vertices in the i-th ear. Clearly
ei = vi + 1. Let ti be the number of vertices that are at distance at most 2 from
Ci, but they are at greater distance from Ci−1. |Ti| − |Ti−1| can be estimated
as ti − vi, since vi inner vertices of the i-th ear are transferred from Ti−1 to Ci.
(Note that all inner vertices of the i-th ear are inside Ti−1, because the ear has
length at most 4.)

We can rewrite (2):

EC0 + |T0| +
∑k

i=1(ei + (ti − vi))

|C0| + |T0| +
∑k

i=1(vi + (ti − vi))
=

EC0 + |T0| +
∑k

i=1(ti + 1)

|C0| + |T0| +
∑k

i=1 ti
(3)

Let t = max1≤i≤kti. Because
∑k

i=1(ti + 1)/
∑k

i=1 ti ≥ (t + 1)/t, we get

ECk
+ |Tk|

|Ck| + |Tk| ≥ EC0 + |T0| + k(t + 1)
|C0| + |T0| + kt

(4)

Since |C0|, EC0 , |T0| and t are in O(1), we can write |C0| + |T0| + kt = k′t
and EC0 + |T0| + k(t + 1) = k′(t + 1) − O(1) for some k′ > k. Applying to (4) we
get

ECk
+ |Tk| ≥ k′(t + 1) − O(1)

k′t
(|Ck| + |Tk|) =

t + 1
t

· (|Ck| + |Tk|) − O(1) (5)

60 S. Dobrev and P. Ružička

since k′t ≥ |Ck| + |Tk|.
Note that this expression is in more general form than the simple lower bound

for ceased broadcasting. It says that any algorithm that has reached r vertices
must have used r(t + 1)/t − O(1) links.

All we need now is to bound t:

Lemma 3. t can be bounded by 7 for ears of length at most 4.

Proof. First note that there is only a finite (and not really high) number of
possible cases which can be tested by computer. We perform the case analysis.

We will use the fact that each vertex of C has at least two neighbours in C.
Consider an ear of 4 links and 3 vertices u, v and w being added to C. These

three vertices either lie on a line or not. In the first case, all possible situations
(up to the symmetry) are shown in Figure 15.

x

y

u v w

c

c

cc

s s

s

s

s

v w

cc

s s

s

u

y
c

c

c

x

c

v w

cc

s s

u

y

c

x

c

s

c

Figure 15.

x and y are vertices in C. Empty circles represent vertices in 2–neighbourhood
of C. Full circles represent vertices potentially added to the 2–neighbourhood of
C by adding the ear uvw.

Due to the symmetry only the left part from the vertical axis passing through
v is shown. t is in these cases bounded by 6, 4 and 5, respectively. (If the right
part is mirror image of the left part. Otherwise t is even smaller.)

If u, v and w don’t lie on a line, then four possible cases are shown in
Figure 16. Again it is sufficient to consider only one half (left bottom) of the
situation.

wv

u

x

y

c

c c

s

s

c

wv

ux

y

c

c

s

c

cc

c c

wv

u

x
c

c

c

c

c

s

ss

s

wv

u x
c

c

c

c

s

ss

s

z

y

c

Figure 16.

t is in these cases bounded by 4, 2, 7 and 7, respectively.

Broadcasting on Anonymous Unoriented Tori 61

Ears of smaller length are handled similarly. All possible cases can be drawn
on previous figures, just with smaller number of t – vertices.

Now we can apply (5):

Proposition 1. Any broadcasting algorithm on unoriented tori that reached r
vertices must have used at least 8/7r − O(1) links in the worst case.

Corollary 1. Broadcasting on unoriented N–node tori requires the use of at
least 8/7N − O(1) links, even in synchronous case.

5 Conclusions

We have presented improved upper and lower bounds for broadcasting on an
unoriented torus. The main question is how to narrow or close the gap between
these bounds.

We believe that the lower bound can be improved. A possible way of impro-
vement can be obtained by the analysis of the following situation. The highest t
(t = 7) is reached by adding ears that are not sustainable. Including such an ear
prevents from further inclusion of an ear with t = 7 on involved vertices. Ears
with smaller t must be added to prepare the ground for another ear with t = 7.
Further improvement can be based on the following hypothesis: There exists an
adversary such that in each completed computation there are no hanging trees of
depth 2 or more (although during the computation there could be some).

We note that the algorithm from [DKP96] can be modified to compute re-
lative addresses (w.r.t. the starting vertex) of all vertices in the torus. Our al-
gorithm cannot be modified in such a way. It would be interesting to prove (or
disprove) the lower bound of 2N − o(N) messages for this problem.

References

DKP96. Diks, K. – Kranakis, E. – Pelc, A.: Broadcasting in Unlabeled Tori.
Départment d’Informatique, Université du Québec á Hull, Technical Re-
port RR 96/12-5, 1996.

DR97. Dobrev, S. - Ružička, P.: Linear Broadcasting and N log log N Election
in Unoriented Hypercubes. Proc. of the 4th International Colloquium on
Structural Information and Communication Complexity (SIROCCO’97),
Carleton Press, Ascona, Switzerland, July 1997, pp. 55–73.

DRT98. Dobrev, S. - Ružička, P. - Tel, G.: Time and Bit Optimal Broadcasting
on Anonymous Unoriented Hypercubes. Proc. of the 5th International
Colloquium on Structural Information and Communication Complexity
(SIROCCO’98), Carleton Press, Amalfi, Italy, June 1998.

DDKPR98. Diks, K. - Dobrev, S. - Kranakis, E. - Pelc, A. - Ružička, P.: Broadcasting
in Unlabeled Hypercubes with Linear Number of Messages. To appear in
Information Processing Letters, 1998.

62 S. Dobrev and P. Ružička

FMS95. Flocchini, P. – Mans, B. – Santoro, N.: Sense of Direction: Formal Definiti-
ons and Properties. Proc. of the 1st International Colloquium on Structu-
ral Information and Communication Complexity (SIROCCO’94), Carleton
Press, 1995, pp. 9–34.

FMS96. Flocchini, P. – Mans, B. – Santoro, N.: On the Impact of Sense of Direc-
tion on Communication Complexity. Information Processing Letters, Vol.
63(1), July 1997, pp. 23–31.

Mans96. Mans, B.: Broadcast, Traversal and Election in Unlabelled Hypercube.
Proc. of the 3rd International Colloquium on Structural Information and
Communication Complexity (SIROCCO’96), Carleton Press, Siena, Italy,
June 1996, pp. 333–334.

Mans96b. Mans, B.: Optimal Distributed Algorithms in Unlabeled Tori and Chor-
dal Rings. Proc. of the 3rd International Colloquium on Structural Infor-
mation and Communication Complexity (SIROCCO’96), Carleton Press,
Siena, Italy, June 1996, pp. 17–31.

Pel97. Peleg, D.: Personal communication at the Sienna Research School’97 on
”Compact Routing and Sense of Direction”, Siena, Italy, June 1997.

Pet85. Peterson, G. L.: Efficient algorithms for elections in meshes and complete
networks. Technical Report TR140, Dept. of Computer Science, Univ. of
Rochester, Rochester, NY 14627, 1985.

Tel94a. Tel, G.: Network Orientation. International Journal of Foundations of
Computer Science 5, 1994, pp. 23–57.

Tel94b. Tel, G.: Introduction to Distributed Algorithms. Cambridge University
Press, Cambridge, 1994.

Tel95a. Tel, G.: Sense of Direction in Processor Networks. In: SOFSEM’95, Theory
and Practise of Informatics, LNCS 1012, Springer–Verlag, 1995, pp. 50–82.

	Introduction
	The Model
	Upper Bound
	Informal Description of the Algorithm
	Detailed Description of the Algorithm
	Making Termination Explicit

	Lower Bound
	Conclusions

