Mapping of Pseudocode to Java
NetViewer
	Java
	Pseudocode

	/*

 * NetViewer

 *

 * Network: Ring

 * Algorithm: As Far As It Can (Chang & Roberts)

 *

 * Description: etc.

 *

 */

import java.util.Collections;

class RingNodeFarAsCan extends Node {

/* Constructor

 */

RingNodeFarAsCan(Integer ID) {

 super(ID);

}

/* Receive a message.

 * Dispatch to correct method depending on state.

 */

public synchronized void receive(String msg, int dir) {

 switch (state) {

 case ASLEEP: asleep(msg, dir);

break;

 case CANDIDATE: candidate(msg, dir);

break;

 case PASSIVE: passive(msg, dir);

break;

 }

}

/* Process message received while state = ASLEEP.

* dir is the direction from which the message arrived.

*/

private void asleep(String msg, int dir) {

 initialize();

 int msgInt = Integer.parseInt(msg);

 if (id < msgInt) {

 // do nothing; remain candidate

 NetViewer.out.println("Node "+id+" has been woken up, remained candidate, defeated "+msg+".");
 }

 else /* msgInt < id */ {

 send(msg, Math.abs(dir-1)); // send in opposite direction

 become(PASSIVE);

 NetViewer.out.println("Node "+id+" has been woken up, become passive, and sent msg "+msg+" to the "+((Math.abs(dir-1)==0)?("RIGHT"):("LEFT"))+".");
 }

}

/* Process message received while state = CANDIDATE.

* dir is the direction from which the message arrived.

*/

private void candidate(String msg, int dir) {

 int msgInt = Integer.parseInt(msg);

 if (id < msgInt) {

 // do nothing; remain candidate

 NetViewer.out.println("Node "+id+" remains candidate, defeats "+msg);

 }

 else if (msgInt < id) {

 send(msg, Math.abs(dir-1)); // send in opposite direction

 become(PASSIVE);

 NetViewer.out.println("Node "+id+" defeated. Became passive and forwarded "+msg+" to the "+((Math.abs(dir-1)==0)?("RIGHT"):("LEFT"))+".");

 }

 else { /* received my own id */

 become(LEADER);

 send("notification", Math.abs(dir-1));

 NetViewer.out.println("**** LEADER FOUND **** Node "+id+". Sent notification.");

 }

}

/* Process message received while state = PASSIVE.

* dir is the direction from which the message arrived.

*/

private void passive(String msg, int dir) {

 if (msg == "notification")

 become(FOLLOWER);

 send(msg, Math.abs(dir-1)); // send in opposite direction

 NetViewer.out.println("Passive node "+id+" forwarded message "+msg+" to the "+((Math.abs(dir-1)==0)?("RIGHT"):("LEFT"))+".");

}

* Initialization sequence.

*/

protected void initialize() {

 send(idString, RIGHT);

 become(CANDIDATE);

 NetViewer.out.println("Node "+id+" initialized. ID sent to the right.");

}

/*-------- CASES (best/worst/average) --------*/

/* Arrange ids into average case configuration (randomize).

 */

public static boolean average() {

 Collections.shuffle(ids); // randomize

 synchronous = false;

 return true;

}

/* Arrange ids into best case configuration (decreasing around ring).

*/

public static boolean best() {

 Collections.sort(ids);

 Collections.reverse(ids); // decreasing around ring

 synchronous = true; // makes it easier to follow animation

 return true;

}

/* Arrange ids into worst case configuration (increasing around ring).

*/

public static boolean worst() {

 Collections.sort(ids); // increasing around ring

 synchronous = true; // makes it easier to follow animation

 return true;

}

} // class
	Ring: As Far as it Can (Chang and Roberts)

ASLEEP

spontaneously

 INITIALIZE

receiving(idReceived)

 INITIALIZE

 if (myID < idReceived) then

 // Do nothing; remain candidate. Don't need to resend myID.

 // A node only ever sends its ID once in this algorithm.

 else if (idReceived < myID) then

 send(idReceived)

 become(PASSIVE)

CANDIDATE

receiving(idReceived)

 if (myID < idReceived) then

 // do nothing; have already sent myID

 else if (idReceived < myID) then

 send(idReceived)

 become(PASSIVE)

 else /* idReceived = myID */

 become(LEADER)

 send(notification)

PASSIVE

receiving(message)

 if (message is notification)

 become(FOLLOWER)

 send(message)

--

Procedure INITIALIZE

 send(myID)

 become(CANDIDATE)

The spontaneous wakeup event is triggered when the thread representing the node dies (its run methods terminates). This is already implemented in the Node class. You must, however, implement the initialize() method (see below).

Print out what is happening. This is very useful in debugging and will help you trace the algorithm. By using NetViewer.out.println, the output displays in the log tab within the application.

Receiving a message. You need a case for each of the states in your algorithm. Each case calls the appropriate method below to processes the message.

Implementing cases (best/worst/average).

Note: These methods do not generate ids. They rearrange the existing ids collection into the appropriate order for best/worst/average case. The ids will be saved into the nodes in the same order as the network was created. For the ring, chordal ring, and complete graph, this is around the ring to the right. For the grid and torus, this is by row from left to right and top to bottom.

In the ring network, these methods must exist whether you implement them or not. In other network topologies, you may leave them out.

If you do not wish to implement a case, or if all cases are the same for your algorithm, just return false inside the method. These methods MUST be named best(), worst(), average() because they are dynamically called when the user selects the corresponding radio button.

Be sure to return true if you implement a case.

Note the class name follows the format

<Name of network type><"Node"><Name of algorithm>

This is not just a naming convention. Classes are actually constructed at run time using the class loader. The name of your class will be built up from substrings, and the class loader will create nodes of your type for the network.

Note the superclass (for the tree this will be TreeNode).

