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Abstract

Fault tolerance through the incorporation of redundancy and reconfiguration is quite common. The distribution of
faults can have severe impact on the effectiveness of any reconfiguration scheme: in fact. patterns of faults occurring at
strategic locations may render an entire system unusable regardless of its component redundancy and its reconfiguration
capabilities. Testing of catastrophic faults was given for reconfigurable arrays with 2-link redundancy: i.e., a bypass link
of fixed length is provided to each element of the array in addition to the regular link.

In this paper, we study the more general case of arbitrary (but regular) link redundancy. In particular, we focus on the
problem of deciding whether a pattern of k faults is catastrophic for a k-link redundant system; i.e.. in addition to the
regular link of length ¢y, = 1. each element of the array is provided with k — 1 bypass links of length ¢, gs. ... . g,
respectively.

We study this problem and prove some fundamental properties which any catastrophic fault pattern must satisfy. We
then show that these properties together constitute a necessary and sufficient condition for a fault pattern to be
catastrophic for a k-link redundant system. As a consequence, we derive a provably correct testing algorithm whose
worst-case time complexity is O{kg,); this also improves on the previous algorithm for k = 2.

Keywords: Fault tolerance; Systolic arrays: Catastrophic fault patterns; Testing

1. Introduction

Faults can occur in all systems at all levels. Therefore, a proper fault-tolerance mechanism must
be in place to cope with possible failures. A common and practical approach for achieving
fault-tolerance in VLSI-based regular architectures is by incorporating component redundancy
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and mechanisms for reconfiguration of the architecture. The redundant processing elements (PEs)
are used to replace any faulty PE(s); the redundant links are used to bypass the faulty PEs and
reach the redundant PEs used as a replacement. In the literature, many algorithms [1-17] have
been proposed which take into account the built-in redundancy and reconfigure the system in the
presence of faulty PEs and faulty links. The main objective of all the reconfiguration algorithms is
to map faulty elements to spares (using bypass links) while preserving the high degree of regularity
and locality of reference required by the system to perform correctly.

The effectiveness of using redundancy to increase fault tolerance clearly depends on both the
amount of redundancy and the reconfiguration capability of the system. It does however depend
also on the distribution of the faults in the system. In fact, faults occurring at strategic locations in
a regular architecture may have catastrophic effects on the entire structure and cannot be overcome
by any amount of clever design. Patterns of faults which can have catastrophic effects are denoted
as catastrophic fault patterns. From a network prospective, such fault patterns can cause network
disconnection. For a given design, it is not difficult to identify a set of elements whose failure
will have catastrophic consequences. For example, in a linear array of PEs with no link redund-
ancy, a single PE fault in any location is sufficient to stop the flow of information from one side
to the other. Similarly, the same array with k — 1 bypass links {g,,g3, ..., gx} cannot tolerate
gi (not k) PE faults if they occur in a block (or cluster). The probability of block faults of size
gi or higher is relatively small; however, there exist many patterns (random distribution) of g
faults, not in a block, which can be fatal for the system. Therefore, the characterization of such fault
patterns is obviously crucial for the identification, testing and dectection of such catastrophic events.

The fault patterns that are catastrophic have been extensively studied for classes of regular
architectures [18]. The knowledge about these catastrophic fault patterns can be used in many
ways to improve the reliability of regular systems. In fact, the characterization of these fault
patterns has been utilized in [19] to assess the reliability of redundant VLSI arrays. The knowledge
about the catastrophic fault patterns can be applied to test for the likelihood of a catastrophe in
regular systems. It is also possible to evaluate a design, using the characterization of catastrophic
fault patterns, to verify if specific patterns of faults are catastrophic; should this be the case, any
future design can be upgraded by incorporating appropriate redundancy structure into the design
to minimize catastrophe. The patterns of faults can very well be the distribution of faults, frequently
observed in the post-manufacturing phase or in an application domain.

In this paper, we are concerned with the development of efficient testing schemes; that is, efficient
mechanisms which automatically determine whether or not an observed/detected pattern of faults
will have catastrophic consequences. The availability of such testing schemes can have many
practical consequences; e.g., they can be used after the fault detection/location phase to determine
whether reconfiguration is possible, well ahead of time before the system is used in a critical
operation. Similarly, the testing schemes can be used when generating fault patterns to test for
reconfigurability.

A fault pattern is a cut-set of the graph corresponding to the architecture under consideration;
this correspondence was first observed in [20]. Testing if a fault pattern is catastrophic for the
regular architecture is equivalent to checking if the fault pattern is a cut-set of the corresponding
graph [21]. For an array 4 of N processors and links {g,,g,, ..., gx) for each processor,
a standard cut-set algorithm for testing connectivity would have time complexity O(Nk). In the
case of redundant arrays, N is much greater than k and g,. Noticing that generic algorithms for
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finding cut-sets [22] are inefficient for our special case, our goal is to find an efficient algorithm for
testing catastrophic fault patterns in redundant arrays.

The problem introduced here can be modelled within the framework of network reliability,
especially the reliability of communication networks. Reliability is an important issue in the design
of a communication network. Many communication networks provide fault-tolerant routing
mechanisms for bypassing any faulty node making use of bypass links. In such networks, successive
failures can lead to a state of network disconnection (a catastrophe) whereby one or more
non-faulty nodes are cut off from the rest of the network.

The problem of testing whether or not a fault pattern is catastrophic for a redundant array with
a given level of link redundancy has been addressed only for specific cases. In particular, an O(g?)
testing algorithm was derived in [18] for 2-link redundant systems. where ¢ is the length of the
bypass link.

In this paper, we study the more general case of testing catastrophic fault patterns in reconfigur-
able arrays with arbitrary link redundancy; ie.. k > 1. For these, we prove some fundamental
properties which any catastrophic fault pattern must satisfy. We then show that these properties
together constitute a necessary and sufficient condition for a fault pattern to be catastrophic for
k-link redundant systems. As a consequence, we derive a provably correct testing algorithm whose
worst-case time complexity is O(kg,); thus. we also improve on the previous algorithm for 2-link
redundant systems. Since the number of processors N in the redundant array is much greater than
k and g,, the proposed O(kg,) algorithm is more efficient than any known O(Nk) cut-set algorithm
for testing catastrophic faults in regular redundant arrays.

The remaining of this paper is organized as follows. Basic concepts that provide basis for
further analysis are introduced in Section 2. In Section 3, a representation for fault patterns
based on Boolean matrices is given, and the existing testing algorithm is described. A special
fault pattern, called the reference fault pattern, is introduced and its properties are described
in Section 4. Necessary and sufficient conditions for a pattern to be catastrophic are given
in Section 5. An improved testing scheme is presented in Section 6 followed by a conclusion in
Section 7.

2. Preliminaries

In this paper, we will focus on one-dimensional (or linear) arrays. The basic component of such
an array is the processing element (PE) as shown in Fig. 1(a). The links can be either unidirectional
or bidirectional. There are two kinds of links in redundant arrays: regular or bypass. Regular links
exist between neighboring PEs while bypass links are assumed to exist between non-neighbors. The
bypass links are used strictly for reconfiguration purposes when a fault is detected. For all other
purpose, the bypass links are considered to be the redundant links. Bypass links are shown in bold
in Fig. 1(a).

Let ¥ = {ICU,, A, ICU, }, as shown in Fig. 1(b), represent a systolic system in which ICU, and
ICU, denote the left and right interface control unit (ICU) respectively and A = {py,Ps .. Pn}
denotes a one-dimensional array of PEs. The ICUs which interface with the array A are responsible
for all I/O functions. In reality, there may be just one ICU looking after both 1/O ports. Eachpe 4
represents a processing element and there exists a direct link between p; and p;+1, 1 <i< N.Any
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Fig. l{a). One-dimensional array of processors.

cu, ICU,

Fig. 1{b). Model systolic system.

link connecting p; and p; where j > i + 1 is said to be a bypass link. The length of a bypass link,
connecting p; and p;, is the distance in the array between p; and p;: 1€, |j — il.

Definition 1. Given an integer gy [1, N — 1] and an array A4 of size N, A4 is said to have link
redundancy g, if for every p; € 4 with i < N — g there exists a link between p; and p;.,; if g > 1,
such a link will be called a bypass link.

Note that for each p; € 4 with i > N — g there exists a link between p; and ICU,. Similarly, ICU,
is connected to p,.
The above definition can be extended to a set of bypass links as follows:

Definition 2. The array A has link redundancy G = {g,, g3, ... ,gi} Where g; <g;., and g;€
[1, N — 17, if 4 has link redundancies ¢, ¢, ... . gx.

In the following, it will be assumed that no other links exist in the array except the ones specified
by G. Thus, G totally defines the link structure of A, and A will be called a k-redundant system.
Notice that g, = [ is the regular link, while all other g;’s correspond to bypass links. Every p; has
in-degree (also out-degree) k; ICU, has out-degree g,; and ICU, has in-degree g,. [t is also assumed
that the array size is much larger than the length of the largest bypass link, i.e., N > g,.

Given a linear array A of size N, a fault pattern for A is a set of integers F = { f\, f5, ..., fn} Where
m < N, f; <f;-yandf; e [1. N]. An assignment of a fault pattern F to 4 means that for every f € F,
p, is faulty.

Definition 3. The window W of a fault pattern F is a subset of A that starts with f; and finishes
with f,,,.
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Definition 4. The width wy of a fault pattern F is the number of PEs between and including the first
and the last fault in F. Thatis, if F = {f}, ..., [} then |W;| =owr =f, —f1 + L.

Definition 5. A fault pattern F is catastrophic for an array 4 with link redundancy G if ICU, and
ICU, are not connected in the presence of such an assignment of faults.

In other words, F is catastrophic if the removal of the faulty elements and their incident links will
cause the I/Os to become disconnected. A characterization of catastrophic fault patterns was given
in [18]. It was shown that a catastrophic fault pattern for a link configuration G = {g,, g, ... , gx }
must have at least g, number of faults, Also, the width of a fault pattern must fall within precise
bounds for the pattern to be catastrophic; these bounds were established on the width wy of the
fault pattern for different link configurations. In this paper, we will consider minimal catastrophic
fault patterns; that is, fault patterns which have exactly g, faulty PEs.

3. Matrix representation for fault patterns and the existing testing algorithm

We now introduce a representation for fault patterns based on Boolean matrices. This repres-
entation will be instrumental in establishing new properties of catastrophic fault patterns and
deriving an efficient testing algorithm. The purpose of this section is to define the representation
and describe the existing testing algorithm.

Consider an arbitrary fault pattern F = {f,.f>. ..., f, |. consisting of g, faults for an arbitrary
link configuration G = {gy, ¢,, --. , g }. Without loss of generality, assume that f; = 1. The links
can be either unidirectional or bidirectional. We present F by a Boolean matrix W of size (w7 X gy),
where wy =[ /g, |, defined as follows:

. 1 if (igy+j+ 1)eF,
Wi ] = Gt
L] {0 otherwise.
In the matrix representation, each f; e F is mapped into W [x,, y,] where x; =| f; — l/g; | and
y; = f; — 1 mod g,. Notice that W [0, 0] = 1 which indicates the location of the first fault.

Example 1. Consider the fault pattern F, (shown in Fig. 2) for an array of PEs with bidirectional
links with link configuration G = {1, 4, 8}; | F; | = 8 and vy = 19. The Boolean matrix representa-
tion of F is shown in Fig. 3.

Let W be the matrix representation of a minimal fault pattern F. Notice that any minimal
catastrophic fault pattern satisfies the necessary condition that Vj, there is only one i for which
Wi, j] = 1. Therefore, we are only interested in fault patterns whose corresponding matrix W has
exactly one non-zero entry in every column (otherwise, the pattern is trivially non-catastrophic).
Let x; =| f; — 1/gi | denote the row coordinate in W of the entry corresponding to f; e F; let
{xp, X1, .... X, —1} be the ordered multiset of such row coordinates corresponding to F. In the
example of Fig. 3, the multiset is {1,1,1,2,2,2 2, 3}. We now define the interior, exterior, and
border elements in the matrix representation of a fault pattern.
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f, f, fs fe f4 fg

Fig. 2. A fault pattern F, for G = {1, 4,8}.

hi fa f3

1 0 0 0 1 0 0 1| {Aff)
0 1 0 1 0 1 1 0 {fa, fs, fo, )
o 0 1 0 0 0 0 o0 {fs}

L_O 0o 0 0 0 0 0 O_

Fig. 3. The matrix representation for F, in Fig. 2.

Definition 6. Let W [x,, y,] be the location of fault f,. The location W [i, y,], with respect to f;, is
interior if | < x;, border if i = x;, and exterior if i > x;.

The definition of interior, border, and exterior can now be extended from element to regions as
follows:

Definition 7. For a given fault pattern F, I(F) (i.e., interior of F) is the set of all interior elements,
B(F) (i.e., border of F) is the set of all border elements, and E(F) (i.e., exterior of F) is the set of all
exterior elements.

Example 2. Consider the fault pattern F = {1, 6, 10, 12, 15, 17, 19, 23, 24, 28} with 10 faults in an
array with the link configuration G = {1, 5, 10} in which all links are bidirectional. The interior,
border, and exterior elements are shown in Fig. 4; the first and last rows in Fig. 4 correspond to
elements in the array which are outside of W and not part of W.

Lemma 1. A fault pattern F is catastrophic for an array A with link redundancy G iff it is not possible
to reach any exterior element from any interior element using the links in G.

Proof. 1t is easy to see that all interior elements are reachable from ICU, and all exterior elements
are reachable from ICU,. The lemma follows from Definition 5. []
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Fig. 4. Interior, exterior and horder of a fault patiern.

Exterior

In the following, using the terminologies just introduced, we describe the existing algorithm for
testing whether or not a fault pattern F = { f1, /5, ... ...} with g, PE faults 1s catastrophic for a link
configuration G = {g1, g2, - » G}

Algorithm 1: Testing if a fault pattern is catastrophic

Begin
TEST:= TRUE;
for every element x € I(F) do
for every link g € G do
if x + g € E(F) then TEST := FALSE:
endfor
endfor
End.

This algorithm considers all elements in I(F)and all links inG = {g1, g .- » g ; and verifies, for
each interior element, whether it is possible to reach an exterior element using any link in G. The
algorithm can obviously be rephrased so that it terminates as soon as TEST becomes FALSE. In
any case, the complexity of the algorithm is bounded above by || I(F)| k, where k is the number of
links in G: the bound is exact if, for example, the pattern is catastrophic. Since | I(F)| = O(g?), the
worst-case complexity of the algorithm is O(kgg). This is basically the testing algorithm used for
2-link redundant systems [18]; in this case, k = 2 and the complexity is O(gi).

The rest of this paper is dedicated to the formulation of a more efficient testing algorithm. We are
able to achieve this by exploiting several inherent properties, not previously studied, of the
catastrophic fault patterns.

4. Properties of the reference fault pattern

In this section, we will consider a special fault pattern, called the reference fault pattern, for a link
configuration and describe some of its properties. These properties will be instrumental in the
development of an efficient testing algorithm.

The area of a fault pattern in its matrix representation can be defined as follows.
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Definition 8. The area zy of a fault pattern F is the number of interior and border elements; that is,

a1

ap = [ H(F)uB(F)| = ) (x;—1).
ji=0

Recall that the width wp (see Definition 4) of a fault pattern F = {f}.f;, ... .f,} is wp =

Jo. —J1 + 1. A reference fault pattern can now be defined in terms of its width and area as
follows:

Definition 9. Given a link configuration G, a reference fault pattern (RFP) is a catastrophic fault
pattern for G which has largest width wy and maximum area ;.

Algorithms to construct RFPs for arrays with unidirectional and bidirectional links, respective-
ly, were given in [23]. In both cases, the algorithms construct a reference fault pattern .# with time
complexity O(wr + kg,) and space complexity O(wg), where k = |G| is the number of links.

We will now establish some properties of the RFPs using the matrix representation described in
Section 3. Since any catastrophic fault pattern is invariant with respect to translation (i.e., if F is
catastrophic then F + ¢ is also catastrophic for any arbitrary integer ¢ and vice versa), we can
assume without loss of generality that f; = 1.

Let 7 be a reference fault pattern. By definition of reference fault pattern, w > is maximal and
% 1s maximal.

Consider two fault patterns F, = {f].f5, ... .f,.} and Fy,={f{.f7, ... . f,} for a given link
configuration G. We define the concatenation of F, and F as follows:

Definition 10. Let {xg, x, ..., x; -, } and {xg, x1, ..., x}, -, } be the row coordinates of F, and F,
respectively in their respective matrix representation. The concatenation of F, and F, (denoted by
F,|Fg) is a fault pattern F whose row coordinates are {xg, Xy, ...,X, -1}, where
x; = {max(x}, x{)} for 0 <i< g, — 1.

An interesting property of the concatenation operation is the following:

Property 1. Let F, and F; be catastrophic for G. Then, their concatenation F, || Fy is also catastrophic
for G.

Proof. Let F = F,||F;. We must show that no exterior element of F is reachable from any interior
element of F. I = F, || Fy implies I(F,)uB(F,) = I(F)uB(F) and I(Fy)u B(F;) < I(F)UB(F). Let
x be any arbitrary element in [(F) and ¢ be an arbitrary link in G. We will now show that
x +gel(F)uB(F).

Case 1: xeI(F,). Since F, 1is catastrophic, xelI(F,) implies x + gel(F,)UB(F,) <
I{(F)UB(F).

Case 2: x € I(Fy). Similarly, using the fact that F, is catastrophic, x € I(F;) implies x + g€
I(Fy)uB(Fy) < I(F)UB(F).

Case 3: x € B(F,). In this case, since x € I(F), x € I(F;). Therefore, by Case 2, x + g e [(Fy)u
B(F;) < I(F)UB(F).
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Case 4. x € B(Fy). x € I(F) implies that x € I(F,). Therefore, by Case 1, x + g € I(F,)UB(F,)
I(FYuB(F).

Since both x and g are arbitrary, it follows that it is not possible to reach any exterior element
from any interior element in F,|| F; using any link in G. Hence, F, | F; is catastrophic for G. [

We use this property to prove that, for a link configuration G, there is one and only one reference
fault pattern.

Property 2. For any link configuration G, the reference fault pattern is unique.

Proof. By contradiction, let F, # F; be two reference fault patterns for G. By definition, ap, =
AF, = Omax- By Property 1, F = F, || Fy is also catastrophic for G; on the other hand, ap > op, = %max,
contradicting the definition of maximal area. [

This property implies that .7, constructed by the algorithms in [23], is the unique reference fault
pattern. We are now in a position to prove the necessary and sufficient conditions for a fault
pattern to be catastrophic for a given link configuration.

5. Necessary and sufficient conditions for catastrophe

The first necessary condition establishes an important relationship between a fault pattern F and
the reference fault pattern #.

Definition 11. For any two fault patterns F, and F,, F, and F; cross if I(F,)£1(Fp) and
I(Fp)ZI(F,).

Lemma 2. Given G, let F be the reference fault pattern and F be any fault pattern for G. If F and
F cross, then F is not catastrophic for G.

Proof. We will prove the lemma by contradiction. Suppose F is catastrophic. Since F crosses the
reference fault pattern .7, it implies that I(F) & I(#). Consider the new fault pattern, # || F, which is
the concatenation of F and #. By Property 1, # || F is catastrophic. Furthermore, %7 > o5,
contradicting the fact that the reference fault pattern # has the largest area. Therefore, the lemma
follows. [

Example 3. Fig. 5 shows the matrix representation of the reference fault pattern # and a fault
pattern F, with 10 faults for G = {1, 5, 10}. The links in this case are bidirectional. The solid line
and the dashed line indicate the border of # and F, respectively. Notice that F, crosses # and,
therefore, is not catastrophic. The escape path is shown in the figure.

Lemma 2 expresses a necessary condition for a fault pattern to be catastrophic. However, not
crossing .7 is not sufficient for a fault pattern to be catastrophic. The following example illustrates
such a case.
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hfafs fa fs fs fo fro

O@NOOOOOMOOO@OOO@ 0000000660

A fault pattern F,

Border line of the

fault pattern Escape Path

=
0 1. 0 0 oL, 0 0 Border line of the
\%) / /\\ / reference fault pattern

Fig. 5. A fault pattern F, which crosses the reference fault pattern for G = {1, 5, 10}.

Example 4. Fig. 6 shows the matrix representation of .# and a fault pattern F; with 10 faults for
G = {1, 10} when the links are bidirectional. The solid line and the dashed line indicate the border
of # and F3 respectively. Note that although F; does not cross #, it is still not catastrophic. The
escape path is shown in the figure.

There exist additional conditions which a fault pattern must satisfy to be catastrophic. Such
conditions are expressed in this section; based on these conditions, the improved testing algorithm
is presented.

Lemma 3. Let the links be unidirectional. If F does not satisfy the following property then F is not
catastrophic for G: for any column y; (0 < y; < g, — 1)in W and for any linkge G = {g,, g2, ... , g}

Xvg+ 1 if i+ g<ge—1,
X; < ‘ .
X; otherwise,

where | = (i + ¢) mod g,.

Proof. By contradiction, let F be catastrophic for G and let there exist i and ¢ such that the
property does not hold. Consider first the case where i + ¢ < g, — 1 (see Fig. 7(a)). If the property
does not hold then x; > x;., + 1. The element in position (x; — 1, y;)is an interior one; on the other
hand, the element in position (x; — 1, y;+,), which is reachable from (x; — 1, y;) using link g, is
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fi f2 fa  fafs fe fo fro

@@OOOO@ONOO@OOOO@O000000@0000000@@0

A fault pattern Iy

Border line of the Escape Path
fault pattern

\1'/0 0 Border line of the

reference fault pattern

Fig. 6. A fault pattern F, which does not cross the reference fault pattern for G = [1. 10}.

i ity ] l

1 1 0
Titg Zj

0 0 0 1
;-1 z

1
I
{a) (b)

Fig. 7. Hlustration of two cases for Lemma 2.
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exterior, contradicting the fact that the pattern is catastrophic. Consider now the case
i+g>g.—1 (see Fig. 7(b)). If the property does not hold then x;<x;—1 where
Jj = (i +g)modg,. In this case, the interior element in position (x; — 1, y;) can reach the exterior
element in position (x;, y;), contradicting the fact that the pattern is catastrophic. [J

Lemma 3 can be extended to the case of bidirectional links as follows:

Lemma 4. For bidirectional links, if F does not satisfy the following property then F is not
catastrophic for G: for any column y; (0 < y; < g, — 1) in W and for any link g€ G = {g1, 92, ..., gx}
(1) x, < Xivg + 1 ifi+g<gk—1,
X; otherwise,

2) x < Xi—g + 1 ifi—g=0,
T Xitgoy 2 otherwise,

where j = (i + ¢g)mod g,.

Proof. Condition (1)is the same as the condition in Lemma 3, and it must hold when links are used
in the forward direction. Condition (2) refers to the case when the links can be used in the backward
direction. In the case i — g > 0, the elements in column i can reach the elements in column i — g,
lying in the same line; hence, the condition is the same as in case (1). For i — g < 0, the elements in
column i can reach the elements in column i + g, — g, lying one row above. Using the same
reasoning as in Lemma 3, the properties can be easily proved. [J

The above lemmas state the necessary conditions for a fault pattern to be catastrophic. We will
now show that the combination of the conditions expressed by Lemmas 2, 3, and 4 constitute
a necessary and sufficient condition.

Theorem 1. A fault pattern F is catastrophic for a link configuration G if and only if

(1) it does not cross the reference fault pattern corresponding to G, and

(i1) it satisfies Lemma 3 in the case of unidirectional links and Lemma 4 in the case of bidirectional
links.

Proof. In this proof, we will consider the links to be unidirectional. The proof is similar for the case
of bidirectional links. The necessity part has already been shown in Lemmas 2 and 3. To prove the
theorem, we must show that if F does not cross the reference fault pattern and satisfies Lemma
3 then the pattern is catastrophic. Consider an arbitrary column i in W and a link g in G. Let
I+ ¢ = g, — 1. Since the property of Lemma 3 holds, x; ., + 1 > x;. Thus, every interior element in
column i reaches, using link g, an element in column i + g which is either an interior or a border
clement. Let i + g > g, — 1. Since the property in Lemma 3 holds, x; > x; wherej = (i + g)mod g,.
Thus, every interior element in column i reaches, using link g, the element in column i + ¢ which is
either interior or border.
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Since ¢ is arbitrary, it follows that interior elements in column i can only reach elements which
are either interior or border. Since i is arbitrary, the proof is completed. []

6. An improved testing scheme

In this section, we use the preceding results to construct an efficient testing algorithm. In
particular, the algorithm will verify whether the necessary and sufficient conditions expressed by
Theorem 1 are met. The algorithm actually includes a pre-testing phase, ensuring that the width
and area of F are not greater than the ones of the reference fault pattern # ; recall (from Definition
8) that w > and x, are maximal.

Algorithm 2: Testing if F is catastrophic for G

Begin
TEST := True;
Test for violation of maximal area and width;
if TEST then
Test for crossing;
if TEST then Test for property;
endif
End.

Test for violation of maximal area and width (pre-testing)

Begin
if Wz < wp or 4z < o then
TEST = false
endif
End;

Test for crossing

Begin
Let {x;} and {X;} be the row coordinates of F and .7, respectively.
i=0;
repeat
if x; > X; then
TEST := False
endif

=1+ 1
until i > g, or not(TEST)
End;
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Test for property

Begin
i:=0;
repeat
j=1
repeat
fi+g;<gp—1then x,:= Xjsy, + 1 else Xp:= X4 4,mody,s
fi—g;20then x;==x; , + lelse x;:= Xy 4+ 2
Case link orientation of
unidirectional:
if x; > x, then
TEST := False
endif
bidirectional:
if (x; > x,) and (x; > x,) then
TEST = False
endif
endcase
j=ji+1
until j > k or not(TEST)
i=1i+1;
until i > g, or not(TEST)
End;

The major steps of Algorithm 2 are: Test for Crossing and Test for Property. Test for Crossing
requires only the determination of the maximal row coordinate of F and #; thus, it can be done in
time O(g, ). For each row coordinate and for each link, Test for Property requires either one or two
tests depending on whether the links are unidirectional or bidirectional, respectively; hence, the
entire process can be completed in time O(ky,).

Notice that the complexity of this algorithm represents an improvement on the O(g¢) complexity
of the existing algorithm for 2-link redundant systems (i.e., G = {1, g, } and k = 2); in fact, in this
case, the proposed algorithm requires only O(g;) time.

Finally, observe that it is possible, for some F, that |I(F)| < g,. Should this be the case,
Algorithm 1, described in Section 3, becomes more efficient than Algorithm 2. Since the value
[I{F)| can be computed in O(g;) time, we can integrate the two techniques obtaining a recognition
algorithm which has an overall time complexity O(g, + min{ | I(F)|, g, } k).

7. Applications and conclusions

Regular systems are being designed with massive redundancy built into them. These systems also
make use of the redundancy to reconfigure in the event of failure in one or more components;
normally, a reconfiguration process is triggered as soon as a fault is detected. The success of the
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reconfiguration process depends mainly on two factors: the availability of redundant components
(level of redundancy) and the distribution of component faults. It is possible to provide a large
number of redundant components with the current technology. With the incorporation of massive
redundancy into a system, comes the increased likelihood of component failures. The reconfigura-
tion process will now encounter not only more faults but also a variety of fault patterns. This raises
the following questions:

e How effective is the reconfiguration process?
e Should the device or system be used in an application which cannot afford reconfiguration failure?

The results of the paper provide some answers to these questions. The proposed scheme can be
used to determine the likelihood of a catastrophe in the system or device when some of its
components fail; that is, the scheme allows the designer to test efficiently and effectively if the
occurrence of specific patterns of faults will pose a problem and cannot be reconfigured. No such other
mechanism exists to our knowledge. To be able to recognize such patterns is useful not only to test the
effectiveness of the employed reconfiguration scheme but also to prevent a total system shutdown.U

The results of the paper provide a set of tools which can be employed in

1. assessing the fault-tolerance effectiveness of a design; this can be done by specifying the
minimum number of faults which the design cannot be guaranteed to withstand,

2. testing whether a design meets the specified fault-tolerance requirements; this can be achieved
by comparing the requirements with the ones derived using the properties of the catastrophic fault
patterns, and

3. determining the redundancy requirement for the designer to meet a desired level of fault
tolerance; this can be done by determining the minimal link configuration for which no cata-
strophic fault patterns exist below the specified amount of failure.

Furthermore, the results presented here can help to usefully incorporate knowledge of the
application field into the design process as feedbacks to the designer. In particular, knowledge of
the type and distribution of faults occurring in the application field can be used to determine for
which designs those patterns are catastrophic; thus, the designer can remove those designs from
further consideration (even though, without that knowledge, they might have been viable choices).

The technical details of this paper can be summarized as follows. We have studied the problem of
testing whether a pattern of k faults is catastrophic for a k-link redundant system. We have proved
some fundamental properties which any catastrophic fault pattern must satisfy. We have shown
that these properties together constitute a necessary and sufficient condition for a fault pattern to
be catastrophic for k-link redundant systems. As a consequence, we have derived a provably correct
testing algorithm whose worst-case time complexity is O(kg, ); thus, we have improved the previous
algorithm for k = 2.
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