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I. INTRODUCTION

Fault tolerance through the incorporation of redundancy and reconfiguration is
quite common. Regular systems are being designed with massive redundancy built
into them [5,6,12]. These systems also make use of the redundancy to reconfigure in
the event of failure in one or more components; normally, a reconfiguration process
is triggered as soon as a fault is detected. Many different reconfiguration schemes [1-
4,6,7,10-13] have been proposed in the literature which reconfigure regular systems in
the presence of faulty components. The distribution of faults can have severe impact
on the effectiveness of any reconfiguration scheme; in fact, patterns of faults occurring
at strategic locations may render an entire system unusable regardless of its compo-
nent redundancy and of its reconfiguration capabilities. For a given design, it is not
difficult to identify a set of elements whose failure will have catastrophic consequence.
There exist many patterns (random distribution) of faults, not in a block, which can
be fatal for the system [9]. Therefore, the characterization of such fault patterns is
crucial for the identification, testing and detection of such catastrophic events.

In this paper, we are concerned with the development of efficient recognition
schemes; that is, efficient mechanisms which automatically determine whether or not
an observed/detected pattern of faults will have catastrophic consequences. The
problem of recognizing whether a fault pattern is catastrophic has been addressed
only for specific cases. In particular, a O(g?) recognition algorithm was derived in
[9] for 2—link redundant systems, where g is the length of the bypass link. In this
paper, we study the more general case of recognizing catastrophic fault patterns
in reconfigurable arrays with arbitrary link redundancy. For these, we prove some
fundamental properties which any catastrophic fault pattern must satisfy. We then
show that these properties together constitute a necessary and sufficient condition for
a fault pattern to be catastrophic for k—link redundant system. As a consequence,
we derive a provably correct recognition algorithm whose worse-case time complexity
is O(kgy), where gy is the length of the kth bypass link; thus, we also improve on the
previous algorithm for 2—link redundant systems.

The scheme proposed in this paper can be used to determine the likelihood of
a catastrophe in the system or device when some of its component fail; that is, the
scheme allows the designer to recognize efficiently and effectively if the occurence of
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specific patterns of faults will pose a problem and cannot be reconfigured. No such
other mechanism exists to our knowledge. To be able to recognize such patterns is
useful not only to test the effectiveness of the employed reconfiguration scheme but
also to prevent a total system shutdown.

The results of this paper complements the research on reconfiguration techniques.
The results provide a set of tools which can be employed in

1. assessing the fault tolerance effectiveness of a design; this can be done by spec-
ifying the minimum number of faults which the design cannot be guaranteed to
withstand,

2. testing whether a design meets the specified fault tolerance requirements; this
can be achieved by comparing the requirements with the ones derived using the
properties of the catastrophic fault patterns, and

3. determining redundancy requirement for the designer to meet a desired level of
fault tolerance; this can be done by determining the minimal link configuration
for which no catastrophic fault patterns exist below the specified amount of
failure.

Furthermore, the results presented here can help to usefully incorporate knowl-
edge of the application field into the design process as feedbacks to the designer. In
particular, knowledge of the type and distribution of faults occurring in the applica-
tion field can be used to determine for which designs those patterns are catastrophic;
thus, the designer can remove those designs from further consideration (even though,
without that knowledge, they might have been viable choices).

1I. PRELIMINARIES

Let A = {po,p2,...,pn} denote a one-dimensional array of PEs (see Figure 1),
where each p € A represents a processing element and there exists a direct link
between p; and p;y1,0 < i < N. Any link connecting p; and p; where j > i + 1 is
said to be a bypass link. The length of a bypass link, connecting p; and p;, is the
distance in the array between p; and p;; i.e., |7 — ¢|. Given an integer g € [1, N] and
an array A of size N, A is said to have link redundancy g, if for every p; € A with
t < N — g there exists a link between p; and pi4g; if g > 1, such a link will be called a
bypass link. The array A has link configuration G = {g1,92,-- -, gx} wWhere g; < g;41
and g; € [1, N], if A has link redundancy g¢;,¢s,...,9%. In the following, it will be
assumed that no other links exist in the array except the ones specified by G. Thus,
G totally defines the link structure of A, and A will be called a k—redundant system.
Notice that g; = 1 is the regular link, while all other g;’s correspond to bypass links.

Given a linear array A of size N, a fault pattern for A is a set of integers F =
{fos f1,--. fm} where m < N, f; < fi31 and f; € [0, N]. An assignment of a fault
pattern F to A means that for every f € F, ps is faulty. The width Wy of a fault
pattern F is the number of PEs between and including the first and the last fault in
F. That is, if F = {fo,..., fm} then Wr = f, — fo+ 1.
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Definition 1 A fault pattern F is catastrophic for an array A with link redundancy
G if the array cannot be reconfigured in the presence of such an assignment of faults.

In other words, F is a cut-set of the graph corresponding to A [8]; that is, the
removal of the faulty elements and their incident links will cause the array to become
disconnected. In this paper, we will consider minimal catastrophic fault patterns;
that is, fault patterns which have exactly g; faulty PEs.

Consider an arbitrary fault pattern F = {fo, f1,..., fs,—1}, consisting of gi faults
for an arbitrary link configuration G = {g1,92,...,9x}. Without loss of generality,
assume that fo = 0. The links can be either unidirectional or bidirectional. We
represent F by a Boolean matrix W of size (W} x gi), where W& = [Wg/g:],
defined as follows:

.o 1 figg+j€EF

Wii,jl = { 0 otherwise M

In the matrix representation, each f; € F is mapped into W{z;, 1] where z; =

[fi/9x] and yi = fimod gr. Notice that W[0,0] = 1 which indicates the location

of the first fault. Refer to Figure 2 for an example of a fault pattern whose matrix
representation is given in Figure 3.

Let W be the matrix representation of a minimal fault pattern F. Notice that
any minimal catastrophic fault pattern satisfies the necessary condition that V;, there
is only one i for which W[i,j] = 1. The row coordinates of F is the ordered set
{zo,21,...,24,-1} of the row indices of W corresponding to the faults f; 0<i<
gk —1).

Let W(z1,y1] be the location of fault f;. The location W([i, ], with respect to fi,
is interior if i < z;, borderif i = z;, and exterior if i > x;. For a given fault pattern
F, I(F) (i-e., interior of F) is the set of all interior elements, B(F) (i.e., border of
F) is the set of all border elements, and E(F) (i.e., ezterior of F) is the set of all
exterior elements. Refer to Figure 4 for an example.

Now with respect to the matrix representation of F', a fault pattern F is catas-
trophic for an array A with link redundancy G if it is not possible to reach any exterior
element from any interior element using the links in G.

The area Ar of a fault pattern F is the number of interior and border elements;
that is,

gx—1

Ap = [[I(F)U B(F)| = Z:(zj—ll )

III. PROPERTIES OF THE REFERENCE FAULT PATTERN

Definition 2 Given a link configuration G, a reference fault pattern (RFP) is a
catastrophic fault pattern for G which has largest width Wr and mazimum area Ar.
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Let F be a reference fault pattern. By definition of reference fault pattern, Wr is
maximal and Ay is maximal.

Consider two fault patterns F, = {fo fls- -2 oe—1) and Fg = {fu fr s fo 1}

L3
for a given link configuration G. We define the concatenation of F, and Fj as follows:

Definition 3 Let {z,z},..., zy 1} and {z},2Y,..., zlh _1} be the row coordinates of
Fy and Fp respectively in their respective matric representation. The concatenation
of Fo and Fy (denoted by F,||Fp) is a fault pattern F whose row coordinates are
{zo,21,..., 241}, where z; = {maz(z},z!)} for0<i < g —1.

Property 1 Let F, and Fs be catastrophic for G. Then, their concatenation F.|Fs
is also catastrophic for G.

As a consequence of the above property, we can prove the following property of
the reference fault pattern.

Property 2 For any link configuration G, the reference fault pattern is unique.

IV. NECESSARY & SUFFICIENT CONDITIONS FOR CATASTROPHE

The first necessary condition establishes an important relationship between a fault
pattern F and the reference fault pattern F.

Definition 4 For any two fault patterns F, and Fs, Fo and Fy cross if I(F,) € I(Fp)
and I(Fg) € I(F,).

Lemma 1 Given G, let F be the reference fault pattern and F be any fault pattern
for G. If F and F cross, then F is not catastrophic for G.

Figure 5 shows an example of a fault pattern which crosses F and therefore not
catastrophic.

Lemma 1 expresses a necessary condition for a fault pattern to be catastrophic.
However, not crossing F is not sufficient for a fault pattern to be catastrophic (see
Figure 6 for an example).

Lemma 2 Let the links be unidirectional. If F does not satisfy the following property
then F is not catastrophic for G: for any column y; 0<yi<gx—1)in W and for
any link g € G = {g1,95,. .., 9x}

i Tipg+1 ifi+g<gp—1 3
< { z; otherwise ®)

where j = (i + g) mod g;.

Lemma 2 can be extended to the case of bidirectional links as follows:
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Lemma 3 For bidirectional links, if F' does not satisfy the following property then F
is not catastrophic for G: for any column y; (0 < y; < g — 1) in W and for any link
9€G={g,0,...,9:}

Tivg+1 ifi+g<g—1
L < i+g =
DI RS { z; otherwise )
g+ 1 ifi—g>0
2 . < Ti-g + g2
) m< { Tlitgu—g) +2 otherwise ®)

where j = (i + g) mod gy.

The above lemmas state necessary conditions for a fault pattern to be catastrophic.
We will now show that the combination of the conditions expressed by Lemmas 1, 2,
and 3 constitute a necessary and sufficient condition.

Theorem 1 A fault pattern F is catastrophic for a link configuration G if and only if
i) it does not cross the reference fault pattern corresponding to G, and

i) it satisfies Lemma 2 in the case of unidirectional links and Lemma 3 in case of
bidirectional links.

V. AN IMPROVED RECOGNITION STRATEGY

We use the preceding results to construct an efficient recognition algorithm. In
particular, the algorithm will verify whether the necessary and sufficient conditions
expressed by Theorem 1 are met.

The recognition algorithm is outlined in Appendix A. The algorithm includes a
pre-testing phase, ensuring that the width and area of F' are not greater than the
ones of the reference fault pattern F. The major steps of the algorithm are: Test for
Crossing and Test for Property. Test for Crossing requires only the determination of
the maximal row coordinate of F and F; thus, it can be done in time O(gi). For
each row coordinate and for each link, Test for Property requires either one or two
tests depending on whether the links are unidirectional or bidirectional, respectively;
hence, the entire process can be completed in time O(kgy).

Property 3 The algorithm requires O(kgy) time.

Notice that the complexity of this algorithm represents an improvement on the
O(g?) complexity of the existing algorithm for 2—link redundant systems (i.e., G =
{1,9:} and k = 2); in fact, in this case, the proposed algorithm requires only O(gx)
time.
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Figure 1: One dimensional array of processors. Bypass links are shown in bold.

00000000606000000600600006008 00000000

fo fl f2 f3 f4 fs fs f'l f!

Figure 2 : A fault pattern F; for G = {1,10} with bidirectional links. |FAl =10

and Wg = 34.
fo fi fa
| | [
v v 13
1 0o 0 0 0 0 o0 1 0 1

fo

Figure 3 : The matrix representation for F; in Figure 2
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1 ® @ ® 1 ©® © ® |
N 7 N\ / ® Interior

1 @ @ 1 1 ® 1
N 4 N/ 1" Border
Exterior

Figure 4 : Interior, exterior and border of a fault pattern
F=1{0,5,9,11,14,16,18,22,23,27} for G = {1,5,10} in which all links are
bidirectional. The first and last row in Figure 4 correspond to elements in the array
which are outside of Wi and not part of W.

fo fi f2 fs fu fifs fo

' fs A
06660000066000600060000006660

A fault pattern I

Border line of the
fault pattern

-~ |

Escape path

1z--1-~-Lk_ 0 0 0_ O 0 ---1
= 7N j ’ g
0 o 0 1 0" 0 o 1 9 o
\L X\ ’,\ /<————-—- Border line of the
0 0 j)’ _0 1---1---1 0 0 0 | reference fault pattern
00 0 0 0 0 0 0 0 O

Figure 5 : A fault pattern F; which crosses the reference fault pattern for
G = {1,5,10} in which the links are bidirectional. The solid line and dashed line
indicate the border of F and F;, respectively.
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fo h f2 fi fa fs
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A fault pattern I
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0
|
0o 0 o0 O 1 i) 0 0 0 | reference fault pattern
4
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Figure 6 : A fault pattern F3 which does not cross the reference fault pattern for
G = {1,10} when the links are bidirectional. The solid line and dashed line indicate
the border of F and Fj respectively.

APPENDIX A

Algorithm: Recognizing if F is catastrophic for G

Begin
TEST := True;
Test for violation of maximal area and width;
if TEST then
Test for crossing;
if TEST then Test for property;
endif
End.

Test for violation of maximal area and width (Pre-Testing)

Begin
if We < Wr or Axr < Af then
TEST := false
endif

End;



Fault Tolerant Arrays

Test for Crossing
Begin
Let {z;} and {Z:} be the row coordinates of F and F , Tespectively.
1:=0;
repeat
if z; > F; then
TEST := False
endif
ti=1+4+1;
until i > gx or not(TEST)
End;

Test for Property

Begin
1:=0;
repeat
i=1
repeat
ifitg; <gr—1thenz, = Titg, + 1 else z, := T(i4-9;)modgx
fi—g; 2 0thenzy:=x;_y +1 else 2, := Zlitge-g;] +25
Case link orientation of
unidirectional:
if i > z, then
TEST := False
endif
bidirectional:
if (z: > z,) and (z; > z,) then
TEST := False
endif
endcase
J=i+
until j > k or not(TEST)
P=idl;
until £ > gy or not(TEST)
End;

79



