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Abstract

The past few years have seen intensive research efforts carried out in some apparently unrelated ar-
eas of dynamic systems – delay-tolerant networks, opportunistic-mobility networks, social networks –
obtaining closely related insights. Indeed, the concepts discovered in these investigations can be
viewed as parts of the same conceptual universe; and the formal models proposed so far to express
some specific concepts are components of a larger formal description of this universe. The main con-
tribution of this paper is to integrate the vast collection of concepts, formalisms, and results found
in the literature into a unified framework, which we call TVG (for time-varying graphs). Using this
framework, it is possible to express directly in the same formalism not only the concepts common to
all those different areas, but also those specific to each. Based on this definitional work, employing
both existing results and original observations, we present a hierarchical classification of TVGs; each
class corresponds to a significant property examined in the distributed computing literature. We then
examine how TVGs can be used to study the evolution of network properties, and propose different
techniques, depending on whether the indicators for these properties are a-temporal (as in the ma-
jority of existing studies) or temporal. Finally, we briefly discuss the introduction of randomness in
TVGs.

keywords: Delay-tolerant networks; opportunistic networks; social networks; dynamic graphs; time-varying graphs; dis-

tributed computing.

1 Introduction

In the past few years, intensive research efforts have been devoted to some apparently unrelated areas
of dynamic systems, obtaining closely related insights. This is particularly evident in (a) the study of
communication in highly dynamic networks, e.g., broadcasting and routing in delay-tolerant networks;
(b) the exploitation of passive mobility, e.g., the opportunistic use of transportation networks; and (c) the
analysis of complex real-world networks ranging from neuroscience or biology to transportation systems
or social studies, e.g., the characterization of the interaction patterns emerging in a social network.

As part of these research efforts, a number of important concepts have been identified, often named,
sometimes formally defined. Interestingly, it is becoming apparent that these concepts are strongly
related. In fact, in several cases, differently named concepts identified by different researchers are actually

∗A preliminary version of this paper appeared in proceedings of the 10th International Conference on Adhoc Networks
and Wireless (Adhoc-Now’11).
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one and the same concept. For example, the concept of temporal distance, formalized in [15], is the same
as reachability time [38], information latency [49], and temporal proximity [50]; similarly, the concept of
journey [15] has been called schedule-conforming path [10], time-respecting path [38, 46], and temporal
path [23, 69]. Hence, the notions discovered in these investigations can be viewed as parts of the same
conceptual universe; and the formalisms proposed so far to express some specific concepts can be viewed
as fragments of a larger formal description of this universe. A common point in all these areas is that
the system structure - the network topology - varies in time. Furthermore the rate and/or degree of the
changes is generally too high to be reasonably modeled in terms of network faults or failures: in these
systems changes are not anomalies but rather integral part of the nature of the system.

As the notion of (static) graph is the natural means for representing a static network, the notion of
dynamic (or time-varying, or evolving) graph is the natural means to represents these highly dynamic
networks. All the concepts and definitions advanced so far are based on or imply such a notion, as
expressed even by the choices of names; e.g., Kempe et al. [46] talk of a temporal network (G,λ) where
λ is a time-labeling of the edges, that associates punctual dates to represent dated interactions; Leskovec
et al. [54] talk of graphs over time; Ferreira [29] views the dynamic of the system in terms of a sequence
of static graphs, called an evolving graph; Flocchini et al. [31] and Tang et al. [67] independently employ
the term time-varying graphs; Kostakos uses the term temporal graph [50]; etc.

The main contribution of this paper is to integrate the existing models, concepts, and results proposed
in the literature into a unified framework, which we call TVG (for time-varying graphs). Using it, it is
possible to express directly in the same formalism not only the concepts common to all these different
areas, but also those specific to each. This, in turns, should enable the transfer of results from one
application area to another.

The paper first provides background motivation in Section 2, by mentioning a range of works where
the need for dynamics-related concepts emerged. Section 3 presents the TVG formalism together with
dedicated notations. This formalism is used and extended in Section 4, where we present the most
central concepts that have been identified by the research (e.g., journey, temporal subgraphs, distance
and connectivity); we also address the different perspective (e.g., the graph-centric (or global) point of
view vs. the edge-centric (or interaction based) point of view). The paper then continues into two main
blocks.

The first block, Section 5, more oriented towards the field of distributed computing, examines the
impact of properties of TVGs on the feasibility and complexity of distributed problems, reviewing and
unifying a large body of literature. In particular, we identify several classes of TVGs defined with respects
to basic properties on the network dynamics. Some of these classes have been extensively studied in
different contexts; e.g., one of the TVG classes considered here coincides with the family of dynamic
graphs over which population protocols ([2, 3]) are defined. We examine the (strict) inclusion hierarchy
among the classes. To several of the class-defining properties considered here correspond necessary
conditions and impossibility results for basic computations. Thus, the inclusion relationship implies that
we can transfer feasibility results (e.g., protocols) to an included class, and impossibility results (e.g.,
lower bounds) to an including class.

The second block in Section 6 is concerned with dynamic network analysis. We deal with three
aspects in particular: the automated verification of deterministic properties on network traces; how
temporal concepts can be leveraged to express new phenomenon or properties in complex systems; and
how TVGs could be used to study a coarser-grain evolution of network properties. Different techniques
are proposed for the latter, depending on whether the indicators for these properties are a-temporal (as
in the majority of existing studies) or temporal, that is, based on properties that take place over time
such as the concept of journey, temporal distance and connectivity.

Finally, in Section 7 we discuss the introduction of randomness in TVGs, and review results.
In addition to the new results and perspectives, and besides the de facto survey that these sections

represent, the main contribution of this paper certainly remains that of integrating all the reviewed
material within a single and unified formalism.

2



2 Contexts

We mention below three research areas in which dynamical aspects have played a central role recently.
They include delay-tolerant networks, opportunistic-mobility networks, and real-world complex networks.
Interestingly, these areas have seen a number of similar concepts emerge with distinct purposes, ranging
from the design of solutions in delay-tolerant networks to the analysis of phenomena in complex dynamic
network.

2.1 Delay-Tolerant Networks

Delay-tolerant networks are highly-dynamic, infrastructure-less networks whose essential characteristic
is a possible absence of end-to-end communication routes at any instant. These networks, also called
disruptive-tolerant, challenged, or opportunistic, include for instance satellite, pedestrian, and vehicular
networks. Although the assumption of connectivity does not necessarily hold at a given instant – the
network could even be disconnected at every time instant – communication routes are generally available
over time and space, enabling for example broadcast and routing by means of a store-carry-forward-like
mechanism.

An extensive amount of research has been recently devoted to these types of problems (e.g. [16, 18,
41, 42, 57, 58, 61, 66, 73]). A number of new routing and broadcast techniques were designed to face
such an extreme context, based for example on pro-active knowledge on the network schedule [42, 15],
probabilistic strategies [55, 66], delay-based optimization [63], or encounter-based choices [35, 43]. Other
recent works considered the broadcast problem from an analytical and probabilistic standpoint, e.g.,
in [9, 24] where the maximal propagation speed is characterized as a function of the rate of topological
changes in the network (these changes are themselves regulated by Markovian processes on edges). In all
these investigations, the time dimension has had a strong impact on the research, and led the research
community to extend most usual graph concepts – e.g, paths and reachability [10, 46], distance [15],
diameter [23], or connected components [11] – to a temporal version.

2.2 Opportunistic-Mobility Networks

As mobile carriers and devices become increasingly equipped with short-range radio capabilities, it is
possible to exploit the (delay-tolerant) networks created by their mobility for uses that are possibly
external and extraneous to the carriers. In fact, other entities (e.g., code, information, web pages) called
agents can opportunistically “move” on the carriers’ network for their own purposes, by using the mobility
of the carriers (sometimes called ferries) as a transport mechanism. Such networks have been deployed
e.g, in the context of buses [7, 16], and pedestrians [22]. Example of carrier networks and opportunistic
mobility usages include: Cabernet, currently deployed in 10 taxis running in the Boston area [28], which
allows to deliver messages and files to users in cars; and UMass DieselNet, consisting of WiFi nodes
attached to 40 buses in Amherst, used for routing, information delivery, and connectivity measurements
[16, 72].

Of particular interest is the class of carriers/ferries following a deterministic periodic trajectory. This
class naturally includes infrastructure-less networks where mobile entities have fixed routes that they
traverse regularly. Examples of such common settings are public transports, low earth orbiting (LEO)
satellite systems, security guards’ tours, etc. These networks have been investigated with respect to
routing and to the design of carriers’ routes (e.g., see [36, 57]) and more specifically for buses ([7, 72]),
and satellites [70]. In addition to routing, some algorithmic works have been done in the contexts of
network exploration [31, 40, 30] and creation of broadcast structures [20]. In the derivation of these
results, the temporal component has played a crucial role, both in terms of extension of concepts and of
developing solution techniques.
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2.3 Real-World Complex Networks

The research area of complex systems addresses the analysis of real complex dynamic networks, ranging
from neuroscience and biology to transportation networks and social studies, with a particular interest
in the understanding of self-organisation, emergence properties, and their reification.

As stated in [53], the central problem in this area is the definition of mathematical models able
to capture and to reproduce properties observed on the real dynamics of the networks (e.g., shrinking
diameter [54], formation of communities, or appearance of inequalities). A fundamental work on graphs
where edges are endowed with temporal properties is the one by Kempe and Kleinberg [45], in which
the basic properties (both combinatorial and algorithmic) of graphs are addressed when the connections
among nodes are constrained by temporal conditions. The formalism introduced therein to represent
dynamic graphs has been used as framework for several works such as [6, 27, 47, 65].

In [50] the theoretical framework of temporal graphs is proposed to study a large dataset of emails
records. The author proposed to label graphs with temporal attributes by allowing the representation of
each node as a chain of all its temporal instances during time; some interesting metrics aimed at capturing
the interactions among nodes during time, e.g., temporal or geodesic proximity, are discussed. In [69] an
extension of the model of [45] is proposed by looking at the smallest delay path in generic information
spreading process. The authors try to overcome the limits of the previous works (mainly concerned with
local aspects) by defining a temporal graph as a sequence of static graphs whose elements aggregate all
interactions during given time-windows – we will call such construct a sequence of footprints. In [49]
the authors study the temporal dynamics of communication over a dataset of on-line communications
and emails over a two years period. The main metric introduced to capture the interaction is again the
temporal distance, defined there as the minimum time needed for a piece of information to spread from
an individual to another by means of multihop sequences of emails.

As these investigations indicate, temporal concerns are an integral part of recent research efforts in
complex systems. It is also apparent that the emerging concepts are in essence the same as those from the
field of communication networks, involving again temporal definitions of the notions of paths, distance,
and connectivity, as well as many higher concepts that we identify in this paper.

3 Time-Varying Graphs

Consider a set of entities V (or nodes), a set of relations E between these entities (edges), and an
alphabet L accounting for any property such a relation could have (label); that is, E ⊆ V × V × L.
The definition of L is domain-specific, and therefore left open – a label could represent for instance the
intensity of relation in a social network, a type of carrier in a transportation network, or a particular
medium in a communication network; in some contexts, L could be empty (and thus possibly omitted).
For generality, we assume L to possibly contain multi-valued elements (e.g. <satellite link; bandwidth of
4 MHz; encryption available;...>). The set E enables multiple relations between a pair of entities, as long
as these relations have a distinct label.

Because we address dynamical systems, the relations between entities are assumed to take place over
a time span T ⊆ T called the lifetime of the system. The temporal domain T is generally assumed to
be N for discrete-time systems or R+ for continuous-time systems. The dynamics of the system can be
subsequently described by a time-varying graph, or TVG, G = (V,E, T , ρ, ζ), where

• ρ : E × T → {0, 1}, called presence function, indicates whether a given edge is available at a given
time.

• ζ : E × T → T, called latency function, indicates the time it takes to cross a given edge if starting
at a given date (the latency of an edge could vary in time).

The model can be naturally extended by adding a node presence function ψ : V × T → {0, 1} (i.e.,
the presence of a node is conditional upon time) and a node latency function ϕ : V ×T → T (accounting
e.g. for local processing times).
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The TVG formalism can arguably describe a multitude of different scenarios, from transportation
networks to communication networks, complex systems, or social networks. Two intuitive examples are
shown on Figure 1.

Ottawa

Montreal

Lisbon

λ1
λ2 λ3

λ4

(a) Transportation network

a

b

c dλ1

λ1

λ1

λ2

(b) Communication network

Figure 1: Two examples of time-varying graphs, employed in very different contexts.

The meaning of what is an edge in these two examples varies drastically. In Figure 1(a), an edge from
a node u to another node v represents the possibility for some agent to move from u to v. The edges
in this example are assumed directed, and possibly multiple. The meaning of the labels λ1 to λ4 could
be for instance “bus”, “car”, “plane”, “boat”, respectively. Except for the travel in car from Ottawa to
Montreal – which could assumably be started anytime –, typical edges in this scenario are available on
a punctual basis, i.e., the presence function ρ for these edges returns 1 only at particular date(s) when
the trip can be started. The latency function ζ may also vary from one edge to another, as well as
for different availability dates of a same given edge (e.g. variable traffic on the road, depending on the
departure time).

The second example on Figure 1(b) represents a history of connectivity between a set of moving
nodes, where the possibilities of communication appear e.g. as a function of their respective distance.
The two labels λ1 and λ2 may account here for different types of communication media, such as WiFi
and Satellite, having various properties in terms of range, bandwidth, latency, or energy consumption.
In this scenario, the edges are assumed to be undirected and there is no more than one edge between
any two nodes. The meaning of an edge is also different here: an edge between two nodes means that
any one (or both) of them can (attempt to) send a message to the other. A typical presence function
for this type of edge returns 1 for some intervals of time, because the nodes are generally in range for a
non-punctual period of time. Note that the effective delivery of a message sent at time t on an edge e
could be subjected to further constraints regarding the latency function, such as the condition that ρ(e)
returns 1 for the whole interval [t, t+ ζ(e, t)).

These two examples are taken different on purpose; they illustrate the spectrum of models over which
the TVG formalism can stretch. As observed, some contexts are intrinsically simpler than others and call
for restrictions (e.g. between any two nodes in the second example, there is at most one undirected edge).
Further restrictions may be considered. For example the latency function could be decided constant over
time (ζ : E → T); over the edges (ζ : T → T); over both (ζ ∈ T), or simply ignored. In the latter case, a
TVG could have its relations fully described by a graphical representation like that of Figure 2.

a

b

c d[1, 3)

[2, 5)

[0, 4)

[5, 6) ∪ [7, 8)

Figure 2: A simple TVG. The interval(s) on each edge e represents the periods of time when it is available,
that is, ∪(t ∈ T : ρ(e, t) = 1).

A number of analytical work on dynamic networks simply ignore ζ, or assume a discrete-time scenario
where every time step implicitly corresponds to a constant ζ. This value is also neglected in general when
the graph represents dated interactions over a social network (the edges in this context are generally
assumed to be punctual both in terms of instantaneous presence and null latency). The definitions we
give in this paper address the general case, where G = (V,E, T , ρ, ζ).
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4 Definitions of TVG concepts

This section transposes and generalizes a number of dynamic network concepts into the framework of
time-varying graphs. A majority of them emerged independently in various areas of scientific literature;
some appeared more specifically; some others are original propositions.

4.1 The underlying graph G

Given a TVG G = (V,E, T , ρ, ζ), the graph G = (V,E) is called underlying graph of G. This static graph
should be seen as a sort of footprint of G, which flattens the time dimension and indicates only the pairs
of nodes that have relations at some time in T . It is a central concept that is used recurrently in the
following.

In most studies and applications, G is assumed to be connected; in general, this is not necessarily the
case. Let us stress that the connectivity of G = (V,E) does not imply that G is connected at a given
time instant; in fact, G could be disconnected at all times. The lack of relationship, with regards to
connectivity, between G and its footprint G is even stronger: the fact that G = (V,E) is connected does
not even imply that G is “connected over time”, as illustrated on Figure 3.

a

b c
d

[0, 1)
[2, 3)

[0, 1)

Figure 3: An example of TVG that is not “connected over time”, although its underlying graph G is
connected. Here, the nodes a and d have no mean to reach each other through a chain of interaction.

4.2 Point of views

Depending on the problem under consideration, it may be convenient to look at the evolution of the
system from the point of view of a given relation (edge), a given entity (node), or from that of the
global system (entire graph). We respectively qualify these views as edge-centric, vertex-centric, and
graph-centric.

4.2.1 Edge-centric evolution

From an edge standpoint, the notion of evolution comes down to a variation of availability and latency
over time. We define the available dates of an edge e, noted I(e), as the union of all dates at which the edge
is available, that is, I(e) = {t ∈ T : ρ(e, t) = 1}. When I(e) is expressed as a multi-interval of availability
I(e) = {[t1, t2)∪ [t3, t4)...}, where ti < ti+1, the sequence of dates t1, t3, ... is called appearance dates of e,
noted App(e), and the sequence of dates t2, t4, ... is called disappearance dates of e, noted Dis(e). Finally,
the sequence t1, t2, t3, ... is called characteristic dates of e, noted ST (e). In the following, we use the
notation ρ[t,t′)(e) = 1 to indicate that ∀t′′ ∈ [t, t′), ρ(e, t′′) = 1.

4.2.2 Vertex-centric evolution

From a node standpoint, the evolution of the network materializes as a succession of changes among
its neighborhood. This point of view does not appear frequently in the literature; yet, it was used for
example in [59] to express dynamic properties in terms of local variation of the sequence of neighborhoods
Nt1(v), Nt2(v).. where Nt(v) denotes the neighbors of v at time t and each ti corresponds to a date of
local change (i.e., appearance/disappearance of an incident edge).

The degree of a node u can be defined both in punctual or integral terms, e.g. with Degt(u) = |Et(u)|,
or DegT (u) = | ∪ {Et(u) : t ∈ T }| where Et(u) indicates the set of edges incident on u at time t.
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4.2.3 Graph-centric evolution

The sequence ST (G) = sort(∪{ST (e) : e ∈ E}), called characteristic dates of G, corresponds to the
sequence of dates when topological events (appearance/disappearance of an edge) occur in the system.
Each topological event can be viewed as the transformation from one static graph to another. Hence,
the evolution of the system can be described as a sequence of static graphs. More precisely, from a
global viewpoint, the evolution of G is described as the sequence of graphs SG = G1, G2, ... where Gi
corresponds to the static snapshot of G at time ti ∈ ST (G); i.e., e ∈ EGi

⇐⇒ ρ[ti,ti+1)(e) = 1. Note
that, by definition, Gi 6= Gi+1.

In the case where the time is discrete, another possible global representation of evolution of G is by
the sequence SG = G1, G2, . . ., where Gi corresponds to the static snapshot of G at time t = i. In this
case, it is possible that Gi = Gi+1.

Observe that in both continuous and discrete cases, the underlying graph G (defined in Section 4.1)
corresponds to the union of all Gi in SG .

The idea of representing a dynamic graph as a sequence of static graphs, mentioned in the conclusion
of [37], was brought to life in [29] as a combinatorial model called evolving graphs. An evolving graph
usually refers to either one of the two structures (G,SG ,ST ) or (G,SG ,N), the latter used only when
discrete-time is considered. Their initial version also included a latency function, which makes them a
valid – graph-centric – representation of TVGs.

4.3 Subgraphs of a time-varying graph

Subgraphs of a TVG G can be defined in a classical manner, by restricting the set of vertices or edges
of G. More interesting is the possibility to define a temporal subgraph by restricting the lifetime T of G,
leading to the graph G′ = (V,E′, T ′, ρ′, ζ ′) such that

• T ′ ⊆ T

• E′ = {e ∈ E : ∃t ∈ T ′ : ρ(e, t) = 1 ∧ t+ ζ(e, t) ∈ T ′}

• ρ′ : E′ × T ′ → {0, 1} where ρ′(e, t) = ρ(e, t)

• ζ ′ : E′ × T ′ → T where ζ ′(e, t) = ζ(e, t)

In practice, we allow the notation G′ = G[ta,tb) to denote the temporal subgraph of G restricted to
T ′ = T ∩ [ta, tb), which includes the possible notations G[ta,+∞) or G(−∞,tb) to denote the temporal
subgraphs of G going from ta to the end of its lifetime, or from the beginning of its lifetime to tb,
regardless of whether T is open, semi-closed, or closed.

4.4 Journeys

A sequence of couples J = {(e1, t1), (e2, t2) . . . , (ek, tk)}, such that {e1, e2, ..., ek} is a walk in G is a
journey in G if and only if ρ(ei, ti) = 1 and ti+1 ≥ ti+ζ(ei, ti) for all i < k. Additional constraints may be
required in specific domains of application, such as the condition ρ[ti,ti+ζ(ei,ti))(ei) = 1 in communication
networks (the edge remains present until the message is delivered).

We denote by departure(J ), and arrival(J ), the starting date t1 and the last date tk + ζ(ek, tk) of
a journey J , respectively. Journeys can be thought of as paths over time from a source to a destination
and therefore have both a topological length and a temporal length. The topological length of J is the
number |J | = k of couples in J (i.e., the number of hops); its temporal length is its end-to-end duration:
arrival(J )− departure(J ).

Let us denote by J ∗G the set of all possible journeys in a time-varying graph G, and by J ∗(u,v) ⊆ J
∗
G

those journeys starting at node u and ending at node v. If a journey exists from a node u to a node v,
that is, if J ∗(u,v) 6= ∅, then we say that u can reach v, and allow the simplified notation u  v. Clearly,
the existence of journey is not symmetrical: u v < v  u; this holds regardless of whether the edges
are directed or not, because the time dimension creates its own level of direction. Given a node u, the
set {v ∈ V : u v} is called the horizon of u.
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4.5 Distance

As observed, the length of a journey can be measured both in terms of hops or time. This gives rise to
two distinct definitions of distance in a time-varying graph G:

• The topological distance from a node u to a node v at time t, noted du,t(v), is defined as Min{|J | :
J ∈ J ∗(u,v), departure(J ) ≥ t}. For a given date t, a journey whose departure is t′ ≥ t and

topological length is equal to du,t(v) is qualified as shortest ;

• The temporal distance from u to v at time t, noted d̂u,t(v) is defined as Min{arrival(J ) : J ∈
J ∗(u,v), departure(J ) ≥ t} − t. Given a date t, a journey whose departure is t′ ≥ t and arrival is

t + d̂u,t(v) is qualified as foremost. Finally, for any given date t, a journey whose departure is ≥ t

and temporal length is Min{d̂u,t′(v) : t′ ∈ T ∩ [t,+∞)} is qualified as fastest.

The problem of computing shortest, fastest, and foremost journeys in delay-tolerant networks was
introduced in [15], and an algorithm for each of the three metrics was provided for the centralized version
of the problem (assuming complete knowledge of G). Temporal distance and related concepts have been
practically used in various fields ranging from social network analysis [67] to warning delivery protocols
in vehicular networks [63].

A concept closely related to that of temporal distance is that of temporal view, introduced in [49] in
the context of social network analysis. The temporal view1 that a node v has of another node u at time
t, denoted φv,t(u), is defined as the latest (i.e., largest) t′ ≤ t at which a message received by time t at v
could have been emitted at u; that is, in our formalism,

φv,t(u) = Max{departure(J ) : J ∈ J ∗(u,v), arrival(J ) ≤ t}.

The question of knowing whether all the nodes of a network could know their temporal views in real
time was recently answered (affirmatively) in [21].

4.6 Other temporal concepts

The number of definitions built on top of temporal concepts could grow endlessly, and our aim is certainly
not to enumerate all of them. Yet, here is a short list of additional concepts that we believe are general
enough to be possibly useful in several analytical contexts.

The concept of eccentricity can be separated into a topological eccentricity and a temporal eccentricity,
following the same mechanism as for the concept of distance. The temporal eccentricity of a node u at
time t, ε̂t(u), is defined as max{d̂u,t(v) : v ∈ V }, that is, the duration of the “longest” foremost journey
from u to any other node. The concept of diameter can similarly be separated into those of topological
diameter and temporal diameter, the latter being defined at time t as max{ε̂t(u) : u ∈ V }. These temporal
versions of eccentricity and diameter were proposed in [15] for the case that the reference time t is the
initial time t0 of the system. The temporal diameter was further investigated from a stochastic point of
view by Chaintreau et al. in [23].

Clementi et al. introduced in [25] a concept of dynamic expansion – the dynamic counterpart of
the concept of node expansion in static graphs – which accounts for the maximal speed of information
propagation. Given a subset of nodes V ′ ⊆ V , and two dates t1, t2 ∈ T , the dynamic expansion of V ′

from time t1 to time t2 is the size of the set {v ∈ V rV ′ : ∃J(u,v) ∈ J ∗G[t1,t2) : u ∈ V ′}, that is, in a sense,

the collective horizon of V ′ in G[t1,t2).
The concept of journey was dissociated in [21] into direct and indirect journeys. A journey J =

{(e1, t1), (e2, t2) . . . , (ek, tk)} is said direct iff ∀i, 1 ≤ i < k, ρ(ei+1, ti + ζ(ei, ti)) = 1, that is, every
next edge in J is directly available; it is said indirect otherwise. The knowledge of whether a journey is
direct or indirect was directly exploited by the distributed algorithm in [21] to compute temporal distances
between nodes. Such a parameter could also play a role in the context of delay-tolerant routing, indicating
whether a store-carry-forward mechanism is required (for indirect journeys).

1This concept was called simply “view” in [49]; since the term view has a very different meaning in distributed computing
(e.g., [71]), the adjective “temporal” has been added to avoid confusion.
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5 TVG Classes

In this section we discuss the impact of properties of TVGs on the feasibility and complexity of distributed
problems, reviewing and unifying existing works from the literature. In particular, we identify a hierarchy
of classes of TVGs based on temporal properties that are formulated using the concepts presented in the
previous section. These class-defining properties, organized in an ascending order of assumptions – from
more general to more specific, are important in that they imply necessary conditions and impossibility
results for distributed computations.

Let us start with the simplest Class.

Class 1 ∃u ∈ V : ∀v ∈ V, u v.

That is, at least one node can reach all the others. This condition is necessary, for example, for broadcast
to be feasible from at least one node.

Class 2 ∃u ∈ V : ∀v ∈ V, v  u.

That is, at least one node can be reached by all the others. This condition is necessary to be able to
compute a function whose input is spread over all the nodes, with at least one node capable of generating
the output. Any algorithm for which a terminal state must be causally related to all the nodes initial
states also falls in this category, such as leader election in anonymous networks or counting the number
of nodes.

Class 3 (Connectivity over time): ∀u, v ∈ V, u v.

That is, every node can reach all the others; in other words, the TVG is connected over time. By the
same discussions as for Class 1 and Class 2, this condition is necessary to enable broadcast from any
node, to compute a function whose output is known by all the nodes, or to ensure that every node has a
chance to be elected.

These three basic classes were used e.g. in [19] to investigate how relations between TVGs properties
and feasibility of algorithms could be formally established, based on a combination of evolving graphs [29]
and graph relabelings [56]. Variants of these classes can be found in recent literature, e.g. in [33] where
the assumption that connectivity over time eventually takes place among a stable subset of the nodes is
used to implement failure detectors in dynamic networks.

Class 4 (Round connectivity): ∀u, v ∈ V,∃J1 ∈ J ∗(u,v),∃J2 ∈ J
∗
(v,u) : arrival(J1) ≤ departure(J2).

That is, every node can reach all the others and be reached back afterwards. Such a condition may be
required e.g. for adding explicit termination to broadcast, election, or counting algorithms.

The classes defined so far are in general relevant in the case that the lifetime is finite and a limited
number of topological events are considered. When the lifetime is infinite, connectivity over time is
generally assumed on a regular basis, and more elaborated assumptions can be considered.

Class 5 (Recurrent connectivity): ∀u, v ∈ V,∀t ∈ T ,∃J ∈ J ∗(u,v) : departure(J ) > t.

That is, at any point t in time, the temporal subgraph G[t,+∞) remains connected over time. This class is
implicitly considered in most works on delay-tolerant networks. It indeed represents those DTNs where
routing can always be achieved over time. This class was referred to as eventually connected networks by
Awerbuch and Even in [5], although the terminological compound “eventually connected” was also used
with different meaning in the recent literature (which we mention in another definition below).

As discussed in Section 4.1, the fact that the underlying graph G = (V,E) is connected does not
imply that G is connected over time – the ordering of topological events matters. Such a condition is
however necessary to allow connectivity over time and thus to perform any type of global computation.
Therefore, the following three classes explicitly assume that the underlying graph G is connected.

Class 6 (Recurrence of edges): ∀e ∈ E,∀t ∈ T ,∃t′ > t : ρ(e, t′) = 1 and G is connected.
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That is, if an edge appears once, it appears infinitely often. Since the underlying graph G is connected,
we have Class 6 ⊆ Class 5. Indeed, if all the edges of a connected graph appear infinitely often, then
there must exist, by transitivity, a journey between any pairs of nodes infinitely often.

In a context where connectivity is recurrently achieved, it becomes interesting to look at problems
where more specific properties of the journeys are involved, e.g. the possibility to broadcast a piece of
information in a shortest, foremost, or fastest manner (see Section 4.5 for definitions). Interestingly, these
three declinations of the same problem have different requirements in terms of TVG properties. It is for
example possible to broadcast in a foremost fashion in Class 6, whereas shortest and fastest broadcasts
are not possible [20].

Shortest broadcast becomes however possible if the recurrence of edges is bounded in time, and the
bound known to the nodes, a property characterizing the next class:

Class 7 (Time-bounded recurrence of edges): ∀e ∈ E,∀t ∈ T ,∃t′ ∈ [t, t+∆), ρ(e, t′) = 1, for some ∆ ∈ T
and G is connected.

Some implications of this class include a temporal diameter that is bounded by ∆Diam(G), as well
as the possibility for the nodes to wait a period of ∆ to discover all their neighbors (if ∆ is known).
The feasibility of shortest broadcast follows naturally by using a ∆-rounded breadth-first strategy that
minimizes the topological length of journeys.

A particular important type of bounded recurrence is the periodic case:

Class 8 (Periodicity of edges): ∀e ∈ E,∀t ∈ T ,∀k ∈ N, ρ(e, t) = ρ(e, t + kp), for some p ∈ T and G is
connected.

The periodicity assumption holds in practice in many cases, including networks whose entities are mobile
with periodic movements (satellites, guards tour, subways, or buses). The periodic assumption within
a delay-tolerant network has been considered, among others, in the contexts of network exploration [31,
40, 30] and routing [48, 57]. Periodicity enables also the construction of foremost broadcast trees that
can be re-used (modulo p in time) for subsequent broadcasts [21] (whereas the more general classes of
recurrence requires the use of a different tree for every foremost broadcast).

More generally, the point in exploiting TVG properties is to rely on invariants that are generated
by the dynamics (e.g. recurrent existence of journeys, periodic optimality of a broadcast tree, etc.). In
some works, particular assumptions on the network dynamics are made to obtain invariants of a more
classical nature. Below are some examples of classes, formulated using the graph-centric point of view of
(discrete-time) evolving graphs, i.e., where G = (G,SG ,N).

Class 9 (Constant connectivity): ∀Gi ∈ SG , Gi is connected.

Here, the dynamics of the network is not constrained as long as it remains connected in every time step.
Such a class was used for example in [59] to enable progression hypotheses on the broadcast problem.
Indeed, if the network is always connected, then at every time step there must exist an edge between an
informed node and a non-informed node, which allows to bound broadcast time by n = |V | time steps
(worst case scenario). This class was also considered in [52] for the problem of consensus.

Class 10 (T-interval connectivity): ∀i ∈ N, T ∈ N,∃G′ ⊆ G : VG′ = VG, G
′ is connected, and ∀j ∈

[i, i+ T − 1), G′ ⊆ Gj.

This class is a particular case of constant connectivity in which a same spanning connected subgraph of
the underlying graph G is available for any period of T consecutive time steps. It was introduced in [51]
to study problems such as counting, token dissemination, and computation of functions whose input is
spread over all the nodes (considering an adversarial edge schedule). The authors show that computation
could be sped up of a factor T compared to the 1-interval connected graphs, that is, graphs of Class 9.

Other classes of TVGs can be found in [62], based on intermediate properties between constant
connectivity and connectivity over time. They include Class 11 and Class 12 below.
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Figure 4: Relations of inclusion between classes (from specific to general).

Class 11 (Eventual instant-connectivity): ∀i ∈ N,∃j ∈ N : j ≥ i, Gj is connected. In other words, there
is always a future time step in which the network is instantly connected.

This class was simply referred to as eventual connectivity in [62], but since the meaning is different
than that of [5] (connectivity over time), we renamed it to avoid ambiguities.

Class 12 (Eventual instant-routability): ∀u, v ∈ V,∀i ∈ N,∃j ∈ N : j ≥ i and a path from u to v exists
in Gj.

That is, for any two nodes, there is always a future time step in which a instant path exists between
them. The difference with Class 11 is that these paths may occur at different times for different pairs of
nodes. Classes 11 and 12 were used in [62] to represent networks where routing protocols for (connected)
mobile ad hoc networks eventually succeed if they tolerate transient topological faults.

Most of the works listed above strove to characterize the impact of various temporal properties on
problems or algorithms. A reverse approach was considered by Angluin et al. in the field of population
protocols [2, 3], where for a given assumption (that any pair of node interacts infinitely often), they
characterized all the problems that could be solved in this context. The corresponding class is generally
referred to as that of (complete) graph of interaction.

Class 13 (Complete graph of interaction): The underlying graph G=(V,E) is complete, and ∀e ∈ E,∀t ∈
T ,∃t′ > t : ρ(e, t′)=1.

From a time-varying graph perspective, this class is the specific subset of Class 6, in which the underlying
graph G is complete. Various types of schedulers and assumptions have been subsequently considered
in the field of population protocols, adding further constraints to Class 13 (e.g. weak fairness, strong
fairness, bounded, or k-bounded schedulers) as well as interaction graphs which might not be complete.

An interesting aspect of unifying these properties within the same formalism is the possibility to see
how they relate to one another, and to compare the associated solutions or algorithms. An insight for
example can be gained by looking at the short classification shown in Figure 4, where basic relations of
inclusion between the above classes are reported. These inclusion are strict: for each relation, the parent
class contains some time-varying graphs that are not in the child class.

Clearly, one should try to solve a problem in the most general context possible. The right-most classes
are so general that they offer little properties to be exploited by an algorithm, but some intermediate
classes, such as Class 5, appear quite central in the hierarchy. This class indeed contains all the classes
where significant work was done. A problem solved in this class would therefore apply to virtually all the
contexts considered heretofor in the literature.

Such a classification may also be used to categorize problems themselves. As mentioned above, shortest
broadcast is not generally achievable in Class 6, whereas foremost broadcast is. Similarly, it was shown
in [20] that fastest broadcast is not feasible in Class 7, whereas shortest broadcast can be achieved with
some knowledge. Since Class 7 ⊂ Class 6, we have

foremostBcast � shortestBcast � fastestBcast

where � is a partial order on these problems topological requirements.
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6 TVG and Network Analysis

This section is concerned with the a posteriori analysis of network traces. We discuss three particular
aspects of this general question, which are i) how network traces could be checked for inclusion in some of
the above classes, ii) how temporal concepts can be leveraged to express new phenomenon or properties
in complex systems, and iii) how TVGs could be used to study a coarser-grain evolution of network
properties, whether these properties are of a classical or a temporal nature (which implies different
approaches).

6.1 Recognizing TVGs

Let us start with recognition of properties that relate to connectivity. In [11], the problem of computing
connected-component in a given evolving graph G is considered. A (time-)connected component in G is
therein defined as a set of nodes V ′ ⊆ V such that ∀u, v ∈ V ′, u v. The authors observe that in general,
some of the journeys’ edges that contribute to a component may involve nodes outside the component,
as illustrated in Figure 5. Variations around the concept of connected component include for example
strongly-connected components in [11], as well as in- and out-components in [67].

a b

c

d

a b

c

d

a b

c

d

at date t1 at date t2 > t1 at date t3 > t2

Figure 5: Example of connected component (here, {a, b} using external edges).

The problem of determining the largest connected component in a given TVG G was shown NP-
complete in [11], through reduction from the maximum clique problem. Yet, checking whether a given set
of nodes is a connected component in G can be done easily provided a few transformations, as described
in the same paper. Consider the transitive closure of all journeys of a graph G, given as the graph
H = (V,AH), where AH = {(u, v) : u  v}. The transitive closure is a static and directed graph, as
illustrated in Figure 6, since journeys are by nature directed entities. The computation of transitive
closures can be done efficiently by building a tree of shortest journeys for each node, using any of the
algorithms in [15].
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Figure 6: Transitive closure of journeys (example from [19])

Checking whether a set of nodes is a connected component in G now comes to check whether it is
a clique in H (which is easy). The concept of transitive closure actually allows to check a graph G for
inclusion in several classes. For instance, the graph is in Class 1 iff H possesses an out-dominating set
of size 1; it is in Class 2 iff H possesses an in-dominating set of size 1; it is in Class 3 iff H is a complete
graph. The reader is referred to [19] for more examples of inclusion checking, based on other classes and
transformations.
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6.2 Transposing the definition of phenomena

The following paragraphs discuss the possible use of TVGs to express the redefinition (or translation) of
usual concepts in complex system analysis, into a dynamic version. We provide two examples: the small
world effect, and the fairness in a network. Further examples could certainly be found.

6.2.1 Small World

A small-world network is one where the distance between two randomly chosen nodes (in terms of hops)
grows logarithmically with the number of nodes in the network. Time-varying graph concepts, such as
those of journeys, connectivity over time, and temporal distance have been used in [69] to characterize
the small world behavior of real-world networks in temporal terms, that is, the fact that there is always
a journey of short duration between any two nodes. Among the concepts introduced in [69] is the
characteristic temporal path length, defined as∑

u,v∈V d̂t0 (u,v)

|V 2|

where t0 is the first date in the network lifetime T . In other words, this value is the average of temporal
distances between all pairs of nodes at starting time. An average of this value over the network lifetime
would certainly be meaningful as well.

As per the topological meaning (i.e., in terms of hops) of the small world property in a dynamic
context, e.g. the fact that “mobile networks have a diameter of 7” [60], it could be formalized as follows:

∀u, v ∈ V,∀t ∈ T ,∃J ∈ J ∗(u,v) : departure(J ) ≥ t, |J | ≤ 7.

6.2.2 Fairness and Balance

Other properties of interest can take the form of quantities or statistical information. Consider the
caricatural example of Figure 7, where nodes a to f represent individuals, each of which meets some
other individuals every week (on a periodical basis).

a b c d e f
Monday Tuesday Wednesday Thursday Friday

Figure 7: Weekly interactions between six people.

A glance at the structure of this network does not reveal any strong anomaly: a) the graph is a line,
b) its diameter is 5, c) nodes c and d are more central than the other nodes, etc. However, if we consider
the temporal dimension of this graph, it appears that (the interaction described by) the graph is highly
unfair and asymmetric: any information originating from a can reach f within 5 to 11 days (depending
on what day it is originated), whereas information from f needs about one month to reach a. Node a
also appears more central than c and d from a temporal point of view.

We could define here a concept of fairness as being the standard deviation among the nodes temporal
eccentricities (see Section 4.6). This indicator provides an outline on how well the interactions are
balanced among nodes. For instance, the TVG of Figure 7 is highly unfair; while the one shown in
Figure 8 is fairer (still, the fairness remains strucurally constrained by G, the underlying graph).

a b c d e f
Monday Thursday Monday Thursday Monday

Figure 8: Weekly interactions between six people - Fairer version.

A related measure could reflect how balanced the graph is with respect to the time dimension, since
the metrics of interest are time-dependent (e.g. the temporal diameter of the TVG in Figure 8 is much
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lower on Mondays than on Tuesdays). Recent efforts in similar directions include measuring the temporal
distance between individuals based on e-mail datasets [49, 50] or inter-meeting times [69], or the redefi-
nition of further concepts built on top of temporal distance, such as temporal betweenness and temporal
closeness [68].

6.3 Capturing the coarse-grain evolution

At many occasions in this paper, we have focused on the question of how static concepts translate into a
dynamic context, e.g. through the redefinition of more basic notions like those of paths (into journeys),
distance (into temporal distance) or connectivity (into connectivity over time). From a complex system
perspective, these temporal indicators, as well as those built on top of them, are completing the set of
atemporal indicators usually considered, such as (the normal versions of) distance and diameter, density,
clustering coefficient, or modularity, to name a few. It is important to keep in mind that all these
indicators, whether temporal or atemporal, essentially accounts for network properties at a reasonably
short time-scale (fine-grain dynamics). They do not reflect how network evolves over longer periods of
time (coarse-grain dynamics).

We present below a general approach to look at the evolution of both atemporal and temporal indi-
cators [64]. Looking at the evolution of atemporal indicators can be done by representing the evolution
of the network as a sequence of static graphs, each of which represents the aggregated interactions over
a given time-window. The usual indicators can then be normally measured on these graphs and their
evolution studied over time. The case of temporal indicators is more complex because the corresponding
evaluation cannot be done on static graphs. The proposed solution is therefore to look at the evolution
of temporal indicators through a sequence of shorter (and non-aggregated) time-varying graphs, i.e., a
sequence of temporal subgraphs of the original time-varying graph that cover successive time-windows.

6.3.1 Evolution of Atemporal Indicators

TVGs as a sequence of footprints Given a TVG G = (V,E, T , ρ, ζ), one can define the footprint of
this graph from t1 to t2 as the static graph G[t1,t2) = (V,E[t1,t2)) such that ∀e ∈ E, e ∈ E[t1,t2) ⇐⇒ ∃t ∈
[t1, t2), ρ(e, t) = 1. In other words, the footprint aggregates all interactions of given time windows into
static graphs. Let the lifetime T of the time-varying graph be partitioned in consecutive sub-intervals
τ = [t0, t1), [t1, t2) . . . [ti, ti+1), . . .; where each [tk, tk+1) can be noted τk. We call sequence of footprints
of G according to τ the sequence SF(τ) = Gτ0 , Gτ1 , . . .. Considering this sequence with a sufficient size
of the intervals allows to overcome the strong fluctuations of fine-grain interactions, and focus instead
on more general trends of evolution. Note that the same approach could be considered with a sequence
of intervals that are overlapping (i.e., a sliding time-window) instead of disjoint ones. Another variation
may be considered based on whether the set of nodes in each Gτi is also allowed to vary. Since every graph
in the sequence is static, any classical network parameter can be directly measured on it. Depending on
the parameter and on the application, different choices of granularity are more appropriate to capture
a meaningful behavior. At one extreme, each interval could correspond to the smallest time unit (in
discrete-time systems), or to the time between any two consecutive modification of the graph; in these
cases the whole sequence becomes equivalent to the model of evolving graph [29]. At the other side of the
spectrum, i.e. taking τ = T , the sequence would consist of a single footprint aggregating all interactions
over the network lifetime, that is, be equal to G, the underlying graph of G.

Looking at the evolution of atemporal parameters allows to understand how some emerging phenom-
ena occur on the network structure, for instance, the densification of transportation networks (through
diameter or average distance indicators), or the formation of communities in social networks (through
modularity [12], cohesion [32] or other indicators e.g. [1, 14]).

6.3.2 Evolution of Temporal Indicators

Most temporal concepts – including those mentioned in Section 4 – are based on replacing the notion
of path by that of journey. As a result, they can be declined into three versions depending on the type
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of metric considered (i.e., shortest, foremost, fastest). Since journeys are paths over time, the evolution
of parameters based on journeys cannot be studied using a sequence of aggregated static graphs. For
example, there might be a path between x and y in all footprints, and yet possibly no journey between
them depending on the precise chronology of interaction. Analyzing the evolution of such parameters
requires more than a sequence of static graphs.

TVGs as a sequence of (shorter) TVGs Temporal subgraphs have been defined in Section 4.
Roughly speaking, they are themselves TVGs that reproduce all the interactions present in the original
TVG for a given time window – without aggregating them. In the same way as for the sequence of
footprints, we can now look at the evolution of a TVG through a sequence of shorter TVGs ST(τ) =
Gτ0 ,Gτ1 , . . ., in which the intervals are either disjoint or overlapping. Looking at the coarse-grain evolution
of temporal indicators could allow to answer questions like: how does the temporal distance between nodes
evolve over time? Or more generally how a network self-organizes, optimizes, or deteriorate, in terms
of temporal efficiency. Using concepts like the fairness, defined above, this may also help capture the
emergence of non-apparent inequalities in a social network.

7 Random TVGs

Randomness in time-varying graphs can be introduced at several different levels. The most direct one is
clearly that provided by probabilistic time-varying graphs, where the presence function ρ : E ×T → [0, 1]
indicates the probability that a given edge is available at a given time. In a context of mobility, the
probability distribution of ρ is intrinsically related to the expected mobility of the nodes. Popular
example of random mobility models include the Random Waypoint and Random Direction models [17],
where waypoints of consecutive movements are chosen uniformly at random. Mobility models from
social networks include the Time-Variant Community model (TVC) [39], and the more recent Home-cell
Community-based Mobility Model (HCMM) [13].

Definitions of random TVG differ depending on whether the time is discrete or continuous.
A (discrete-time) random time-varying graph is a TVG whose lifetime is an interval of N and whose

sequence of characteristic graphs SG = G1, G2, .. is such that every Gi is a Erdös and Rényi random
graph; that is, ∀e ∈ V 2,P[e ∈ EGi ] = p for some p; this definition is introduced by Chaintreau et al. [23].

One particularity of discrete-time random TVGs is that the Gis are independent with respect to each
other. While this definition allows purely random graphs, it does not capture some properties of real
world networks, such as the fact that an edge may be more likely to be present in Gi+1 if it is already
present in Gi. This question is addressed by Clementi et al. [24] by introducing Edge-Markovian Evolving
Graphs. These are discrete-time evolving graphs in which the presence of every edge follows an individual
Markovian process. More precisely, the sequence of characteristic graph SG = G1, G2, .. is such that{

P[e ∈ EGi+1 |e /∈ EGi ] = p

P[e /∈ EGi+1
|e ∈ EGi

] = q

for some p and q called birth rate and death rate, respectively. The probability that a given edge remains
absent or present from Gi to Gi+1 is obtained by complement of p and q. The very idea of considering a
Markovian Evolving Graph seems to have appeared in [4], in which the authors consider a particular case
that is substantially equivalent to the discrete-time random TVG from [23]. Variations around the model
of edge-markovian evolving graphs include cases where Gi+1 depends not only on Gi, but also on older
graphs Gi−1, Gi−2,... (the edges follow a higher order Markovian process) [34]. Edge-Markovian EGs
were used in [24], along with the concept of dynamic expansion (see Section 4.6) to address stochastic
questions such as does dynamics necessarily slow down a broadcast? Or can random node mobility be
exploited to speed-up information spreading? Baumann et al. extended this work in [9] by establishing
tight bounds on the propagation time for any birth and death rates.

A continuous-time random time-varying graph is a TVG in which the appearance of every edge obeys
a Poisson process, that is, ∀e ∈ V 2,∀ti ∈ App(e),P[ti+1 − ti < d] = λeλx for some λ; this definition is
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introduced by Chaintreau et al. in [23].2

Random time-varying graphs, both discrete-time and continuous-time, were used in [23] to characterize
phase transitions between no-connectivity and connectivity over time as a function of the number of nodes,
a given time-window duration, and constraints on both the topological and temporal lengths of journeys.

8 Research Problems and Directions

The first most obvious research task is that of exploring the universe of dynamic networks using the
formal tools provided by the TVG formalism. The long-term goal is that of providing a comprehensive
map of this universe, identifying both the commonality and the natural differences between the various
types of dynamical systems modeled by TVG. Additionally, several, more specific research areas can be
identified including the ones described below.

Distributed TVG algorithms design and analysis. The design and analysis of distributed algorithms
and protocols for time-varying graphs is an open research area. In fact very few problems have been
attacked so far: routing and broadcasting in delay-tolerant networks; broadcasting and exploration in
opportunistic-mobility networks; new self-stabilization techniques (such as the one in [44]); detection of
emergence and resilience of communities, and viral marketing in social networks.

Design and optimization of TVG. If the interactions in a network can be planned – decided by a
designer –, then a number of new interesting optimization problems arise with the design of time-varying
graph. They may concern for example the minimization of the temporal diameter or the balancing
of nodes eccentricities. E.g. how to modify the days of meeting in Figure 7 so as to minimize the
network diameter (still preventing two meetings the same day for each people)? Figure 8 showed a basic
improvement (the diameter was between 24 and 30 days, and shortened to between 14 and 20 days). Is
a given setting optimal? How to prove it? What if the underlying graph can also be modified? etc. A
whole field is opening that promizes exciting research avenues.

Complexity Analysis. Analyzing the complexity of a distributed algorithm in a TVG – e.g. in number
of messages – is not trivial, partly because contrarily to the static cases, the complexity of an algorithm
in a dynamic network has a strong dependency, not only on the usual network parameters (number of
nodes, edges, etc.), but also on the number of topological events taking place during its execution. In
many of the algorithms we have encountered, the majority of messages is in fact directly triggered by
topological events, e.g., in reaction to the local appearance or disappearance of an edge. The number of
topological events therefore represents a new complexity parameter, whose impact on various problems
remains to study.

Patterns Detection and Visualization. In order to better understand complex systems and their
dynamic aspects, data need to be visualized in a way that allows the intuition to guess a particular
property or interaction pattern. Several works are progressing in this direction, including the Gephi
project [8] or the Graphstream library [26], where both nodes and edges can be specified with temporal
and spatial attributes that enable the visualization of their evolution. These can be used to have a global
vision of the phenomena to be explained at the micro, meso and macro levels. In addition, through
the use of the interaction-centric point view, TVGs enable to look at the interplay between topological
aspects that allow local interaction to have global effects.
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