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ABSTRACT: We present a different approach to finding an 
optimal computation order; it exploits both the difference 
between the size of the matrices and the difference between 
the number of nonzero elements in the matrices. Therefore, 
this technique can be usefully applied where the matrices 
are almost or exactly the same size. We show that using the 
proposed technique, an optimal computation order can be 
determined in time O(n) if the matrices have the same size, 
and in time O(n 3) otherwise. 

1. INTRODUCTION 
Consider the problem of evaluating the product of n 
matrices 

M = M1 x M2 x . . .  x M, 

where  Mi is awi  x wi+l matrix. Since matr ix multiplica- 
tion is associative, the order in which the above chain 
mult ipl icat ion is evaluated does not affect the final re- 
sult: however,  it can greatly affect the total number  of 
performed operations [1, 5, 0]. It is therefore an impor- 
tant and practical problem to determine the optimal 
mult ipl icat ion order, that is, the order that minimizes 
the number  of performed operations. Several algo- 
ri thms for finding an optimal or near-optimal computa- 
tion order already have been presented [1-5, 7-0]. 

An important  observation has to be made about the 
behavior  of these algorithms. The amount  of "savings" 
resulting from choosing the (near} optimal order is re- 
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lated to the difference in the sizes of the matrices: the 
greater this difference, the greater in general will be the 
amount  of savings in terms of the number  of operations 
to be performed. As a consequence, if the matrices are 
almost the same size (i.e., the difference in size is very 
small), then the ratio between the total number  of oper- 
ations required by each order can be very small. In the 
extreme case in which all matrices are the same size, 
none of the proposed algorithms can be applied. This 
fact follows from the assumption, made in all these 
algorithms, that the total number  of operations required 
to mult iply a p × q matr ix by a q × r matr ix  is (propor- 
tional to) p. q. r. 

We consider the cases where  the matrices are almost 
or exactly the same size and show that some significant 
savings in the total number  of operations can still be 
obtained by exploiting both the difference (if any) in 
the size of the matrices and the difference in the num- 
ber of nonzero elements. We base our results on the 
observation that it is possible to mul t ip ly  a p × q matr ix 
with k nonzero elements by a q × r matr ix with m 
nonzero elements in time (proportional to) min {p-m, r. 
k}. It is easy to see that (using this mult ipl icat ion tech- 
nique to evaluate the product of two matrices) the mul- 
t iplication order in which a chain product  of matrices is 
evaluated can affect the total number  of operations, 
even in the extreme case where  all matrices are the 
same size. 

In the following sections, we assume that matr ix  
mult ipl icat ion is performed using this algorithm. We 
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show that the optimal order can be determined in time 
O(n) if the matrices are the same size, and in t ime O(n 3) 
otherwise. 

2. PRELIMINARY CONSIDERATIONS 
Consider the product of n matrices 

M = M~ x M2 X . . .  X M,, (1) 

w h e r e  Mi is awi  x wi+] matrix with m~ nonzero ele- 
ments, 1 < i < n. 

The traditional methods for finding an optimal or 
near-optimal ordering to evaluate Eq. (1} assume that 
the used multiplication algorithm requires wi-~ x wi x 
wi+l operations to mult iply a wi-~ x wi matrix by a wi x 
wi+~ matrix. We refer to such multiplication algorithms 
as classical ones. It has been shown that if we choose an 
appropriate order for evaluating Eq. (1), there can be 
significant savings in the number  of performed opera- 
tions [1, 5, 9]. The size of the savings is strictly related 
to the difference in the size of the matrices. Let MIN~ 
and MAXc denote the min imum and the max imum 
number  of operations needed to evaluate Eq. (1), re- 
spectively {i.e., the cost associated with the optimal and 
the least-efficient mult ipl icat ion order, respectively). 
The size of the savings is given by 

MAX~ - MINe 
SAVINGc = MINe (2) Then 

Let 

and 

Then 

that is 

p = max {Wi} (3) 
l - i _ < n + l  

q = min {Wi} (4) 
l ~ i ~ n + l  

k = p - q (5) 

MAXc < np 3 (6) 

MINe _> nq 3 (7) 

MAXc pa _<--  
MINc q3 (8) 

Therefore, the size of the savings is hounded as follows: 

k z k 3 
SAVINGc_< 3 k + 3  + - -  q ~ q3 (9) 

From relation (9), it follows that if all matrices have the 
same size {i.e., k = 0), then 

SAVING~ = 0 

and if the matrices have almost the same size [i.e., 
k = 0(1)], then 

An alternative algorithm to mult iply a wi-1 x wi ma- 
trix with mi-1 nonzero elements by awi  x wi÷] matr ix 
with m~ nonzero elements in time min(w~_l, mi, Wi÷l. 

MAX MIN SAVING 

29,128 I 28,160 I 0.034 
13,000 6,400 1.031 

FIGURE 1. Maximum (MAX) costs, minimum (MIN) costs, and 
amount of savings (SAVING), using the classical (C) and the 
proposed (A) algorithms in the chain product of Example 1. 

mi-1) c a n  be obtained by integrating the "forward" mul- 
tiplication algorithm described in [6, 10] by the "back- 
ward" multiplication algorithm described in [10]. If we 
assume that matr ix mult ipl icat ion is performed by this 
integrated algorithm, then it is easy to see that the total 
number  of operations (the cost) needed to evaluate 
Eq. (1) according to a mult ipl icat ion order depends not 
only on the size of the matrices but also on the number  
of nonzero elements in the matrices. 

Let MINA a n d  MAXA denote the min imum and the 
maximum number  of operations needed to evaluate 
Eq. (1) when the matrix mult ipl icat ion is performed 
using this integrated algorithm, and let 

r = max {rail (10) 
l_<i_<n 

s = min {mi} (11) 
l_~i_<n 

that is 

MAXA -< prn (12) 

MINA -> qsn (13) 

_ _  pr MAXA _< _ 
MINA qs 

Therefore, the size of the savings in this case is 
bounded as follows: 

(14) 

SAVINGA_<- 1 + - 1 (15) $ 

In the extreme case where the matrices are all the 
same size (i.e., k = 0), we have 

SAVINGA _< r _ 1 
s 

That is, by exploiting the difference in the number  of 
nonzero elements in the matrices, there is still a possi- 
bility of performing fewer operations by choosing an 
appropriate mult ipl icat ion order. 

If the matrices have almost the same size [i.e., k = 
O(1)], then 

SAVINGA = O(r/sq)  

Since r _> s, we can expect SAVINGA to be greater than 
SAVINGc. Let us il lustrate the practical relevance of the 
above discussion by means of a simple example. 

Example 
Consider the product of four matrices of almost the 
same size 

M = M1 X Mz X M3 X M4 
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where  w~ = 20, w2 = 22, w3 = 22, w4 = 22, ws = 20 and  
ml = i00,  m 2  = 200, m3 = 100, m 4  = 100. Using classical 
techniques ,  we observe that 

a = [(M, x Mg)(Ma x M4)I 

is an opt imal  mul t ip l ica t ion  order  requir ing only  
MIN,. = 28,160 operations; we also observe that 

fi = {M~ X [(M2 x Ma) X M4]} 

is the least-efficient mul t ip l ica t ion  order, requi r ing  
MAXc = 29,128 operat ions to be performed. Since the 
matr ices  have aimost the same size, the size of the 
saving is relat ively small  (as expected); in fact, we have 
SAVINGc = 0.034. 

At the same time, by applying the proposed tech- 
nique,  we find that a is the least-efficient mul t ip l ica-  
t ion order  requir ing MAXA = 13,000 operat ions and  
that ~ is an  opt imal  order requi r ing  MINA = 6,400 oper- 
ations. In addit ion,  we have SAVINGA -- 1.031. It is 
in teres t ing to note that the least-efficient order  found 
us ing the proposed t echn ique  still requires  fewer opera- 
t ions than  the opt imal  order found us ing the classical 
methods.  The numer i ca l  results for this example  are 
summar i zed  in Figure 1. 

3. OPTIMAL MULTIPLICATION ORDER 
A mul t ip l ica t ion  order a for eva lua t ing  the cha in  prod- 
uct  Mi*Mi÷~ * . . . .  Mj can be def ined as a parenthes iza-  
t ion of the integers i, i + 1 . . . . .  j. The possible mul t i -  
pl icat ion orders for eva lua t ing  Eq. (1) w h e n  n = 5 are 
shown in Figure 2. We denote  the set of integers paren-  
thesized in  a, by ( a )  and  the size of this set by [ a [. 
Any  mul t ip l ica t ion  order a, ( a )  = {i . . . . .  k . . . . .  j}, 
where  [a  [ -> 2, has the property that there  exist two 
mul t ip l ica t ion  orders a '  and  a" ,  ( a ' )  = {i, i + 1 . . . . .  
k}, and  ( a ' )  = {k + 1 . . . . .  j}, such that a = ( a ' a " ) .  For 
example,  if a = ((12)((34)5)), t hen  a '  = (12) and  a "  = 
((34)5). In the following, unless  otherwise specified, we 
consider  only  mul t ip l ica t ion  orders that  are paren the-  
sizations of the integers 1 . . . . .  n. 

To each mul t ip l ica t ion  order  a, we associate a cost 
funct ion,  cost (a), def ined as the minimum n u m b e r  of 
operat ions needed in the worst case to evaluate  Eq. (1) 
according to a. If the actual  n u m b e r  of nonzero  ele- 
ments  of a matr ix  is not k n o w n  a priori, we consider  it 
to be equal  to the product  of its d imensions .  Obviously,  
the only  matr ices  of u n k n o w n  size are the results of 
partial  products  obta ined  whi le  eva lua t ing  Eq. (1). 

Formally,  given a cha in  of mat r ix  products  

Mi d = Mi  X Mi+l x . . .  X Mj  

we denote  the m i n i m u m  n u m b e r  of operat ions needed  
in  the worst case to evaluate  M~.j by C W. 
It is easy to observe that 

Ci,i = min  {Ci,k + Ck+l,j + min(wimk+Lj, Wj+lmi,k)} (16) 
i<-k<j 

where  

J mi i f  i = j 
mid = [wiwi+l otherwise (17) 

((((12)3)4)5) (((1 (23))4)5) (1 (2(3(45)))) 

(((12)(34))5) ((1 ((23)4))5) ((1 (2(34)))5) 

((12)((34)5)) ((1 (23))(45)) (1 (2((34)5))) 

(((12)3)(35)) (1 ((23)(45))) (1 ((2)34))5)) 

((12)(3(45))) (1 (((23)4)5)) 

FIGURE 2. Multiplication orders for n = 5. 

Using relat ions (16) and  (17), an  obvious O(n 3) dynamic  
p rogramming  algori thm can be devised. 

4. MATRICES OF SAME SIZE 
Let us now consider  the case w h e n  all matr ices  are the 
same size; that  is, wi = w for all i = 1 . . . . .  n + 1. As 
discussed in Section 2, we can expect, even  in  this case, 
a reduct ion  in the total n u m b e r  of operat ions by choos- 
ing an  appropriate mul t ip l ica t ion  order. 

To find the opt imal  mul t ip l ica t ion  order  w h e n  all 
matr ices  are the same size, we can obviously  use the 
O(n 3) t echn ique  discussed in the previous  section. How- 
ever, we show that  it is possible to develop a O(n) 
algori thm to find the opt imal  order  for this par t icular  
case. 

The cost, cost (a), associated wi th  the mul t ip l ica t ion  
order a has been  def ined in Section 3 to be the min i -  
m u m  n u m b e r  of operat ions needed  in the worst case to 
evaluate  Eq. (1) according to a. This  was done because  
in the eva lua t ion  of the actual  cost of some mul t ip l ica-  
t ion orders we have to consider  some variables  that are 
u n k n o w n  a priori, but  for which  there is an  (obtainable) 
upper  bound.  It is easy to observe that the only  orders 
where  this problem occurs are those in which  two or 
more subproducts  of Eq. (1) are eva lua ted  independ-  
ent ly  of each other. 

Let us now in t roduce  a par t icular  class of mul t ip l i -  
cat ion orders. A linear order ~r = (il, i2 . . . . .  in) is a per- 
mu ta t ion  of the integers 1, 2 . . . . .  n such that, for all 
j = l  . . . . .  n 

ij = m in  {ikl -- 1 or ij = max  {ik} + 1 (18) 
k<j k<j 

To each l inear  order ~ri we can associate a mul t ip l ica-  
t ion order  ai in  a na tura l  way  

ai = ( ( . . .  ((i1-i2).i3) . . . ) . i , )  (19) 

where,  for each subsequence  flJ = ( ( . . .  ((il. i2). ia) . . .  ) 
• ij), 1 < j < n ,  

](flJij÷l) if ij < ij+, 
(y. i j+l)  (20) / (ij+lfl j) otherwise 

We call ai a linear multiplication order, and  we refer to 
(i1.i2) as the innermost product of ai. Informally,  a mul t i -  
pl icat ion order a~ is l inear  if no subproducts  can be 
evaluated  i ndependen t ly  of each other  w h e n  eva lua t ing  
Eq. (1) according to ai. The possible l inear  mul t ip l ica-  
t ion orders for n = 5 are shown  in Figure 3. Given  a 
l inear  order ~ri = (i1, i2 . . . . .  i,,), the cost of the associ- 
ated l inear  mul t ip l ica t ion  order a~ can be easily deter- 
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((((12)3)4)5) (1 ((2(34))5)) 

(((1 (23))4)5) ((1 (2(34))5) 

((1 ((23)4)5) (1 (2((34)5))) 

(1 (((23)4)5)) (1 (2(3(45)))) 

FIGURE 3. Linear multiplication orders for n = 5. 

A, = {((((12)3)4)5)} 

A2 = {(((1(23))4)5), ((1((23)4))5), (1(((23)4)5))} 

Aa = {(1((2(34))5)), ((1(2(34))5), (1(2((34)5)))1 

A,= = {(1(2(3(45))))} 

FIGURE 4. Partitions of the linear multiplication orders for n = 5. 

mined. In fact, from relations (16) and (19), it follows 
that 

cost(a/) = W mj -- max(m/,, mi2) (21) 
J 

We will use this relation to prove the following 

L E M M A .  

Let all matrices have the same size. Then, for any mul- 
tiplication order/3, there exists a l inear multiplication 
order a such that 

cost(/3) > cost(a) 

We will prove the lemma by induction on I/3[. The 
lemma is obviously true for ] fl [ < 3. Let it be true for 
]/3 [ = m - 1; then, we will show that it holds for I/31 = 
m. If/3 is linear, then the lemma trivially holds. Let/3 be 
nonlinear. By definition, there exist two multiplication 
orders, /3 '  and/3" such that/3 = (/3'fl') with m > [/3' [ -> 
1 and m > [/3" [ -> 1; by inductive hypothesis, there 
exist two linear multiplication orders, g '  and a" with 
( g ' )  = (/3') and ( g ' )  = (/3") such that cost(g') 
cost(/3') and cost(a ' )  ~ cost(/3"). Let [/3' [ = [ a '  [ = j, 
and let (x .x  + 1) and ( y . y  + 1) be the innermost prod- 
ucts of a '  and a ' ,  respectively. Since both g '  and a"  
are linear, then [relation (21)] 

cost(g') = w k ~  m i - m a x ( r n x ,  mx+l)] 

and 

,] cost(g") = w m i -  max(my, my÷1 
i 1 

Without loss of generality, let [ g '  I ~ [ g" [. For the 
multiplication order g = (g'g"),  we have 

cost(g) < cost(/3) 

If I g" ] = 1, then g is l inear and the lemma is proved. 
Otherwise, since the values of ml.i and mi+l ,, are not 
known a priori, then 

cost(g) = cost(if') + cost(•') + W 3 

Consider now the l inear multiplication order 

a = ( ( . . . ( ( g ' j  + 1) j + 2 ) . . .  n) 

We have 

cost(a) = w m l -  max(rex, rex÷l) 
i 

Since max(rex, rex÷l) -< w 2, then 

cost(a) < cost(g) 

which proves the lemma. 
As a consequence of the lemma, to determine the 

optimal order, we need only to consider l inear multipli-  
cation orders. Another  important  property is that l inear 
multiplication orders can be easily part i t ioned into 
sets, all the elements of the same set having the same 
cost. Let Ai denote the set of all the l inear multiplica- 
tion orders having (i . i  + 1) as the innermost  product, 
1 -< i < n (Figure 4). Then, from relation (21), it follows 
that 

Vaj,akeAi cost(aj) = cost(ak) (22) 

That is, we can find the optimal order by simply evalu- 
ating the cost of only one l inear multiplication order for 
each set Ai, 1 < i < n, and then finding the minimum. 

Thus, the cost of the optimal order is given by 

optimal cost = min w mj - max(mi, mi÷l) . 
1 <-i<n j ! 

= w  m j -  max rni 
j 1-<i-<n 

In other words, the problem of finding the optimal or- 
der when the matrices have the same size can be re- 
duced to the problem of finding the maximum number  
of nonzero elements in the matrices. In fact, let k be an 
index such that 

mk = max {mi} 
i_<i-<n 

then the l inear multiplication order 

a =  ( l ( . . . ( k -  l ( ( . . . ( ( k k +  1 )k+  2 ) . . .  n ) ) . . . ) )  

is clearly optimal with cost 

c o s t ( a ) - - w  ~ mi 
i~-k 

Therefore, if the matrices are all the same size, the 
optimal multiplication order can be found in time O(n). 

5. CONCLUSION 
We have presented a different approach to determining 
an optimal mult ipl icat ion order for a chain of matrix 
products. This approach exploits both the difference 
between the size of the matrices and the difference 
between the number  of nonzero elements in the mat- 
rices; it is therefore useful when the matrices to be 
mult ipl ied are almost or exactly the same size. We have 
shown that, using this approach, an optimal order can 
be determined in time O(n) if the matrices are the same 
size, and in time O(F/3)  otherwise. 

We base our results on the observation that it is pos- 
sible to mult iply a p x q matr ix with k nonzero ele- 
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ments by a q x r matrix with m nonzero elements in 
time (proportional to) min(p, m, r. k). The multiplication 
technique assumed in this paper uses a linked repre- 
sentation for matrices; therefore, our algorithm is par- 
ticularly suited for sparse matrices. On the other hand, 
contiguously stored matrices must be reconfigured in a 
linked representation; however, the determination of 
an optimal order is done independently of the storage 
configuration: the actual restructuring (if needed) will 
be done afterwards, and only if the savings in the num- 
ber of operations justifies it. It should be pointed out 
that the restructuring of a p x q matrix can be done in 
time (proportional to) p.q. 

Finally, the proposed technique should be viewed 
more as a complement than as an alternative to existing 
methods, to be used in all those cases where the other 
techniques cannot be employed efficiently. 
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