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Abstract

We consider the problem of exploration and mapping of an unknown environment modelled
as a graph, by multiple identical mobile agents that are dispersed among the nodes of the graph.
The objective is for each agent to build an identically labelled map of the graph; we call this the
Labelled Map Construction problem. The problem is of much practical importance because having
such a map facilitates the navigation and coordination among the agents when they are lost in an
unknown environment. We give deterministic solutions to the problem under the weakest possible
setting, assuming the agents only have the knowledge of either the size of the graph or the number
of agents present.

Keywords: Labelled Map Construction, Graph Exploration, Leader Election, Rendezvous, Anony-
mous, Asynchronous, Mobile Agents.

1 Introduction

The problem of exploring and mapping an unknown environment has been extensively studied due to
its various applications in different areas. Some examples are navigating a robot through a terrain
containing obstacles, finding a path through a maze, or searching a computer network using mobile
software agents. The environment to be explored is often modelled as a graph, (or a digraph) where
a single entity (called an agent or robot) starting at one of the nodes of the graph, traverses through
all the edges of the graph and returns back to the starting point, constructing a map of the graph,
in the process. If the nodes of the graph are marked with unique labels then the agent can uniquely
identify each node it visits, so that a simple depth-first traversal of the graph is enough to construct
a map of the graph. In the absence of such labels however, the task is more difficult, but can still be
achieved if the agent is supplied with a marking device for marking the nodes during exploration.

Now, suppose instead of a single agent, there are several identical agents starting at different nodes
of the graph and each of them is trying to explore the graph. We want each agent to build a map
of the graph and further the maps obtained by the agents should be consistent with one another, for
example if a node is labelled as node-1 in one agent’s map, it should be labelled the same in the other
agent’s maps. The objective is to convert an unknown and anonymous environment with dispersed
agents into a mapped and totally labelled environment where the agents are in agreement with each
other.

The agents are identical in all respect—they have the same capabilities and follow the same pro-
tocol. However, we do not assume the presence of any synchronization between the agents (i.e. the
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agents do not share the same clock). The only means of communication among the agents is using
a limited amount of shared memory available at the nodes of the graph. So, each node of the graph
contains a whiteboard where any visiting agent can read or write information; access to the whiteboard
is restricted by fair mutual exclusion. The goal for the agents is to construct a labelled map of the
unknown graph, the same for all agents, so to be in complete agreement about their environment. We
call this problem labelled map construction (LMC).

The motivation for modelling the environment as a unlabelled graph, comes from many practical
considerations. For example, consider a robot traversing a graph-like world, where the edges are roads
and the nodes are the intersections; the robot may not have enough sensory capabilities to uniquely
identify a node that it visits. As another example, consider a software agent traversing a network,
where the identification field of the nodes (i.e. the network hosts) are kept hidden from the visiting
agents, say due to security considerations. Thus, from the viewpoint of the agents, we can assume
the nodes of the graph to be unlabelled (anonymous), so that all nodes of same degree look the same
to an agent. Clearly, in order to explore such an anonymous graph, the agents need to somehow
mark the nodes (by writing on the whiteboards), so that previously visited nodes can be identified on
subsequent visits. However, having multiple identical agents creates problems here: marks made by
one agent could be indistinguishable from those made by another; different agents might mark in the
same way different nodes. Thus, it is not clear whether the agents can successfully map an anonymous
graph.

This problem, as we show, is closely related to some others basic problems, like Agent Election,
Labelling and Rendezvous in such a way that solving any one of these problems will allow us to solve all
the others too. In this paper, we design efficient and generic protocols that can solve these problems,
irrespective of the graph topology, where the cost of the algorithm is measured in terms of the total
number of moves (or, edge traversals) made by the agents.

1.1 Our Results

We first show that solving the Labelled Map Construction problem is as difficult as solving other related
problems like Agent Election, Labelling and Rendezvous. This allows us to determine the necessary
conditions that need to be satisfied for solving the LMC problem in an arbitrary graph. For instance,
the agents need to have the prior knowledge of the value of n (the number of nodes in the graph) or
else k (the number of agents). However even with this knowledge it is not always possible to solve
the problem in cases where gcd(n, k) > 1. But if the value of n and k are co-prime to each-other,
we can always have a guaranteed solution to the Labelled Map Construction problem (assuming the
knowledge of either n or k).

We first present a protocol that will allow a team of k anonymous agents scattered in an unknown
unlabelled graph of n nodes and m links to construct a map of the graph, and elect a leader among
the agents, using no more than O(m.k) edge traversals. We then show that the complexity of this
algorithm can be improved to O(m log k), when both n and k are known a-priori to the agents (or at
least the value of gcd(n, k) is known along with either n or k).

Our results are an improvement on the previous results for exploration, leader election or Ren-
dezvous, which solve these problems either under additional constraints such as the presence of unique
identities for the agents [6, 9, 24] or the presence of sense of direction [4], or for specific topologies
(e.g. rings [13], trees [14]). Thus, our protocols are more generic and are applicable in a wider range
of settings. Further, our algorithms are deterministic and include mechanisms for explicit termination
detection.

In section 2.2 we formally describe the LMC and other related problems and discuss about their
relationship. In section 3, we give an algorithm for collaborative exploration of the graph by multiple
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agents, that uses only a single bit of whiteboard memory and makes O(m) moves. We then extend
this algorithm, in section 4, to construct a spanning tree of the graph, elect a leader among the agents
and build a uniquely labelled map of the graph. We show the correctness of our protocol in section 5
and finally in section 6 we show how the efficiency of the algorithm can be improved in the presence
of additional knowledge available to the agents.

1.2 Related Work

Most of the previous work on exploration of unknown graphs has been limited to single agent ex-
ploration. In a labelled graph, each node is uniquely identifiable and thus, it is always possible to
explore and map the graph, by just traversing the graph. Studies on exploration of labelled graphs (or
digraphs), have emphasized minimizing the cost of exploration in terms of either the number of moves
(edge traversals) or, the amount of memory used by the agent (e.g., see [1, 10, 8, 21, 22]).

Exploration of anonymous graphs is possible only if the agents are allowed to mark the nodes in
some way; except when the graph has no cycles (i.e. the graph is a tree [14, 11]). For exploring
arbitrary anonymous graphs, various methods of marking nodes have been used by different authors.
Bender et al. [5] proposed the method of dropping a pebble on a node to mark it and showed that
any strongly connected directed graph can be explored using just one pebble, if the size of the graph
is known and using O(log log n) pebbles, otherwise. Dudek et al. [12] used a set of distinct markers
to explore unlabeled undirected graphs. Yet another approach, used by Bender and Slonim [6] was to
employ two cooperating agents, one of which would stand on a node, thus marking it, while the other
explores new edges. The whiteboard model, which we use here, has been earlier used by Fraigniaud
and Ilcinkas [15] for exploring directed graphs and by Fraigniaud et al. [14] for exploring trees. In
[11, 15] the authors focus on minimizing the amount of memory used by the agents for exploration
(they however do not require the agents to construct a map of the graph).

There have been very few results on exploration by more than one agent. As mentioned earlier,
a two agent exploration algorithm for directed graphs was given in [6], whereas Fraigniaud et al. [14]
showed how k agents can explore a tree. In both these cases however, the agents are co-located (i.e.
they start from same node at the same time) and they have distinct identities.

The other problems which have been studied in the similar setting of mobile agents dispersed in a
graph are the problems of Rendezvous (i.e. gathering the agents in a single node) and Agent Election
(electing a leader among the agents). The research on the Rendezvous problem is rather extensive; for
a recent account see [2]. However, most of these results are obtained using probabilistic algorithms.
Among deterministic solutions to the problem, the investigations of Yu and Yung on synchronous
graphs of known topology [24] and of Dessmark et al. on synchronous rings and graphs [9] are limited
to agents with distinct labels. In the context of anonymous agents in an unlabelled network, the only
known results are those of Flocchini et al. and of Kranakis et al. on ring networks using pebbles
[13, 20], and those of Barriere et al. on graphs with sense of direction [4]. In [3], Barriere et al.
consider solutions to the agent election problem in presence of distinct but incomparable agent labels.

The results obtained in [4] are closely related to our results. In that paper, the authors solve
the rendezvous and agent election problem in a setting similar to our model, but with the additional
assumption that the edge-labelling on the graph provides a sense of direction to the agents1.

Our work is also related to some of the classical results in the traditional distributed comput-
ing model (where the computing entities are stationary processors communicating through message
passing). In that model, Gallager, Humblet and Spira [18] gave a distributed algorithm for leader
election and spanning tree construction, in labelled graphs. Korach, Kutten and Moran [19] showed

1Notice that this implies that the agents can easily determine the size of the graph and thus this is a stronger model
than the one considered in this paper.
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that the leader election problem is closely related to graph exploration and they proposed the territory
acquisition approach for electing a leader in arbitrary (but labelled) graphs. Sakamoto [23] considered
anonymous networks and has given an algorithm that builds a spanning forest of the graph under a
variety of initial conditions.

2 Model and Problems

2.1 The Model

The environment to be explored by the agents is a simple undirected connected graph G = (V,E)
having n = |V | nodes. The labels (if any) on the nodes are invisible to the agents, so that the nodes are
anonymous to the agents. However, an agent visiting a node can distinguish among the various edges
incident at that node2. In other words, the edges incident to a node in the graph are locally labelled
with distinct port numbers. However, this labelling is totally arbitrary and there is no coherence
between the labels assigned to edges at the various nodes. Without loss of generality, we assume that
the links incident at a node u are labelled as 1, 2, 3, . . . , d(u), where d(u) is the degree of that node.
Note that each edge e = (u, v) has two labels, one for the link or port at node u and another for the
link at node v. We denote the former label as lu(e) and the later as lv(e); these two labels are possibly
different. The edge labelling of the graph G is specified by λ = {lv : v ∈ V }, where for each vertex u,
lu : {(u, v) ∈ E : v ∈ V } → {1, 2, 3, . . . , d(u)} defines the labelling on its incident edges. We denote by
∆, the maximum degree of a node in the graph.

There are k agents and each agent starts from a distinct node of the graph, called its homebase.
The agents have computing and storage capabilities, execute the same protocol, and can move from a
node to the neighboring node in G. After moving from u to v, an agent has the label lu(u, v) of the
edge from which it departed, as well as the label lv(v, u) of the edge from which it arrived. Whenever
an agent reaches a node, it can communicate directly with the other agents present in that node.

The agents are anonymous in the sense that they do not have distinct names or labels. They
execute a protocol (the same for all agents) that specifies the computational and navigational steps.
They are asynchronous, in the sense that every action they perform (computing, moving, etc.) takes
a finite but otherwise unpredictable amount of time.

An agent can communicate with other agents by leaving a written message at some node which
can be read by any agent visiting that node. Thus, in our model, each node of the network is provided
with a whiteboard, i.e., a local storage where agents can write and read (and erase) information; access
to a whiteboard is done in mutual exclusion. The whiteboards are also used for marking the nodes.
Initially, the homebases of the agents are marked3. The amount of whiteboard memory available at a
node, is limited; O(log n) bits suffice for our algorithms.

Initially the agents do not know the graph or its topology. The only a-priori knowledge the agents
may have is either the size of the graph, n, or the total number of agents present, k.

2.2 Problems and Constraints

The Labelled Map Construction problem consists in having the agents construct the same map of the
graph, where both edges and nodes are labelled; the edges labels are same as those of the graph, while
there is no a-priori restriction on the node labels except that each node must have a unique label. We
assume that the amount of local memory available with an agent is enough to store such a map.

2This assumption is necessary because otherwise an agent cannot even explore a simple three-legged-star graph.
3Since both nodes and agents are anonymous this marker denotes that the node is the homebase of some agent, but

cannot be used to break symmetry.
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Formally, the LMC problem can be stated as follows. An instance of the problem consists of a
graph G(V,E) with an edge-labelling λ defined on G, and a placement function p : V → {0, 1} which
defines the initial locations of the k = |{v ∈ V : p(v) = 1}| agents. A given instance (G, λ, p) of the
LMC problem is said to have been solved by a distributed algorithm A, if on executing the algorithm
A, each agent obtains a node-labelled, edge-labelled map of the graph, (with the position of the agent
marked in it) such that the label assigned to any particular node is the same in all the maps.

In the rest of this section, we look at the relationship between the LMC problem and other related
problems for multiple agents dispersed in an unknown environment. For each of these, the problem
instance is defined in the same manner as for the LMC problem.

• The Labelling problem : The problem of assigning unique labels to the nodes of an unlabeled
graph. A given instance (G, λ, p) of the Labelling problem is said to have been solved when the
whiteboard of each node is marked with a label and no two nodes have the same label.

• The Agent Election problem(AEP) : The problem of electing a leader among the agents. A
given instance (G, λ, p) of the AEP problem is said to have been solved when exactly one of the
k agents reaches the state ‘LEADER’ and all other agents reach the state ‘FOLLOWER’.

• The Rendezvous(RV) problem : The problem of gathering all the agents together in one node.
A given instance (G, λ, p) of the Rendezvous problem is said to have been solved when all the k
agents are located in a single node of G.

• The Spanning Tree Construction(SPT) problem : The problem of constructing a spanning tree
of the graph. A given instance (G, λ, p) of SPT problem is said to have been solved if each edge
of the graph G is marked as either a Tree-edge or Non-Tree edge, such that the set of Tree-edges,
T represents a spanning tree of the graph G (i.e. (V, T ) is a tree).

For any of the above problems, an instance of the problem is said to be solvable if there exists a
deterministic algorithm A such that every execution4 of the algorithm A solves the particular instance
of the problem.

Theorem 2.1 The LMC problem is solvable for the instance (G, λ, p) if and only if the AEP problem
is solvable for the same instance.

Proof : LMC => AEP : Once the LMC problem has been solved, agent election can be done without
making any extra moves. When each agent has a uniquely labelled map of the graph, the agent whose
homebase has the smallest label in the map, (among all the homebase nodes), changes to ‘LEADER’
state and all the other agents change their state to ‘FOLLOWER’.
AEP => LMC: Once a leader agent is elected, this agent can explore the graph, marking the nodes
with unique labels, while the other agents remain stationary in their homebases. Thus the leader agent
can construct the map and then it can visit the homebase of each agent to communicate the map to
the other agents. Note that only 2(m + n) extra moves are required in this case.

It is interesting to note that solving the Rendezvous problem is also equivalent to solving the agent
election problem, in the presence of whiteboards. The mutual exclusion property of the whiteboards
allow us to break the symmetry among the agents and elect a leader, once the agents rendezvous at
a single node. On the other hand, solving the LMC problem solves both Labelling and Rendezvous.
Once the agents have a labelled map they can mark the whiteboard of the nodes with the respective
labels. The agents can then move to the node having the smallest label, thus achieving Rendezvous.

4Recall that we are considering an asynchronous system and the agents can start execution at any arbitrary time.
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Both these tasks could be done in O(k.n) moves. Finally, note that solving the Labelling problem
helps us to solve the LMC problem. Once the graph is labelled, each agent can execute a depth-first
traversal of the labelled graph, to obtain a uniquely labelled map of the graph. During the depth-first
traversal, each agent would make 2m moves, for total of 2k.m moves.

Thus the problems of Labelling, Rendezvous, Agent Election and Labelled Map Construction are
computationally equivalent in our model. However the SPT problem is not equivalent to these four
problems, in general.

The relationship among these problems can be used to determine the conditions for solvability of
the LMC problem, based on previous results for the leader election problem.

Lemma 2.1 The LMC problem is not solvable if the agents know neither the value of n (the size of
the graph) nor k (the number of agents present).

Lemma 2.2 For k agents in a graph of size n, the LMC problem is not solvable, in general, if
gcd(n, k) > 1 i.e. if n and k are not co-prime.

Notice that when n and k are not co-prime, it is possible that the agents are initially placed in
exactly symmetrical positions with respect to each other (provided that the graph itself is symmetrical;
e.g. a ring), such that, no deterministic algorithm can break the symmetry among the agents and
achieve leader election. Also note that Lemma 2.1 holds even when gcd(n, k) = 1.

For the rest of this paper, we shall assume that gcd(n, k) = 1 and the agents have prior knowledge
of the value of at least one of n and k. Under these conditions, we show that it is possible to solve the
Labelled Map Construction problem, using just O(log n) node memory and making O(k.m) moves.

3 Distributed Traversal

As a preliminary step in our solution protocol, we will have the agents perform an initial cooperative
exploration of the graph. We want the agents to explore the graph collectively, in such a way that the
total number of edge traversals is minimized. Each agent can traverse an area around its homebase,
while avoiding the parts being explored by the other agents. During the exploration, the agent needs
to remember the path to its homebase, so that it does not get lost. Each agent stores in its memory
the sequence of labels (in order) of edges traversed by it, starting from the homebase. We call this
sequence of labels as the Exploration-Path (or, simply the Path). When the edge e = (u, v) is traversed
by the agent from u to v, then the label λv(e) is appended to the Path. This enables the agent to
return back to the previously visited node (i.e. u) whenever it wants to. When it does so, the agent
is said to have backtracked the edge e and the label λv(e) is deleted from the Path. So, at all times
during the traversal, the Path contains the sequence of labels of the links that an agent has to traverse
(in reverse order) to return to its homebase from the current node.

Each agent on wake-up, starts traversing the graph, from the homebase and it marks the visited
nodes if they are previously unmarked5. The agent also builds a partial Map of the territory that it
marks. The algorithm executed by each agent is the following

Algorithm EXPLORE

1. Set Path to empty ;
Initialize the Territory T as single-node graph consisting of the homebase;

5Recall that the homebases are already marked.
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2. While there is another unexplored edge e at the current node u,
mark link λu(e) as T-edge and then traverse e to reach node v;
If v is already marked,

return back to u and re-mark the link λu(e) as NT-edge;
Otherwise

mark v as explored and mark λv(e) as T-edge;
Add link λv(e) to Path;
Add the edge e and node v to territory T ;

3. When there are no more unexplored edges at the current node,
If Path is not empty then,

remove the last link from Path, traverse that link and repeat Step 2;
Otherwise, Stop and return T ;

We make the following observations about the effects of this algorithm.

Lemma 3.1 During the execution of algorithm EXPLORE,
(a) If an agent marks a node, it eventually traverses each edge incident to it.
(b) Every node in the graph is marked by exactly one agent.
(c) The territory marked by the agent is a connected subgraph of G.
(d) There is no cycle consisting of only ‘T’ edges.

Lemma 3.2 The total number of edge traversals made by the agents in executing algorithm EX-
PLORE, is at most 4.m, irrespective of the number of agents.

Note that for this algorithm, we do not require much memory at the whiteboards of the nodes. In
fact one bit per whiteboard is sufficient—for marking the node as explored.

When an agent A finishes executing algorithm EXPLORE, A would have obtained a map of
the territory marked by it. Lemma 3.1 says that the territory of each agent is a tree, the territories
marked by different agents are all disjoint, and together they span the whole graph. So, the distributed
traversal of the graph by multiple agents creates a spanning forest of the graph. The edges belonging
to the territory of some agent are marked as T-edges (i.e. tree-edge) and those edges not included
in any territory as NT-edges (i.e. Non-Tree-edge). Note that the nodes at the two end-points of an
NT-edge may either belong to the same tree or two different trees.

4 Merging the Maps: Spanning Tree Construction

To obtain the map of the whole graph, the maps constructed by the agents after the execution of
algorithm EXPLORE, need to be merged somehow. The task of merging together the maps (i.e. the
territories) of the agents, is complicated by the fact that the maps constructed by two agents may look
exactly similar. Also there may be cyclic ‘NT’ edges connecting two nodes of the same tree. To avoid
the cyclic edges, we would first construct a spanning tree of the graph by joining the trees marked by
different agents.

In this section, we show how the agents can construct a spanning tree of the graph and then finally
use it to obtain a complete map of the graph. Here, the reader may recall the well-known distributed
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algorithm for minimum spanning tree construction(MST ) given by Gallager, Humblet and Spira [18],
where the spanning tree is constructed by repeatedly joining adjacent trees using the unique edge of
minimum weight connecting them. Such an approach is unfortunately not applicable in our setting,
since neither the edges nor the nodes have unique labels, making it impossible for the agents to agree
on a unique edge for joining two trees.

Thus, in our setting, we need a much more complicated protocol for merging the maps and building
the spanning tree. Such a distributed algorithm, MERGE-TREE, is described in the following.

This new algorithm uses the algorithm EXPLORE as a procedure. The algorithm proceeds in
phases, where in each phase, some agents become passive i.e. they stop participating in the algorithm.
Agents communicate by writing certain symbols on the whiteboards. Two special symbols would be
used which we call the ‘ADD-ME’ symbol and the ‘DEFEATED’ symbol. An agent can be in one of
three states: Active, Defeated or Passive. Each agent is active at the time it starts the algorithm, but
it may become defeated and subsequently passive, during some phase of the algorithm. When an agent
becomes passive during a phase, it keeps waiting at its current location till the end of the algorithm.
At the time an agent starts the algorithm, it knows the value of either n or k.

Algorithm MERGE-TREE

Phase 0 : Each agent on startup executes procedure EXPLORE and when it finishes, it has a map of
the territory marked by it and also a count of the number of nodes marked. Each agent maintains a
Token which is of the form (Ph, Nc,Ac) where Nc (Node-Count) is the count of the number of nodes
marked by it, Ac (Agent-Count) is the number of agents in its territory (initially set to 1) and Ph is
the phase number which is also initially set to 1. Now the agent can begin the first phase.
In phase i, 1 ≤ i < k, an agent A (if active), executes the following steps:

STEP 1 – ‘WRITE-TOKEN’ : Agent A does a depth-first traversal of its territory using the map;
recall that a territory is a tree. During the traversal the agent writes its Token on the whiteboard6 of
each node in its tree.

STEP 2 – ‘COMPARE TOKEN’ : During this step, the agent compares its Token with the Tokens in
adjacent trees. Agent A starts a depth-first traversal of its territory. During the traversal, whenever
it finds an ‘NT’ edge e = (u, v) incident to some node u in its territory, it traverses the edge e to reach
the other end v, compares its Token with the Token at v, and takes an appropriate action, before
returning back to u. If it does not find any Token at node v (or, finds a Token from the previous phase
i− 1), it waits till the Token for phase i is written at v. On the other hand, if it finds a Token from
phase i + 1 at node v, it ignores that Token, goes back to u and continues with the traversal.

Two Tokens from the i-th phase, T1 = (i, N1,K1) and T2 = (i,N2,K2), are compared as follows.
Token T1 is said to be larger than Token T2 if either N1 > N2, or N1 = N2 and K1 > K2. The two
tokens are said to be equal if both N1 = N2 and K1 = K2. Otherwise, Token T1 is smaller than Token
T2.
After the comparison of Tokens, the agent takes one of the following actions:

[ < ] If the Token at the other side is larger, it writes a ‘ADD-ME’ symbol on the whiteboard of node
v and returns to node u. It remembers7 the node u, (as the terminal node) and the edge e (as
the bridge edge). It then does a complete traversal of its territory writing ‘DEFEATED’ symbols
on each node in its territory. It now becomes defeated. (The actions taken by a defeated agent
are described below.)

6Any previously written Token or symbol is deleted from the whiteboard.
7The agent remembers a node by marking in its map.
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[ = ] If the Token at the other side is equal to its own Token, it ignores the Token, returns to its own
tree and continues with its traversal.

[ > ] If the Token at the other side is smaller, it waits at node v till it finds a ‘DEFEATED’ symbol.
On finding a ‘DEFEATED’ symbol, it goes back to u and continues with the traversal.

If agent A becomes defeated then it takes the following actions. It continues with the traversal
and Token comparisons — whenever it finds a Token which is smaller or equal to its Token, it takes
the same action as an active agent; but, when it finds a Token that is larger than its Token, it ignores
it. (So, a defeated agent never writes any ‘ADD-ME’ symbol.) After completing the traversal, the
defeated agent A returns to the terminal node u and marks the bridge edge e as a ‘T’ edge. It then
traverses the edge e to reach the other end, say v. It adds the edge e to its map and designates the
vertex corresponding to node v, as the junction point, in the map. At this stage, the agent A becomes
passive and does not participate in the algorithm anymore.

During the traversal, whenever an active (or defeated) agent A finds an ‘ADD-ME’ symbol at some
node w in its tree, it takes the following action. It deletes the ‘ADD-ME’ symbol and waits at node
w till the agent B (which had written the message), returns back to w. Agent A then acquires all the
information available in agent B’s memory, including B’s Token, its map and all other Tokens and
maps acquired earlier by agent B. Agent A also remembers the vertex corresponding to node w, as
the location where it acquired this new information. (This vertex is called the acquisition point.)

STEP 3 – ‘UPDATE TOKEN’ : If the agent A completes the second step without becoming passive,
it extends its territory and updates its Token, before starting the next phase. The agent adds together
the Node-count and Agent-count values respectively, from all the acquired Tokens, including its own
Token, to get the new values of Node-count Nc, and Agent-count Ac. The new phase number is
obtained by incrementing Ph by one. The agent also constructs a new map by merging the acquired
maps with its own map. Note that the agent has the information about how to merge the maps8.
(While merging the maps, the agent may have to relabel some of the vertices of the maps, to ensure
unique labelling of the vertices.) The resulting map constructed by the agent defines its new territory.

On updating the Token, if the agent finds that the new node-count is equal to n (or the agent-count
is equal to k), then it reaches the termination condition. Otherwise, it proceeds with the next phase.
Phase k : An agent which reaches this phase terminates the algorithm after sending failure notification
to all agents in its territory.

When an agent A reaches the termination condition, it becomes the leader agent; at this stage, it has
a spanning tree of the whole graph. Finally, it executes the following procedure:

Procedure COMPLETE-MAP

1. The leader agent executes a depth-first traversal of the spanning tree, writing node labels on the
appropriate whiteboards.

2. The leader agent traverses the graph, adding the non-tree edges to the map.
3. The leader agent traverses the spanning tree to communicate the full map to all the agents.

5 Analysis of the Algorithm

In this section, we show the correctness of our algorithm and analyze its complexity. We use the
following notations. GiA denotes the subgraph of G that corresponds to the territory of agent A at the

8The maps are disjoint except for the joining vertex.
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time when it reaches the end of phase i. If A becomes passive in phase i, then GiA = φ. We denote by
Γi the set of all agents which start phase i, in active state. We say that the algorithm reaches phase
i, if there is at least one agent that starts phase i.

Whenever an agent A becomes defeated on comparing its Token with the Token of an agent B,
during phase i, we say that agent A was defeated by agent B in phase i. In that case we know that
B was active at the start of phase i and B’s Token in phase i was larger than A’s Token, in phase i.

The following facts imply that there is no deadlock in the algorithm MERGE-TREE.

Lemma 5.1 (a) An ( active) agent that starts phase i, either completes the phase or becomes passive
during the phase. (b) At the end of every phase i reached by the algorithm MERGE-TREE, there is
always at least one active agent.

Proof : Part(a): We show that there cannot be any cyclic waiting among the agents. Suppose, for the
sake of contradiction, that there is a group of agents A1, A2, . . . , At such that for each 1 ≤ j ≤ t− 1,
Aj waits for Aj+1, and At waits for A1. We represent these agents as vertices of a graph and we draw
directed (colored) arcs to denote who waits for whom. (The color of the edge denotes the type of
waiting.) There are three situations when an agent A, in phase i ≥ 1 has to wait at a node v for some
agent B:

1. Agent A found no Token, or a Token from phase (i−1) at node v and it is waiting for the Token
for phase i to be written, by agent B. [Denoted by Blue arc.]

2. Agent A is waiting at node v, after finding an ‘ADD-ME’ symbol written by B. [Denoted by
Yellow arc.]

3. Agent A found agent B’s Token (at node v) to be smaller than its own Token. This indicates A
is waiting for agent B to write a ‘DEFEATED’ symbol at v. [Denoted by Red arc.]

Note that in first case above, agent B is either in a lower phase than A, or B is yet to complete
step-1 of phase i. But in the other two cases, both A and B have to be in step-2 of the same phase i
and also B would have a smaller Token than A in that phase. Also note that an agent can be waiting
only if it is in step-2 (i.e. the COMPARE-TOKEN step) of some phase.

So, each Aj , 1 ≤ i ≤ t, is in step-2 of some phase and for any 1 ≤ j, k ≤ t,

• there is a blue arc from Aj to Ak if and only if Ak is in smaller phase than Aj .

• there is a red or yellow arc from Aj to Ak if and only if Ak is in the same phase as Aj but has
a smaller Token than Aj .

Let us first consider the case when at least one of the arcs in the cycle is blue. Let Aj be the
first node with a blue arc in the cycle (connecting Aj to Aj+1). Let Aj be in phase i. By definition
of red and yellow arcs, we then know that any Ak with k < j are in the same phase i. If j = t, we
immediately have a contradiction because, by definition of blue arc, A1 would have to be in a phase
smaller than i. Let us then assume that 2 ≤ j ≤ k − 1. Also in this case we have a contradiction
because, by definition of blue arc, Aj+1, Aj+2, . . . , At must be in a smaller phase than phase i. So,
there can neither be a blue nor a red (or yellow) arc from At to A1. Thus, we cannot have a cycle
containing any blue arc.

We now consider the case when the cycle is composed by yellow and red arcs only. In this case,
all the agents in the cycle would be in the same phase i, and each agent would have a smaller Token
than the agent on its left — which is not possible!

10



So, we conclude that there can not be any cyclic waiting among the agents. Each agent in phase
i, either reaches the end of the phase or becomes passive.

Part(b): Note that an agent A can be defeated by an agent B during phase i, only if B’s Token
in phase i is larger than A’s Token, in phase i. So, an agent A having the largest Token in phase i
cannot be defeated in phase i. Thus, agent A remains active at the end of phase i.

We shall show next that the algorithm MERGE-TREE terminates in finite time, and whenever
gcd(n, k) = 1, there is exactly one leader agent on termination and the map constructed by the leader
agent is a spanning tree of the graph G.

Lemma 5.2 The following holds for any phase i that is reached by the algorithm:

1. For each A ∈ Γi, GiA is a tree.

2. For any A,B ∈ Γi, if A and B are distinct, then GiA ∩GiB = φ.

3. Hi =
⋃

A∈Γi
GiA, is a subgraph of G having the same vertex set as G.

Proof : For phase i = 0, the territory obtained by each agent in phase i is the same as obtained from
the EXPLORE algorithm. Thus, the given conditions hold in phase i = 0, as proved in section 3. We
assume that these conditions hold at some phase i = r that is reached by the algorithm and we show
that each of these conditions would continue to hold at phase i = r +1, if the algorithm reaches phase
r + 1.

For any agent A which reaches phase r + 1, the following holds: If agent A does not find any
‘ADD-ME’ symbol during phase r, then G(r+1)A = GrA. On the other hand, if agent A read an ‘ADD-
ME’ symbol in phase r + 1, then it acquires the territory of some defeated agent B that wrote the
‘ADD-ME’ symbol in phase r + 1. The territory of such a defeated agent B consists of GrB combined
with a single edge e that connects a node in GrA to a node in GrB (where GrA and GrB are disjoint
trees, by our assumption). Thus, the new territory of A at the end of phase r +1 would still be a tree.

Agent A acquires some territory from agent B in phase r + 1, only if it defeats agent B in phase
r + 1. Note that an agent can be defeated only once and by only one agent. Thus, if A and C are two
agents that reach the end of phase r + 1, then both of them could not have acquired the territory of
the same agent B. This implies that the territories of the agents A and C would remain disjoint at
the end of phase r +1. Thus, G(r+1)A ∩G(r+1)C = φ for any two agents A and C that reaches the end
of phase r + 1.

Note that whenever an agent becomes passive in phase r + 1, its territory is acquired by the agent
that defeated it. So, each node that was contained in the territory of some active agent at the end of
phase r, would be contained in the territory of some active agent at the end of phase r + 1. In other
words Hr+1 ⊇ Hr. Thus, the third condition also holds for phase i = r + 1.

For an agent A ∈ Γi, we define NodeCount(GiA) to be the number of nodes in GiA. Note that,
this is equal to the Nc part in the Token of agent A for phase i + 1. Similarly, AgentCount(GiA) is
defined to be the number of nodes in GiA that are agent homebases. This is equal to the Ac part in
the Token of agent A in phase i + 1. We have the following corollary as a consequence of the above
lemma:

Corollary 5.1 For any phase i reached by the algorithm, we have∑
A∈Γi

NodeCount(GiA) = n and
∑

A∈Γi

AgentCount(GiA) = k
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Two agents A and B are said to be neighbors in phase i, if G contains an edge e = (u, v) such
that GiA contains the vertex u and GiB contains the vertex v. Note that the edge e is not included in
either GiA or GiB (as GiA ∩GiB = φ), so e would remain to be marked as an ‘NT’ edge at the end of
phase i.

Lemma 5.3 If gcd(n, k) = 1 then, for any phase i ≥ 1 with |Γi| ≥ 2, at least one agent B ∈ Γi,
becomes passive during phase i.

Proof : If t = |Γi| ≥ 2 then t agents would have reached the end of phase i− 1. Note that all the t
agents cannot have the same node-count and agent count at the end of phase i− 1 (because then we
would have gcd(n, k) ≥ t ≥ 2). So, there must be two (neighboring) agents A and B, with different
Tokens and thus, one of them would defeated in the Token comparison during phase i.

So, if the condition gcd(n, k) = 1 is satisfied, then in each phase, at least one of the active agents,
becomes passive, until in some phase i, there is only a single active agent left. The territory of this
agent A, would be the tree GiA containing all the nodes of G (due to Lemma 5.2), and the node-
count and agent-count of A would equal n and k respectively. Thus, agent A would reach termination
condition and the algorithm would terminate. Notice that the algorithm always terminate within k
phases, irrespective of the values of n and k.

Lemma 5.4 If an agent A reaches phase i = k, then gcd(n, k) > 1.

Proof : Due to Lemma 5.3, if gcd(n, k) = 1, only one of the k agents can reach phase k − 1 and in
that case, the territory of this agent in phase k − 1 would contain all the n nodes of G and thus, this
agent would terminate at the end of phase k − 1.
Hence, the algorithm fails only if gcd(n, k) > 1.

Theorem 5.1 The algorithm MERGE-TREE terminates after at most k phases, and if gcd(n, k) = 1
then exactly one agent A reaches the termination condition; when this happens, GiA represents a
spanning tree of G.

Theorem 5.2 After executing the procedure COMPLETE-MAP, every agent has a uniquely labelled
map of the graph.

This proves the correctness of our algorithm.

Theorem 5.3 The number of edge traversals made by the agents during algorithm MERGE-TREE is
in O(k.m) where m in the number of edges in the graph G.

Proof : During procedure EXPLORE, the agents perform at most 4m moves. During each phase of
the algorithm MERGE-TREE, each ‘T’ edge is traversed twice in step-1 and twice in step-2, during
the depth-first traversals; Each NT edge is traversed at most four times in step-2. This accounts for
4m moves per phase and thus a total of O(k.m) moves. Other than that each defeated agent does one
extra traversal of its tree to write ‘DEFEATED’ messages. These extra moves would account for at
most O(k.n) edge traversals. Finally, the procedure COMPLETE-MAP takes O(m) edge-traversals.

As for the memory requirement, only O(log n) bits of whiteboard memory are needed per node of the
graph, which is sufficient for writing a token on any whiteboard.
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6 Reducing the number of phases

When the values of n and k are co-prime, then the algorithm will never fail to elect a leader. In case
the agents have the prior knowledge that n and k are co-prime, then we can simplify the algorithm
and reduce its complexity by allowing only those agents which defeat some other agent to proceed to
the next phase. This new algorithm is described below. As before the algorithm proceeds in phases
and during the algorithm an agent can be one of the states – Active, Passive, or LEADER. Every
agent begins in state Active with the initial knowledge of the value of both n and k (or else the value
of gcd(n, k) along with one of the values n or k).

Algorithm Explore-&-Capture

If gcd(n, k) > 1, terminate the algorithm with failure notification. Else proceed with the first phase.
In each phase i ≥ 1, an agent A (if Active) executes the following steps:
STEP 1: Agent A executes procedure EXPLORE using the phase number i as a tag for all marks
that it makes. During the execution of EXPLORE, if agent A at some node v, finds a mark with phase
number j < i then v is considered to be unmarked. (In this case, agent A overwrites such marks with
its own mark.) On the other hand, if node v is marked with j > i, then agent A aborts the execution
of EXPLORE and changes to Passive state.

The territory obtained by an active agent A at the end of procedure EXPLORE is denoted by TiA.
Let ni be the number of nodes and ki be the number of homebases in TiA. The token for agent A in
this phase would be QA = (i, ni, ki).

If ni = n (or equivalently ki = k) then agent A changes to state LEADER and executes procedure
COMPLETE-MAP. Otherwise, it continues with the next step.
STEP 2: An active agent A performs a depth-first traversal of the territory TiA and writes the token
QA on the whiteboard of each node in the territory.
STEP 3: At the start of this step, agent A initializes its Win-Count to zero and then starts another
depth-first traversal of its territory. During the traversal, whenever it finds an outgoing edge e = (u, v)
(where u ∈ TiA but v /∈ TiA ), agent A visits the node v and reads the token written at node v. If
agent A finds no tokens from phase i or higher, at node v, then the agent waits until such a token,
(say QB) is written and then takes the following action, before continuing with the traversal:

(i) If (QB > QA) agent A writes ‘ADD-ME’ at the node v, traverses its territory writing ‘DE-
FEATED’ on each node in TiA and then changes to passive state.

(ii) If (QB < QA) then agent A waits at node v, until it finds a ‘DEFEATED’ symbol written at
node v.

During this step, whenever agent A finds an ‘ADD-ME’ symbol written in any node of TiA, it
deletes the ‘ADD-ME’ symbol and increments its Win-Count. When agent A completes this step, if
the Win-Count of agent A is still zero then it changes to passive state.

Any agent that becomes passive in this phase returns to its homebase and waits for a notification from
the Leader agent. Those agents that did not become passive, continue with the next phase.
The procedure COMPLETE-MAP is same as before.

Lemma 6.1 For any active agent A executing STEP-3 of some phase i of the algorithm, the following
holds: (a) Agent A does not wait forever in STEP-3 (b) Agent A either itself becomes passive or causes
another agent from phase i to become passive.

Proof : Part(a): First notice that if agent A is in STEP-3 of phase i, then there is at least one
other agent in phase i, and all those agents which are neighbors of agent A must have at least reached
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STEP-1 of phase i. Now, suppose agent A is waiting to find a token from phase i at node v (which
belongs to the territory of agent B). So, agent B (which is in phase i) must write its token at node
v during Step-2 (unless it became passive in STEP-1, in which case there is an agent in higher phase
which would reach and mark node v) and then agent A would stop waiting. In the other case of
waiting, suppose agent A found a smaller token QB at node v and is waiting to find the ‘DEFEATED’
symbol. In that case, agent B is at least in Step-2 of phase i, so in Step-3 it will find a larger token
and write ‘DEFEATED’ on all nodes in TiB.
Part(b): If agent A did not became passive in Step-3, then it must have seen at least one ‘ADD-ME’
symbol. Notice that the agent that wrote this ‘ADD-ME’ symbol must be in Step-3 of phase i and
thus it would become passive during this Step.

Lemma 6.2 If gcd(n, k) = 1 then, for any phase i ≥ 1 with |Γi| = r ≥ 2, the following holds: (a) At
least r/2 agents become passive during phase i, and (b) At least one agent reaches phase i + 1.

Proof : Part(a): Suppose r′ ≤ r agents complete Step-3 of phase i without becoming passive, then
each of these r′ agents must have caused some other agent from this phase to become passive (due to
Lemma 6.1). So, r′ ≤ r/2 and (r − r′) ≥ r/2 agents become passive in phase i.
Part(b): If gcd(n, k) = 1, then among the r agents ∈ Γi, there would be two neighboring agents A and
B, such that token(A) ¿ token(B). So, during Step-3 of phase i, agent B would find a larger token
and thus write ‘ADD-ME’ symbol at some node v. The agent whose territory in phase i contains node
v would reach phase i + 1.

Theorem 6.1 Algorithm Explore-&-Capture terminates after at most log(k) phases, electing a unique
leader agent and constructing a uniquely labelled map of G if and only if gcd(n, k) = 1.

Proof : If gcd(n, k) 6= 1 then every agent terminates before starting the first phase. If gcd(n, k) = 1,
then due to Lemma 6.2, in some phase i there would be only one agent A ∈ Γi. Thus, in phase i,
the territory of agent A, TiA would be a spanning tree of the graph G and agent A would become
leader and execute procedure COMPLETE-MAP to obtain a uniquely labelled map of G. Again due
to Lemma 6.2, k/2i−1 > |Γi| = 1 which implies that i ≤ log(k).

Theorem 6.2 The number of edge traversals made by the agents during algorithm Explore-&-Capture
is in O(m. log(k)) where m in the number of edges in the graph G. The algorithm requires O(log n)
memory at each node.

Proof : Using arguments similar to those for the previous algorithm, it can be shown that each edge
is traversed a constant number of times in each phase of algorithm Explore-&-Capture. Thus, there
are O(m) edge-traversals per phase of the algorithm, adding up to a total of O(m log k) traversals for
the whole algorithm. Notice that this algorithm requires the same amount of whiteboard memory as
the previous algorithm.

7 Conclusions

We have considered the problem of constructing a labelled map of an unknown unlabelled graph by
a team of identical asynchronous mobile agents initially dispersed among the nodes of the graph.
Multiple agents can collectively explore the whole graph, each obtaining a partial map of the graph.
To combine the partial maps and construct a single combined map of the whole graph, there has to
be some agreement between the agents. We have given an algorithm that achieves this agreement and
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elects one of the agents as a leader, under the necessary condition that gcd(n, k) = 1, where n is the
size of the graph and k is the number of agents. For our algorithm to work, it is sufficient that the
value of one of n or k is known to the agents. However, if the value of gcd(n, k) is also known to the
agents then it possible to have a more efficient algorithm.

The Labelled Map Construction(LMC) problem is related to the problems of Rendezvous of agents,
leader election, graph labelling and spanning tree construction, such that a solution to LMC problem
solves these other problems too. We have given solutions to these problems under the weakest possible
model where both the nodes of the graph and the agents are anonymous, there is no synchronization
among the agents and the knowledge available to the agents is the minimum that is necessary to solve
the problem. Previous solutions to any of these problems are either restricted to specific topologies or
are applicable in a much stronger model. For instance, in [4], the leader election problem was solved,
under the same condition that gcd(n, k) = 1, but assuming that the graph is endowed with sense of
direction. Thus, our result indicates that the same result can be achieved even when there is no sense
of direction, if the value of either n or k is known.

In this paper, we have considered only those instances of the problem where gcd(n, k) = 1, because
we know that LMC problem is unsolvable in general, when n and k are not co-prime. However, when
gcd(n, k) > 1, there are still some specific instances of the problem which are solvable. For example,
if the graph is a tree with an odd number of nodes, then the LMC problem is solvable regardless of
whether n and k are co-prime or not. Thus, future research on the problem should be directed towards
finding an effective solution to the problem, i.e. an algorithm that is able to detect if the problem is
solvable in a given setting and then solves it whenever it is possible to do so.
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