
International Journal of Foundations of Computer Science
c© World Scientific Publishing Company

Network Decontamination in Presence of Local Immunity∗

FABRIZIO LUCCIO

Dipartimento di Informatica, Università di Pisa, Pisa, Italy

luccio@di.unipi.it

and

LINDA PAGLI

Dipartimento di Informatica, Università di Pisa, Pisa, Italy

pagli@di.unipi.it

and

NICOLA SANTORO

School of Computer science, Carleton University, Ottawa, Canada

santoro@scs.carleton.ca

Received (received date)
Revised (revised date)

Communicated by Editor’s name

ABSTRACT

We consider the problem of decontaminating a network infected by a mobile virus.
The goal is to perform the task using as small a team of antiviral agents as possible,
avoiding recontamination of disinfected areas. In all the existing literature, it is assumed
that the immunity level of a decontaminated site is nil; that is, a decontaminated node, in
absence of an antiviral agent on site, may be re-contaminated by any infected neighbour.
The network decontamination problem is studied here under a new model of immunity to
recontamination: we consider the case when a decontaminated vertex, after the cleaning
agent has gone, will become recontaminated only if a majority of its neighbours are
infected. We study the impact that the presence of local immunity has on the number of
antiviral agents necessary to decontaminate the entire network. We establish both lower
and upper bounds on the number cleaners in the case of (multidimensional) toroidal
meshes, graphs of vertex degree at most three (e.g., cubic graphs, binary trees, etc.),
and of tree networks. In all cases the established bounds are tight. All upper-bound
proofs are constructive; i.e., we exhibit decontamination protocol achieving the claimed
bound. We also analyze the total number of moves performed by the agents, and establish
tight bounds in some cases.

Keywords: network decontamination, mobile virus, mobile agents, majority-based rule,
toroidal meshes, trees.

∗Research supported in part by the Natural Sciences and Engineering Research Council
(Canada), Tecsis Co., and MIUR (Italy) under research project ALGO-NEXT.

1

1. Introduction

1.1. The Framework

Paralleling the diffusion of networked systems and the increase in both their

size and complexity, the presence of dangerous and possibly malicious threats is

experiencing a surge in variety and difficulty to be handled. Among the many

pressing security threats in networked systems supporting mobile agents, two are

predominant: the presence of static processes that can harm incoming agents (harm-

ful hosts), and the presence of mobile agents that can harm the network (harmful

agents or intruders) (e.g., see [12, 18, 21]). An example of the second type is a virus:

an extraneous mobile agent infecting any visited site. The focus of this paper is on

the latter.

The immediate impact of the presence of a virus in a network is that, in absence

of anti-viral protection, the network sites become infected. In such cases, a crucial

task is to decontaminate the infected network. The task is to be carried out by a

team of anti-viral system agents (the cleaners). A cleaner is able to decontaminate

an infected site once it arrives there; arriving at a clean site, clearly no decontam-

ination operation needs to be performed by the cleaner. A decontaminated site

can become re-contaminated (e.g. if the virus returns to that site in absence of a

cleaner).

The goal is to perform the task minimizing the amount of decontamination and

using as small a team of antiviral agents as possible. Additional desirable goals are

to minimize the amount of agents’ movements across the network, and the total

time spent in the process.

A solution protocol will then specify the strategy to be used by the agents; that

is, it specifies the sequence of moves across the network that will enable the agents,

upon all being injected in the system at a chosen network site, to decontaminate

the whole network avoiding any recontamination; any such protocol is said to be

monotone. The reason to avoid recontamination derives from the requirement to

minimize the amount of decontamination performed by the system agents: if recon-

tamination is avoided, the number of decontamination operations are performed is

the smallest possible, one per network site.

1.2. Previous Work

The network decontamination problem was first proposed by Breisch in 1967 in

the context of a maze of caves contaminated by gas [6].

Since then, the problem has been extensively studied under the names of graph

search and intruder capture. The reason for its success is that its several variants

(edge-search, node-search, mixed-search, t-search, etc.) are closely related to stan-

dard graph parameters and concepts, including tree-width, cut-width, path-width,

and, last but not least, graph minors [3]. Viewed sometimes as a pebbling problem

in graphs (e.g., [14]) or as a pursuit-evasion game (e.g., [19]), the graph searching

problem also arises in VLSI design through its equivalence with the gate matrix

2

layout problem [13]. The focus of these investigations is the analysis of the team

size necessary to decontaminate classes of networks. Among the important results

is that there are always size-optimal solutions that are monotone, i.e. that avoid

recontamination [4, 15]. Contributions to related search problems can be found

in [17, 22, 23] and the references therein.

In all these investigations on the graph search problem there is a common as-

sumption made that the cleaning agents are able to jump across the network; that

is, they assume that a cleaner is able to go “out of the system” and to reenter the

system anywhere in one single step. This assumption clearly does not hold in the

case of mobile agents in a network, since they can only move from a node to a

neighbouring node. Actually, it does not hold even in the original setting of a maze

of caves [6, 19]. The removal of this assumption makes the previous solutions and

the existing bounds no longer valid [2].

The more general setting where agents can not jump, called contiguous search,

has been first proposed and studied by Barriere et al. [1], where optimal strategies

without recontamination were shown for trees. The investigations have thus fo-

cused on the analysis of classes of networks, and on the development of size-efficient

monotone decontamination strategies for those classes. In particular, Flocchini et

al. have studied hypercubes [7], meshes [9], and chordal rings [8], and tori [8]; Fomin

et al. have investigated outerplanar graphs [10]; Blin et al. started the investiga-

tion of arbitrary graphs [5]. In the case of contiguous search, the analogous of the

monotonicity result of [4, 15] for search with jumps holds in the case of trees [2]

and other special graphs such as meshes, but not in general.

1.3. Recontamination and Immunization

What the new investigations on monotone strategies have in common with the

old ones is the recontamination model, i.e., the rules that allow a decontaminated

site to become recontaminated. In fact, in all investigations, it is assumed that a

decontaminated site, in absence of a cleaner, becomes recontaminated if just one of

its neighbours is contaminated. In other words, it is assumed that the immunity

level of a decontaminated site is nil.

This assumption is quite strong and not necessarily realistic. In fact many

systems employ local majority based rules at each site to enhance reliability and

fault-tolerance. This is for example the situation in distributed systems where ma-

jority voting among various copies of crucial data are performed between neighbours

at each step [20]. Indeed, local voting schemes are used as a decision tool in a num-

ber of consensus and agreement protocols, in consistency resolution protocols in

distributed database management systems, data consistency protocols in quorum

systems, mutual exclusion algorithms, key distribution in security, reconfiguration

under catastrophic faults in system level analysis, and computational models in

discrete–time dynamical systems.

Systems employing majority-based local voting schemes have clearly a higher

level of resistance to viral recontamination. In fact, a decontaminated vertex, af-

ter the cleaning agent has gone, will avoid recontamination as long as a (strong)

3

majority of its neighbours are infected. In other words, the immunity level of a

decontaminated vertex is half of its degree.

1.4. Main Results

In this paper we consider the network decontamination problem under our new

model of immunity to recontamination. We study the effects of this level of im-

munity in toroidal meshes, in trees, and in graphs of vertex degree at most three.

Separately we examine the case of k-ary trees with k ≥ 3. We design and present

monotone protocols for decontaminating such networks, and establish lower bounds

on the number of cleaners and moves necessary for decontamination. We prove

that the upper and lower bounds on the number of agents are tight for toroidal

meshes and tree networks, and that all the other upper and lower bounds are close

to each other. In particular we show that 2k agents are necessary and sufficient

for decontaminating a k-dimensional toroidal mesh regardless of its size; this must

be contrasted with e.g. the 2 min{n, m} agents required to decontaminate a n×m

toroidal mesh without local immunization [8]. Interestingly, among tree networks,

binary trees were the worst to decontaminate without local immunization, requiring

Ω(log n) agents in the worst case [1]. Instead, with local immunization, they can be

decontaminated by a single agent. In addition we prove that any graph with max-

imum vertex degree three can be dencontaminated with two agents (or one agent,

if the graph contains a vertex of degree one), and these bounds are tight.

2. Basic Properties

Let the network be represented by a connected undirected graph. Vertices are

indicated with a white circle, and said to be white, if they have not been visited by

an agent yet; are indicated with a black circle, and said to be black, if they contain

an agent; are indicated with a star, and said to be star, if they have been previously

visited by an agent that eventually left, and have not been recontaminated yet.

Black and star vertices are said to be clean. For a vertex v, let d(v) denote its

degree, m(v) = ⌊d(v)/2⌋+ 1 denote the majority of its neighbours, and s(v) denote

the number of its clean neighbours at any given moment.

The presence of the majority rule imposes immediate limits on computability;

for example, to avoid recontamination of a vertex v, an agent may leave it only if a

strong majority (i.e., m(v)) of clean neighbours remains. Notice that the status of

a vertex (clean or contaminated) is not detectable from a distance. We have:

Lemma 1 At any step of a monotone algorithm, let A be an agent located at vertex

v:

1. if s(v) < m(v)− 1, A can not move from v;

2. if s(v) = m(v)− 1, A can only move to a white neighbour of v;

3. if s(v) ≥ m(v), A can move to any neighbour of v.

4

Lemma 2 At any step of a monotone algorithm all the clean vertices form a con-

nected subgraph.

The proof of Lemma 2 is immediate because all agents start moving from the same

vertex. We shall now study monotone algorithms for decontaminating meshes and

trees, and prove lower and upper bounds to the number of agents and moves.

3. Decontaminating Toroidal Meshes

3.1. Upper Bounds

We start our analysis with k-dimensional toroidal meshes. One such a network of

n1×n2× . . .×nk vertices is such that each vertex vi1,i2,...,ik
, with 0 ≤ ij ≤ nj−1, is

connected to the 2k vertices vi1−1,i2,...,ik
, vi1+1,i2,...,ik

, vi1,i2−1,...,ik
, vi1,i2+1,...,ik

,,

vi1,i2,...,ik−1, vi1,i2,...,ik+1, where the operations on each index ij , are done modnj .

For any vertex v we have d(v) = 2k, m(v) = k + 1. We shall see that 2k agents are

sufficient.

For k = 1 the mesh is a ring, and 21 = 2 agents are trivially necessary and suffi-

cient. A straightforward monotone algorithm for a ring of vertices vi, 0 ≤ i ≤ n1−1,

is as follows:

Algorithm 1 Decontaminating a ring R of n1 vertices with a set S = {A0, A1} of

two agents starting in an arbitrary vertex vi.

move A1 to vertex vi+1;

RING(R, S) /procedure call

procedure RING(R, S)

move synchronously A0, A1 in opposite directions

until they reach two adjacente vertices vj+1, vj (j = i + ⌊n1/2⌋).

Note that Algorithm 1 makes n1 − 1 moves, and such a number of moves is clearly

necessary for decontaminating all the vertices.

We now present the general monotone algorithm for k > 1. Subsequently, to

make it clear, we will show how it works for k = 2. For simplicity we assume initially

that all the ni are even, postponing a discussion for ni odd.

Algorithm 2 Decontaminating an n1× n2× . . .×nk k-dimensional toroidal mesh

M , with k > 1 and all ni even, with a set S = {A0, A1, . . . , A2k−1} of 2k agents

starting in an arbitrary vertex v̄.

notation: v−, v+ are the vertices adjacent to a vertex v = vi1,i2,...,ik
, with index

ik decreased or increased by 1, respectively.

5

PLACE(S, v̄, k) /procedure call

procedure PLACE(S, v, k) Initial positioning of the agents.

divide S in two disjoint subsets S0, S1 of 2k−1 agents each;

move synchronously the agents of S1 one step, from v to v+;

if k > 1 then

do in parallel (PLACE(S0, v, k − 1), PLACE(S1, v
+, k − 1)).

The agents are now in the vertices of a k-cube C.

notation: C0, C1 are the subcubes of C with ik = h, ik = h + 1, respectively (the

value of h depends on v̄); S0, S1 are the subsets of agents in C0, C1; Mj is the

submesh of M with ik = j, 0 ≤ j ≤ nk − 1.

MESH(M, C, S, k) /procedure call

procedure MESH(M, C, S, k) decontaminating M starting with the agents

in C.

if k = 1 then RING(M, S) else

do in parallel

(MESH(Mh, C0, S0, k − 1), MESH(Mh+1, C1, S1, k − 1));

The agents are now in the vertices of a new k-cube C.

for j ← 1 to nk/2− 1 do

redefine C0, C1 by replacing each v ∈ C0 with v−, each v ∈ C1

with v+;

move synchronously the agents of S0, S1 one step to C0, C1;

do in parallel

(MESH(Mh−j , C0, S0, k − 1), MESH(Mh+1+j, C1, S1, k − 1)).

The agents are now in the vertices of a new k-cube C.

Before proving the correctness of the algorithm, let us simulate its execution on

a 2-dimensional toroidal mesh of 6× 6 vertices, with four agents starting from v0,0.

We have d(v) = 4, m(v) = 3. Indices i1, i2 denote columns and rows, respectively.

Figure 1 shows the agent positions at the following steps. (a) After procedure

PLACE: the agents are in a 2-cube C, with C0, C1 respectively in rows 0, 1. (b)

After the parallel calls MESH(Mh, C0, S0, k − 1), MESH(Mh+1, C1, S1, k − 1) with

h = 0, k = 2, i.e., calls on M0, M1, respectively rows 0, 1 of the mesh: these calls

decontaminate the two rows in two parallel steps (8 total moves of the 4 agents), then

the agents are in a new 2-cube. Note that each vertex left by an agent is adjacent

to three clean vertices and stays clean forever. (c) After the first move of the agents

of S0, S1 in the for cycle, respectively to rows 5 (through toroidal connections) and

2. Now the two pairs of agents can decontaminate the rows independently, since

each row is adjacent to another clean row, hence three clean neighbours are assured

for each vertex visited. (d) After completion of the for cycle: the agents are in a

new 2-cube.

6

0 1 2 3 4 5 0 1 2 3 4 5
0 • • ◦ ◦ ◦ ◦ 0 ⋆ ⋆ ⋆ • • ⋆
1 • • ◦ ◦ ◦ ◦ 1 ⋆ ⋆ ⋆ • • ⋆
2 ◦ ◦ ◦ ◦ ◦ ◦ 2 ◦ ◦ ◦ ◦ ◦ ◦
3 ◦ ◦ ◦ ◦ ◦ ◦ 3 ◦ ◦ ◦ ◦ ◦ ◦
4 ◦ ◦ ◦ ◦ ◦ ◦ 4 ◦ ◦ ◦ ◦ ◦ ◦
5 ◦ ◦ ◦ ◦ ◦ ◦ 5 ◦ ◦ ◦ ◦ ◦ ◦

(a) (b)

0 1 2 3 4 5 0 1 2 3 4 5
0 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 0 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
1 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 1 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
2 ◦ ◦ ◦ • • ◦ 2 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
3 ◦ ◦ ◦ ◦ ◦ ◦ 3 ⋆ ⋆ ⋆ • • ⋆
4 ◦ ◦ ◦ ◦ ◦ ◦ 4 ⋆ ⋆ ⋆ • • ⋆
5 ◦ ◦ ◦ • • ◦ 5 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

(c) (d)

Figure 1: Four agents decontaminating a 2-dimentional mesh, starting from vertex
v0,0. Agent positions after the execution: of procedure PLACE (a); of the first
do in parallel of procedure MESH (b); of the first move in the for cycle (c); of
the whole algorithm (d).

The number of moves is 4 in procedure PLACE, plus n1 × n2 − 4 in procedure

MESH, for a total of n1 × n2 = 36. Note that if the mesh had i2 = 5 rows 0

to 4, three of them should be decontaminated in the for cycle. The two pairs of

agents should work in parallel on rows 4 and 2, then one pair should work on row 3

while the other stands still. In so doing, the two pairs would finish in non adjacent

subcubes, and four (i.e., i1 − 2) additional moves are needed for bringing all the

agents in a 2-cube. We have in general:

Theorem 1 2k synchronous agents can decontaminate a k-dimensional toroidal

mesh of N = n1 × n2 × . . .× nk vertices, making Uk = N + (k − 2) · 2k−1 moves if

all the ni are even, Uk = N + (k − 2) · 2k−1 + O(N) moves otherwise.

Proof. Use Algorithm 2, assuming that all ni are even. Monotonicity and

correctness of the procedure PLACE are immediate. No vertex is left without at

least one agent after being visited, and the final placement obtained follows by the

recursive structure of a k-cube. The procedure MESH is composed of two phases:

1. a do in parallel statement, and 2. a for cycle. In phase 1, the agents of

the two subsets S0, S1 work in parallel on two adjacent submeshes of dimension

k − 1. Assuming inductively that each submesh is correctly decontaminated in

dimension k−1 (the induction basis for k = 1 has already been proved), the pair of

adjacent submeshes are also correctly decontaminated in dimension k because the

degree of each vertex increases by two, hence the required majority of clean vertices

increases by one, where the extra clean nighbours are mutually provided by the two

7

submeshes. In phase 2, then, each of the subsets S0, S1 can work independently on

a submesh of dimension k−1, because the extra clean neighbour is provided by the

submeshes already decontaminated.

The total number of agent moves can be expressed as Uk = Pk + Qk, where the

two addends are respectively due to the procedures PLACE and MESH. We have

Pk = 2k−1 +2Pk−1, because the 2k−1 agents of S1 are first moved by one step, then

the agents of S0 and S1 are recursively moved to two (k − 1)-cubes. Since we have

P1 = 1 for the ring, the above recurrence immediately yields Pk = k · 2k−1. If all

the ni are even, the procedure MESH makes moves only to white vertices, then we

have Qk = N − 2k and the stated value of Uk follows.

If one (or more) of the ni is odd the number of agents is still 2k, but the for

cycle of MESH has to be modified by executing the last iteration for ⌈ni/2⌉ − 1

only for subset S0, while the agents in S1 stand still. After this, however, S0 and

S1 are in two non adjacent subcubes, and O(ni) extra moves are needed to bring

them into a unique k-cube. Summing up for all the ni, the stated value of Uk again

follows. 2

Applying Theorem 1 for k = 1, k = 2 and even ni, we have the values U1 = n1−1

and U2 = n1 × n2 already found. For k > 2, however, the algorithm requires more

moves than white cells, because of the initial construction of the k-cube.

3.2. Lower Bounds

We now prove that the upper bound of Theorem 1 on the number of agents is

strict for any k ≥ 1. For the number of moves, instead, we are able to derive a

matching lower bound for k = 1, 2 only. We have:

Theorem 2 For decontaminating a k-dimensional toroidal mesh M of N = n1 ×

n2 × . . .× nk vertices, with k constant with respect to n1, . . . , nk, at least 2k agents

are necessary.

Proof. For k = 1 the bound is obvious. For k > 1, recall from lemma 2 that,

at any step of a decontaminating algorithm, all the clean vertices form a connected

subgraph G of M . When n moves have been made, n < min(n1, . . . , nk) − 1, no

agent has completed a turn of M in any dimension. Therefore, due to the mesh

structure of M , G is a h-dimensional polyhedron, h ≤ k. The external surface of G

contains ”poly-vertices” and ”poly-edges” (in fact, polyhedral convex vertices, and

edges, with a prefix ”poly” to be distinguished from mesh vertices and edges), and

poly-faces of any dimension up to h−1. Poly-vertices have h clean neighbours, mesh

vertices on the poly-edges have h + 1 clean neighbours, and all the other vertices

of G have > h + 1 clean neighbours. For avoiding recontamination, the vertices of

G must have at least k + 1 clean neighbours, or contain an agent. Then, all poly-

vertices must contain an agent, and, for h < k, all mesh vertices on the poly-edges

must also contain an agent. Note that G has at least 2h poly-vertices, then at least

2h agents are needed. For h = k the bound on the number of agents immediately

8

follows. For h < k we must prove that other 2k − 2h agents are needed. In fact,

since k is independent of n1, . . . , nk, the total length of the poly-edges increases

arbitrarily over 2k − 2h for increasing number n of moves, n < min(n1, . . . , nk)− 1,

and the bound follows for any h < k. 2

We can now establish a lower bound on the number of moves. We have:

Theorem 3 Decontaminating a k-dimensional toroidal mesh of N vertices with 2k

agents requires at least Lk moves, with L1 = N−1, L2 = N , and Lk = N+2k−2k−2

for k > 2.

Proof. Since all the agents start from the same vertex v, at least N − 1 moves

are necessary to decontaminate the remaining white vertices. Thus the bound L1 is

immediate. However, a similar bound could be reached for k > 1 only if the agents

moved to white vertices only, that is impossible as we shall prove now. For k = 2,

d(v) = 4, it is immediate to see by lemma 1 that at least one agent must move onto

a vertex containing another agent, thus proving the bound L2. In fact two agents,

say A0, A1, can take different directions in the first two moves from v. At this point

A0, A1 can not move further. Then either another agent A2 joins A0 or A1 (and we

have proved the bound), or A2 moves to a third white vertex adjacent to v. In this

case, however A0, A1, A2 can not move further, then either A3 joins one of them,

or A3 moves to the remaining white vertex adjacent to v, but then no agent can

move further. The bound L2 is then proved. For k > 2 we have d(v) = 2k, then

at most 2k agents can move from v to white neighbours, while other 2k − 2k − 1

agents must move to already visited neighbours, and the last agent may remain in

v. The bound Lk immediately follows. 2

Then, the upper bound Uk of Theorem 1 is tight for k = 1, 2, but we still have

a gap between Lk and Uk for k > 2. We conjecture that Lk should be raised to

meet Uk. Instead of resorting to a complicated extension of the reasoning made

for k = 2, however, we prefer to leave the problem open, in search of a brilliant

argument valid for all k.

4. Decontaminating Networks with Degree ≤ 3

In this section we consider the class of graphs with maximum vertex degree

three. This large class of graphs comprises, in addition to rings and lines, a large

variety of graphs, including cubic graphs and binary trees.

The existence of a local-majority immunity yields a perhaps surprising result.

In fact, regardless of their size, the graphs in this class can all be decontaminated by

at most two cleaners. Furthermore, the protocol yielding this bound is remarkably

simple. For a graph G, let d-max(G) = maxv∈G(d(v)). We have:

9

Theorem 4 Let G = (V, E) be a graph with d-max(G) ≤ 3. If ∀v ∈ V , d(v) > 1

then two agents are necessary and sufficient to decontaminate G; otherwise one

agent suffices.

The proof of this theorem is constructive. Let r be the homebase. The protocol is

a DF-traversal of the network by an agent while the other (if any) does not move

from the homebase.

Algorithm 3 TRAVERSE(r, G).

if d(r) = 1 then use one agent A;

else use two agents A, B, of which only A moves;

Starting from r, agent A performs a depth-first traversal of G.

We will now show that the protocol is correct.

Lemma 3 Let G = (V, E) be a graph with d-max(G) ≤ 3. Protocol TRAVERSE(r, G)

correctly decontaminates G with 2|E| moves.

Proof. The depth-first traversal of G by agent A constructs a depth-first spanning-

tree Tr of G, rooted in r. Let pr(x) denote the parent of x in Tr, where by convention

pr(r) = r. In the depth-first traversal, every link (x, y) will be traversed twice. Con-

sider when the agent A traverses (x, y) for the first time; without loss of generality

let A move from x to y. This implies that y is still infected. By induction, assume

that all the decontaminated area, including pr(x), can not be recontaminated (this

is trivially true at the beginning). When A moves to y, if x 6= r then x has two

distinct decontaminated neighbours, y and pr(x), and therefore will not be recon-

taminated; if x = r, then either agent B is there (if d(x) > 1) or x is a leaf; in

both cases, the move of A to y will decontaminate y without recontaminating x.

Thus, when y is decontaminated, x = pr(y) is also decontaminated and the rest of

the decontaminated nodes can not be recontaminated because of this move. The

number of moves follows from the fact that in the depth-first traversal, every link

is traversed twice. 2

This completes the proof of Theorem 4, provided that, if G contains a vertex with

degree one, the homebase r is such a vertex.

Note that the depth-first traversal used by protocol TRAVERSE can be sub-

stituted by any traversal algorithm for agents, including those without return, i.e.,

that stop as soon as all the nodes have been traversed, without the agent returning

to the homebase. The use of such a traversal could reduce the number of moves;

however, a termination criterion (e.g., knowledge of n = |V |) must be accessible to

the moving agent.

In the case of binary trees, this reduction can be significant. In fact, let diam(G)

denote the diameter of G; then

Theorem 5 A single agent can decontaminate any known binary tree T of n ver-

tices with 2(n− 1)− diam(T) moves.

10

Proof. By choosing the homebase and the last node to be visited to be leaves

on a diametral path. 2

This decreases the bound of Lemma 3 by diam(T). It is immediate to verify that

this bound is indeed tight:

Theorem 6 For decontaminating a known binary tree of n vertices and diameter

d with one agent, at least 2(n− 1)− d moves are necessary.

5. Decontaminating General Trees

Tree structured networks have been carefully studied without local immunity

[1, 2, 16]. As one may expect, the results in our model are different.

We have already examined the case of trees where the maximum degree is at

most three (e.g., binary trees and lines) in the previous section. We will now examine

the general case of arbitrary trees.

The analysis of the number of cleaners needed to decontaminate an arbitrary tree

T is much more difficult than in the binary case. Let µ(T, r) denote the minimum

number of agents needed to decontaminate T starting from r; then

µ(T) = min
r
{µ(T, r)} (1)

denotes the minimum number of agents needed to decontaminate T .

In this section, we will first provide a complete characterization of µ(T); this

characterization allows the determination of its exact value for every tree T . We

will then present a monotone protocol that allows any known tree T to be decon-

taminated by a team of precisely µ(T) cleaners.

5.1. Lower Bound

We will first of all establish a lower bound on µ(T, r). To do so we first need

to introduce some terminology. Given a homebase r in T , let Tr denote T when

rooted in r; given a node x, let pr(x) denote its parent in Tr.

A decontaminated node x is said to be guarded when an agent resides in it. A

decontaminated node x is said to be stable if the following two conditions hold:

1. x is not guarded, or is guarded but the removal of all its guards do not

recontaminate it; and

2. a majority of its children in Tr are stable: the majority is strong if x = r,

simple otherwise.

The following property trivially holds for any execution of any solution protocol

starting from the homebase r:

11

Lemma 4

(a) Every node x 6= r must be decontaminated by cleaners arriving from pr(x).

(b) Every node must become stable.

(c) Once a node is stable, it must remain clean.

Given a node x in Tr, let us denote by ν(x, r) the minimum number of agents

needed to make x stable. The relationship between µ and ν is rather straightfor-

ward. In fact, since (by Lemma 4) every node must become stable, then

Theorem 7 µ(T, r) ≥ maxx{ν(x, r)}

In other words, any lower bound on ν provides immediately a lower bound on µ.

This is what we will do in the rest of this section.

Let y1, y2, . . . , yk be the children of x in Tr and, without loss of generality, let

ν(yi, r) ≤ ν(yi+1, r). An important property is the following:

Lemma 5 Let x 6= r . Then

ν(x, r) ≥ ν(y⌈ k

2
⌉, r) + α(x, r),

where α(x, r) = 0 if ν(y⌈ k

2
⌉, r) > ν(y⌈ k

2
⌉−1, r), and α(x, r) = 1 otherwise.

Proof. Consider the time when x becomes stable. At this time, by definition

of stable node, a (simple) majority of its children must be stable. This means that

at least one child yj with j ≥ ⌈k
2
⌉ must be stable before x becomes stable; this in

turn implies neighbours must be that at least ν(y⌈ k

2
⌉, r) agents are needed to make

x stable. In the case ν(y⌈ k

2
⌉, r) = ν(y⌈ k

2
⌉−1, r), actually at least one more agent is

needed to make x stable. In fact, at least two children ya and yb with b > a ≥ ⌈k
2
⌉−1

must be stable before x becomes stable. If ya and yb are made stable sequentially,

since ν(yb, r) ≥ ν(ya, r) ≥ ν(y⌈ k

2
⌉−1, r) = ν(y⌈ k

2
⌉, r), to avoid recontamination, x

must be left guarded while the first of ya and yb is rendered stable; hence at least

ν(ya) + 1 ≥ ν(y⌈ k

2
⌉−1, r) + 1 = ν(y⌈ k

2
⌉, r) + 1 cleaners are needed, proving the

lemma. If ya and yb are made stable concurrently the number of agents required

would be ν(ya, r) + ν(yb, r) ≥ 2 ν(y⌈ k

2
⌉−1

, r) = 2 ν(y⌈ k

2
⌉, r) ≥ ν(y⌈ k

2
⌉, r) + 1 proving

the lemma. 2

The case when x = r is similar except that, by definition, to be stable the root

requires that a strong (instead of simple) majority of its children must be stable.

The differences in the bounds are only in the rounding in the indices:

Lemma 6 Let x = r. Then

ν(r, r) ≥ ν(y⌊ k

2
⌋+1,r) + β(x, r)

where β(x, r) = 0 if ν(y⌊ k

2
⌋+1

, r) > ν(y⌊ k

2
⌋, r), and β(x, r) = 1 otherwise.

12

Lemmas 5 and 6 provide a recursive characterization of the function ν. To com-

plete the characterization we must to provide the base case, which trivially holds:

Lemma 7 Let x be a leaf. Then ν(x, r) = 1

5.2. Tightness of Bound

In this section we show that the lower bound determined in the previous section

(Theorem 7) is tight. We will first of all prove that the expressions of Lemmas 5 and

6 are actually equalities. We will do so constructively, providing a protocol, STA-

BILIZE, that makes a node stable with precisely the number of cleaners expressed

by the bound.

Let y1, y2, . . . , yk be the children of x in Tr where, as before and without loss of

generality, ν(yi, r) ≤ ν(yi+1, r). The protocol STABILIZE is rather simple and is

described below, where stable(.) is a predicate initially set to false for all nodes:

Algorithm 4 STABILIZE(x, ν(x, r))

if x is a leaf then

move one agent from pr(x) to x to decontaminate it;

return the agent to pr(x);

stable(x) ← true;

else

move ν(x, r) agents from pr(x) to x;

if x 6= r then l← ⌈k
2
⌉ else l← ⌊k

2
⌋+ 1;

for i = 1, ..., l do STABILIZE(yi, ν(yi, r));

return the agents from x to pr(x);

stable(x) ← true.

Theorem 8

1. (a) STABILIZE(x, ν(x, r))) correctly makes x stable using ν(x, r) agents start-

ing from pr(x).

2. (b) The expressions of Lemmas 5 and 6 are equalities.

Proof. By induction on level(x, r), where level(x, r) is recursively defined as fol-

lows: level(x, r) = 0 if x is a leaf, and level(x, r) = 1 + Maxyi
{level(yi, r)} other-

wise. Notice that ∀x, level(x, r) < level(r, r) = lr. The lemma trivially holds if x

is a leaf, i.e. when level(x) = 0.

Let it hold for all nodes with level at most l ≥ 0, and let level(x) = l+1. Consider

first the case l +1 < lr; i.e., x 6= r. We must prove that STABILIZE(x, ν(y⌈ k

2
⌉, r) +

α(x, r)) correctly makes x stable. Observe that STABILIZE is invoked sequentially

13

to y1, ..., y⌈ k

2
⌉ in that order; since ν(yi, r) < ν(y⌈ k

2
⌉, r) + α(x, r), 1 ≤ i ≤ ⌈k

2
⌉, x is

guarded by an agent during all but the last of these invocation. During this last

invocation, pr(x) as well as a simple majority of the children of x are decontami-

nated; hence x is not recontaminated during this time. When the last invocation

terminates and the predicate stable(x) is set to true, by inductive hypothesis, a

simple majority of the children of x are stable; since also pr(x) is decontaminated, a

strong majority of the neighbours of x are decontaminated. Therefore, even though

x is unguarded (all the agents have returned to pr(x) after the execution of STABI-

LIZE) x is not recontaminated. In other words, at this time x satisfies the definition

of a stable node.

In the case l + 1 = lr (i.e., x = r), the proof that STABILIZE(x, ν(y⌊ k

2
⌋+1, r) +

β(x, r)) correctly makes x stable follows using a reasoning similar to the one above.

2

In other words, the bounds on ν are tight. While this fact does not imply that

the lower bound of Theorem 7 on µ is tight, this is indeed the case. In fact it is

possible to effectively use protocol STABILIZE to decontaminate the entire network

with the number of agents expressed in Theorem 7. The protocol achieving this task

is as follows:

Algorithm 5 DECONTAMINATE(r, T)

STABILIZE(r, ν(r, r))

S ← {x|stable(x) = true};

while S 6= V do

select y ∈ V \ S such that pr(y) ∈ S;

move ν(y, r) agents from r to pr(y);

STABILIZE(y, ν(y, r));

move all agents to r.

The process performed by DECONTAMINATE is rather simple: first it makes

the root r stable; then, repeatedly, it selects a node y that is not stable but has

a stable neighbour z and makes y stable, until all nodes are stable. It is easy to

verify that among the nodes not yet stable, such a node y always exists; further-

more z = pr(y). Notice that in order to use the protocol, the whole structure of

the tree must be known. The correctness of the protocol, as well as the number of

agents sufficient for the operation, then follow directly from the correctness and the

number of agents used by protocol STABILIZE:

Lemma 8 Protocol DECONTAMINATE(r, T) correctly decontaminates T starting

from r using maxx{ν(x, r)} agents.

14

The tightness of the bound on µ and the optimality of protocol DECONTAMI-

NATE now follow:

Theorem 9 Protocol DECONTAMINATE(r, T) decontaminates T starting from r

using µ(r, T) agents.

Proof. From Lemma 7 and Theorem 8. 2

As a consequence we have also that µ(T) = minr maxx{ν(x, r)}; thus, the strat-

egy of choosing as a homebase the node r with minimum µ(x, T) yields the following:

Theorem 10 It is possible to decontaminate an arbitrary tree T using µ(T) agents.

5.3. Specific Tree Classes

The characterization we just provided is very general and the values of ν and

thus µ can be easily computed for any specific tree. However, no closed formula can

be stated for a generic tree.

Closed formulas can be given for specific classes of trees T with d-max(T) > 3

(trees with d-max(T) ≤ 3 have been studied in Section 4). Let us examine the class

of complete k-ary trees with k ≥ 3 and height h, that is rooted trees where all the

internal vertices have k children, and all the leaves are at level 0 (the root is at level

h).

Let Tr[k, h] be a tree in this class, and let r be its root. The calculation of

µ(Tr[k, h]) is straightforward. We have:

Lemma 9 Let k ≥ 4. Then µ(x, Tr[k, h]) = h + 1.

Proof. For simplicity, denote by Tz the tree Tr[k, h] when the homebase is z.

By Lemmas 5-7 and the fact that (by Theorem 8(b)) the expressions there are

equalities, it follows that ν(x, z) = level(x, Tr[k, h]) + 1. Hence the claim. 2

Corollary 1 h+1 agents can decontaminate a complete k-ary tree of height h, with

k ≥ 4.

In the case k = 3, the same calculations show that one less agent suffice. We

have:

Lemma 10 µ(Tr[3, h]) = h

15

Corollary 2 h agents can decontaminate a complete 3-ary tree of height h.

6. Conclusions

6.1. Summary of Results

We have introduced and studied the problem of decontaminating a network in

presence of local immunity. In contrast with the traditional decontamination mod-

els that assume no immunity, the proposed model describes the decontamination

problem more accurately in the case of networks that employ local-majority rules.

We have studied the effects of local immunity on the costs of monotone decon-

tamination, in particular on the minimum number of system agents needed. We

have established both lower and upper bounds on the number cleaners in the case

of (multidimensional) toroidal meshes, graphs of vertex degree at most three (e.g.,

cubic graphs, binary trees, etc.), and of tree networks. In all cases the established

bounds are tight. All upper-bound proofs are constructive; i.e., we exhibit mono-

tone decontamination protocols achieving the bound. We have also analyzed our

protocols with respect to the total number of moves performed by the agents.

With respect to previous works, the availability of local immunity induces great

changes in the results. For example, we have shown that both in binary trees and

in toroidal meshes, a constant number of cleaners suffices regardless of the size of

the network; in contrast, without local immunity, the number of cleaners must be

a function of the size of the network.

6.2. Synchronous vs Asynchronous

The protocols we have described for networks of degree at most three, and those

for arbitrary tree networks make no assumptions on the amount of time required

for an operation by an agent (decontamination, move, computation). Thus, they

work even in truly asynchronous systems.

The protocols we have introduced for (multidimensional) mesh networks are

described for a synchronous system: all agents are synchronized, and each opera-

tion of a specific type (decontamination, move, computation) requires always the

same amount of time regardless of the agent performing it and of its location. This

means that the upper-bounds for multidimensional meshes, as described, hold for

synchronous systems. This is however not a severe limitation. In fact, as already

observed by Flocchini et al. in systems without local immunity [7, 8, 9], and using

exactly the same technique proposed there, it is possible to transform the proposed

protocols in ones that make no assumptions on the amount of time required for an

operation by an agent and, thus, work even in asynchronous systems. The price to

pay is the use of an additional system agent, called synchronizer, that coordinates

and guides the movements of the other agents [7, 8, 9]. In other words, the gap be-

tween upper and lower bound in the case of asynchronous multidimensional meshes

16

is at most one.

Using this approach, the number of moves performed by the cleaners is un-

changed; to this, we must clearly add the number of moves performed by the syn-

chronizer.

6.3. Open Problems

In this paper we have introduce the notion of local immunity and started the

analysis of its impact to the process of monotone decontamination. Many problems

and questions are opened by this paper.

First and foremost, what happens in other classes of networks ? Is the presence of

majority-based immunity going to cause dramatic improvements in other networks,

comparable to the ones we observed in toroidal meshes and trees ? And if not, why

?

For the networks studied in this paper, it is possible to improve some of the

results, as for example finding a tight lower bound on the number of moves. In

this regards, what would happen if the number of moves is the main cost measure,

instead of the number of agents ? We already know that, in this case, the solution

for tree networks can be improved (increasing the number of agents).

Another, more fundamental question relates to the monotone nature of the so-

lution protocols. If we remove monotonicity, what would be the minimum number

of agents needed for decontamination of the network considered here ? It is known

that, without immunity, the same number of agents are needed in trees regardless

of whether or not monotonicity is required [2].

Acknowledgements

We would like to thank Paola Flocchini whose suggestions have lead to the

results of Section 4. We would also like to thank the anonymous referees for their

useful comments and suggestions.

References

1. L. Barrière, P. Flocchini, P. Fraignaud, and N. Santoro. Capture of an intruder by
mobile agents.Proc. 14th Symp. Parallel Algorithms and Architectures (SPAA’02),
200-209, 2002.

2. L. Barrière, P. Fraignaud, N. Santoro, and D. Thilikos. Searching is not jump-
ing. Proc. 29th Int. Workshop on Graph-Theoretic Concepts in Computer Science

(WG’03), 34-45, 2003.

3. D. Bienstock. Graph searching, path-width, tree-width and related problems. DI-

MACS Series in Disc. Maths. and Theo. Comp. Sc., 5, 33–49, 1991.

4. D. Bienstock and P. Seymour. Monotonicity in graph searching. J. Algorithms 12:
239–245, 1991.

5. L. Blin, P. Fraignaud, N. Nisse, and S. Vial. Distributed chasing of network in-
truders. Proc. 13th Colloquium on Structural Information and Communication

Complexity (SIROCCO’06), 2006.

6. R. Breisch. An intuitive approach to speleotopology. Southwestern Cavers VI(5):

17

72–78, 1967.

7. P. Flocchini, M.J. Huang, and F.L. Luccio. Contiguous search in the hypercube for
capturing an intruder. Proc. 19th IEEE Int. Parallel Distributed Processing Symp.

(IPDPS), 62-71, 2005.

8. P. Flocchini, M.J. Huang, and F.L. Luccio. Decontamination of chordal rings and
tori. Proc. 8th Workshop on Advances in Parallel and Distributed Computational

Models, 2006.

9. P. Flocchini, F.L. Luccio, and L.X. Song. Size optimal strategies for capturing an
intruder in mesh networks. Proc. Int. Conf. on Communications in Computing

(CIC 05), 200-206, 2005.

10. F. Fomin, D. Thilikos, and I. Todineau. Connected graph searching in outerplanar
graphs. Proc. 7th Int. Conf. on Graph Theory (ICGT 05), 2005.

11. P. Fraigniaud, and N. Nisse Connected treewidth and connected graph searching.
Proc. 7th Latin American Symposium on Theoretical Informatics (LATIN’06), 479-
490, 2006.

12. M.S. Greenberg, J.C. Byington, and D. G. Harper. Mobile agents and security,
IEEE Communication Magazine, 36(7): 76-85, 1998.

13. N. Kinnersley. The vertex separation number of a graph equals its path-width.
Information Processing Letters, 42(6): 345–350, 1992.

14. L. Kirousis and C. Papadimitriou. Searching and pebbling. Theoretical Computer

Science, 47(2): 205–218, 1986.

15. A. Lapaugh. Recontamination does not help to search a graph. Journal of the

ACM 40(2): 224–245, 1993.

16. N. Megiddo, S. Hakimi, M. Garey, D. Johnson and C. Papadimitriou. The com-
plexity of searching a graph. Journal of the ACM 35(1): 18–44, 1988.

17. S. Neufeld. A pursuit-evasion problem on a grid. Information Processing Letters,
58(1): 5–9, 1996.

18. R. Oppliger. Security issues related to mobile code and agent-based systems.
Computer Communications, 22(12): 1165-1170, 1999.

19. T. Parson. Pursuit-evasion in a graph. Theory and Applications of Graphs, Lecture
Notes in Mathematics, Springer-Verlag, 426–441, 1976.

20. D. Peleg. Local majorities, coalitions and monopolies in graphs: A review. Theo-

retical Computer science, 231-257, 2002.

21. K. Schelderup and J. Ines. Mobile agent security - Issues and directions. Proc.

6th Int. Conf. on Intell. and Services in Networks, LNCS 1597, pp. 155-167, 1999.

22. I. Suzuki and M. Yamashita. Searching for a mobile intruder in a polygonal region.
SIAM Journal on Computing, 21(5):863–888, 1992.

23. M. Yamamoto, K. Takahashi, M. Hagiya, and S.-Y. Nishizaki. Formalization of
graph search algorithms and its applications. LNCS 1479, Springer, 1998.

18

