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Integer Sets with Distinct Sums and Differences and 
Carrier Frequency Assignments for 

Nonlinear Repeaters 

M. D. ATKINSON. N. SANTORO, AND J. URRUTIA 

Abstract-The  problem of assigning n carrier  frequencies so as to avoid 
certain  types  (third and fifth order) of intermodulation  interference  is 
discussed.  For  the  third-order  case,  close  upper  and  lower  bounds  on the 
optimal  solution  are  established; and close to optimal  solutions  are  given 
for n < 100 (previously,  suboptimal  solutions were known  only for n < 
23). For  the  fifth-order  case, it is  shown that some  existing  results  can be 
applied to this  problem, and suboptimal  solutions obtained by this 
construction  are given for n 4 17 (no  solutions were known  previously). 

I. INTRODUCTION 
Some 30 years  ago Babcock [2], in work on assigning radio 

frequencies so as  to avoid  certain  types  (“third  order” and 
“fifth  order,” respectively) of  intermodulation  interference 
caused by a common  nonlinear power  amplifier, formulated 
the following two problems. 

For any  given n ,  find  integers 0 ,< a. < al < . * < a, 
such  that no  nontrivial  equality a, + a, - a, = a, holds. 

For any  given n,  find  integers 0 < a. < a, < . . * < a, 
such  that no  nontrivial  equality a, + a, + a, - a, - a, = a, 
holds. 

In  these  problems  the  integers  are  radio  frequencies  and, 
since it is  desirable  to  have a small  spectral  range,  solutions 
are sought in which a, is as small  as possible (“optimal” 
solutions) or at  least  provably  close  to  optimal  (“suboptimal” 
solutions). 

The word  “nontrivial”  appears in  the  problem  statements 
since,  of  course,  trivial  equalities  such  as a, + a, - a, = a, 
and a, + a, + a, - a, - a, = a, cannot be avoided. 
However,  equalities  like a, + a, - a, = a, and a, + a, + a, 
- a, - a, = a,  are deemed to be nontrivial.  The  problems 
can be formulated as  the special cases k = 2 and k = 3 of  the 
following  interesting  question. 

If k and n are fixed nonnegative  integers,  find an optimal or 
suboptimal set of n + 1 integers 

0 < a o < a l < . . * < a ,  
such that all the  k-term sums 

ai( 
I = I  

are  distinct. 
Notice  that, in an  optimal set, a. = 0. 
Babcock himself gave  some suboptimal  solutions to  the  first 
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problem for n < 9. 25  years  later  these solutions were 
improved  and  extended to n 6 23 by Fang  and  Sandrin [5], 
who  formulated  the  problem as a distinct difference  problem 
and applied some  results  from  graph  theory  and  coding  theory. 
Rather less  is  known  about  the second problem; in [5] it was 
studied in terms of a “difference  pyramid”  but  no  actual 
solutions were  given. 

In this paper we consider  both  problems. For  the  case k = 
2, we establish close  lower  and  upper bounds on  the  optimal 
solution,  give  close  to  optimal  values  for n < 100, and  make 
some remarks  about a related problem. For the  case of k = 3,  
we point out that some  results  given  in [4] can  be used to 
construct  solutions (even for a general k)  and  give  the  results 
of a computer  search based on  these  constructions  for n < 17. 

11. THE CASE k = 2 

A .  Distinct Difference Sets 
If a set a,, * e ,  a, has all its  sums ai + aj, i < j ,  distinct, 

then  also the  differences a; - ai, i # j ,  will be distinct,  and 
vice versa.  Accordingly, to study the  case k = 2 of  our 
general  problem we shall say that a set ao, * . , a, (in 
increasing order)  whose  nonzero  differences  are distinct is a 
distinct difference  set  (DDS),  and  that  the  DDS  is  optimal if a,, 
is  as  small  as  possible. 

The problem  of finding optimal  DDS’s for each  integer n 
has  been investigated by engineers  working on  radio frequency 
assignments [5] and  coding  theory [SI, and by mathematicians 
[6] who  have  studied  the  problem for its  own  sake. Trial-and- 
error search has yielded an optimal solution for all n 6 10. For 
larger n it  has been observed  that  the  theory of perfect 
difference  sets [9] can yield DDS’s which seem to  be  close  to 
optimal.  For subsequent  use we briefly recall the salient facts. 

A perfect  difference  set  (PDS) with parameters ( u ,  k, e) is a 
set of k integers  whose  differences  modulo u represent  every 
nonzero  residue from 1 to u - 1 the same  number e of times. 
Obviously, e(u - 1) = k(k  - 1) .  The  PDS  is  planar if e = 
1 ; i n t h i s c a s e w e p u t k = n + 1 s o t h a t u = n 2 + n + 1 . 1 t i s  
known [9] that planar  PDS’s  exist for every prime power n 
but,  despite  much  research,  no  planar  PDS  has been found for 
other  integers n.  Clearly, a planar  PDS  gives  rise a fortiori to 
a DDS with a, < n2  + n .  Moreover, by omitting  elements 
from a planar  PDS  we  obtain  DDS’s of smaller  size. 

However,  there  is  another, less well-known  construction 
due  to Bose [3] which hitherto  has not been applied to  the 
problem.  Let q be any prime power, let t be a primitive 
element in the  finite field GF(q2), and let t 2  = ut + u be  its 
minimal equation over GF(q). Using this equation,  each 
power of t can be expressed as t i  = ujt + u; with u;, vi in 
GF(q). Bose  proved that { i:ui = l }  is a set of q integers 
whose differences  modulo u = 4 2 ,  are  distinct. 

In both cases  we  can  obtain,  for  certain  values  of n and 
moduli u ,  a set { ao, * . . , a,} of  integers  whose  differences 
modulo u are  distinct; then also  the  set {bo, . , b,} defined 
by 

bi=caj+d,  ( c ,  u ) = l  

has this same  property. By a suitable choice  of c and d we  can 
often improve an initial set.  In this way we have found good 
DDS’s  for all n < 100. 

0090-6778/86/0600-0614$01 .OO 0 1986 IEEE 



IEEE TRANSACTIONS ON  COMMUNICATIONS, VOL. COM-34, NO. 6,  JUNE 1986 

B. Bounds 
The precise  value  of a, in an optimal DDS is difficult to 

calculate  in  general. An easy lower bound a, 2 n(n + 1)/2 
follows by observing  that  each of the n(n + 1)/2 positive 
differences are distinct. Our next  results  improve on this: 

Lemma I :  a, 3 n(t + l ) (n  - t ) / ( t  + 2) for any t in 0, ... 
9 n .  
Proof: It is  obvious  that, for any s in 0, * * , n,  

(s+ l)a,=A,+B, 
where 

A,=(a , -a  , _ , _ I ) + (  a,- l -a ,  _ , - 2 ) + . . . + (  a,+l-ao) 
and 

B , = ( a o + a l + . . . + a , ) + ( a , - a , _ l )  

+(a,-aa,_2)+ - - .  +(a,-&-,) .  
Hence, 

f f 

( s i  1)an 2 A s .  
s=o s = o  

Now observe that the right-hand side  is  a  sum  of n + (n - 1) 

which are distinct,  and  therefore 
+ ... + (n - t )  = (n - t /2)( t  + 1 )  differences, all of 

( s+l )a ,  2 1 + 2 + 3 + * * * + ( n - t / 2 ) ( t + l ) .  

In  other  words, 

( t+l)(t+2)an 2 ( n - t / 2 ) ( t + l ) [ ( n - t / 2 ) ( t + l ) + l ]  

and the  result  foilows. 

but the one given  suffices for  the following proposition. 
Note: The bound in  the  lemma  can  be marginally improved 

Proposition: In  any DDS, a,, 3 n2 - an&. 
Proof: In  the above iemma  put t = [A]. 

Remark: In view of the numerical results prlsented in  the 
next subsection,  it would be  of significant interest to improve 
the lower bound to n2  - n f i .  

We have  already  observed  that, when n is  a  prime power, 
the  optimal a,, is bounded above by n2  + n .  For a  general n we 
have  the following upper bound. 

Lemma 2: Let q = n + t be  a  prime  power  greater than or 
equal to n .  Then  there  exists  a DDS in which a, ,< nz + nt. 

Proof: Let ao, a l ,  * , a, be  a  planar PDS for the 
modulus v = 1 + q + q2. Consider the following t + 1 
identities: 

( a l - a o ) + ( a z - a l ) + . . . + ( a , - a  ,_ l )+(ao-a ,+u)=u 

(a2-ao)+(a3-al)+. . . ’+(aq-a,_2)  

+ ( a o - a , _ ~ + u ) + ( a ~ - u q + u ) = 2 u  

(a,+i-ao)+ * * e  +(a,-a,_,_l)+(~o-a,_,+~) 
+... +(a,-b,+u)=(t+l)u.  

The bracketed  expressions are all positive,  less than v, and 
consequently are distinct by the  planar PDS property. Let M 
be the  maximum  of these (q + l ) ( t  + 1) expressions. It 
follows  that 

M+(M-l)+*..+[M-(q+l)(t+l)+l] 
2 u + 2 u + * . *   ( t + l ) u  

615 

and the re foF- .  
-7. 

(Q+ l)(t+  l)M-(q+  l)(t+  l)[(q+  l)(t+ 1)‘1]/2 

2 ( t +  l)(t+2)u/2 

from  which,  using v = 1 + q + q2, we can  deduce 

M 2 qt+3q/2+t/2.  

It is now convenient to, regard the residues ao, a l ,  * * , a, as 
being arranged in circular  order with a. following aq. The 
inequality on  M,states  that there are  two residues ai, aj with 
subscripts t + 1 apart (that is, j - i = t + 1 mod q + 1 )  with 
the sep.aration from ai circularly  around to ai being at least qt 
+ 3@?2 + t / 2 .  Then i - j = (q + 1)  - ( t  + 1)  = n mod q 
+ zc and  the  separation from ai circularly  around to ai is  less 
than v - (qt + 3q/2 + t /2 )  < n 2  + nt (using q = n + t 
and v = 1 + q + q2)., 

But now subtracting the residue ai from each of ad, . * * , a, 
gives  a new planar PDS bo, * - a ,  b, with 

O=bo<b, <b,=b,-bo 

=ai-aj<n2+nt.  

Remarks: 
1) This lemma can be slightly improved by taking more care 

with the  inequalities; for example, it can be shown that, if n is 
a  prime  power,  there  is  a PDS with a, < n2  - n / 2 .  

2 )  The numerical  evidence in the next section strongly 
suggests that  a DDS with a,, < n2  always  exists.  However, to 
establish this, the proof technique of Lemma 2 will probably 
need to be  enhanced by exploiting  that PDS’s retain their 
property when multiplied by a  residue  coprime to v. 

3) It is  proved  in [7] that, for any sufficiently large n,  there 
exists t < n7/l2 with n + t prime. Consequently we have the 
following. 

Theorem: For optimal DDS’s, the numbers a, are asymp- 
totic to n2  as n 4 00. 

Proof: The proposition and Lemma 1 give 

1 -2/&<a,/n2< 1 +n19/12/n2. 

C. Numericat Results 
The method given earlier of  transforming planar PDS’s or the 
sets given by Bose’s construction by mappings x + cx + d ,  
and truncating  them if n is not a  prime power, has been carried 
out for all n < 100. It gave the values for a, shown in Table I. 
(The  entry in row i ,  columnj is  the  value a, for n = 1Oi + j . )  

The associated DDS’s are listed in full in [ 1 1 .  Our belief that 
these sets are close to  optimd is based on two observations: 

1) For n < 10, where optimal DDS’s have been found by 
exhaustive search, the  only  cases  where the above an’s are not 
minimal are a7 and as, which can  each be reduced by 1 ,  and a6 
which can  be  reduced by 2 .  

2) The values a, above agree closely with the  expression n2  
- n 6 ,  whereas the previous subsection demonstrated that a, 
3 n2  - 2 n f i .  

A table of the best sets  then known for n < 23 was given in 
[5 ] .  Our results  give  the following improvements for n in this 
range: 

n=12 (0, 3, 1 1 ,  38, 40,  47,  62, 

72,  88,  92,  93, 105, 1 1 1 )  

n=16 (0, 5,  7, 17, 52, 56,  67,  80,  81, loo, 

122, 138, 159, 165, 168, 191,  199} 
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TABLE II - 
- 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 - 

TABLE I 

0 1 2 3 4 5 . 6 7 8 9  

0 1 3 6 11 1 7  2 8  35   45  55 
7 2  8 5  111 1 2 7  1 5 5  1 7 9  1 9 9  2 1 6   2 4 6  2 8 3  
3 3 3  3 5 6  3 7 2   4 2 5  480 492  5 5 3  585 623  680 
7 4 7  7 8 4  859 9 3 8  987  1 0 0 5  1 0 9 9  1 1 4 6  1 2 5 2  1 2 8 2  
1 3 0 5  1 3 9 7  1 5 0 7   1 5 9 6  1 6 8 7  1 7 0 3  1 8 0 4  1 9 1 5   1 9 5 8  2 0 9 4  
2 1 9 0  2 2 7 0  2 3 4 7   2 3 7 3  2 5 9 8  2 7 2 5  2 7 7 3  2 8 5 1   2 9 1 1  3 0 1 9  
3 1 3 4  3 2 1 5  3 3 9 1   3 5 2 7  3 5 9 3  3757  3 8 1 9  3 9 5 6   4 1 4 5  4217  
4 3 3 0  4 4 7 8  4 5 1 3   4 7 5 3  4982  5 0 8 9  5 2 0 4  5 2 9 9   5 4 0 8  5 5 6 3  
5 7 1 7  5 8 1 4  6 0 2 0   6 1 5 9  6 4 1 0  6537 6 7 0 8  6 7 4 5   6 7 7 8  6967  
7 5 4 2  7 6 1 7  7 7 2 6 , 7 8 8 4  7 9 6 7  8 1 2 1  8 3 5 7  8 5 0 9   8 5 4 0  8 8 3 1  

- .  
. .  

n = 2 1  (0, 3, 15, 26, 65, 86, 93, 103, 133, 

152, 177, 197, 228, 232, 234, 250, 286, 313, 

342, 347, 355,  356). 

D. A, Related  Problem 
A natural  generalization of the  distinct  difference  propeity 

is .to allow the’differences  to  represent each,  value  at$.most e 
times  for  some  small  constant e . .  The proof df Lemma 1 
generalizes  easily  to  accommodate  thls  .hypothesis, and conse- 
quently  one  can  obtain  the  lower  bound 

a, nz/e- lower order t e r m s .  

However,  comparably,  good  upper  bounds  are not so easy  to 
oljtain,  since ( v ,  k,   e )  PDS’s with  fixed e > ,  1 are  not so 
abundant. By trial-and-error  search we have  found  the  optimal 
sets  given in Table 11. 

111. THE CASE k = 3 
A .  Construction 

For  the  case k = 3 (and, in fact,  for all k)  there  are  two 
constructions  in [4] which produce  good  solutions.,  These 
constructions  generalize  the  planar  difference  set  construction 
and  the  construction  of Bose and  depend on primitive 
elements in GF(g4) .and GF(q3). Such a  primitive  element 
satisfies  a  quartic or a  cubic  equation with coefficients  in 
GF(q) and this  equation is used to  define  certain  powers of the 
element;  these  powers  are  the  required  integers. Both methods 
are well suited to  computation~and  give, resi>ectively: 

i) a  set of q + 1 integers  whose  triple  sums  modulo u = 
q3 + q2 + q, + 1 are  distinct, .,, 

ii) a  set of q integers  whose  triple  sums  modulo u = q3 - 
1 are  distinct. 

B. Bounds 
It follows  almost  immediately  from  the  remarks  above  that, 

for. all n,  there  exists  a  set  of  integers a0 < a1 < . - < (I, 
whose  triple  sums  are  distinct with a, < n 3  + o(n3) .  We 
have  also  the  following  lower  bound. 

Lemma 3: If bo < a, < * . . < a,, is a set of nonnegative 
integers with all sums ai + aj + ak distinct,  then 

10 a,>- n3. 
57 

Proof (Sketch): The  expressions a, + a, - a,, r 5 s, r 
>; t ,  s # t are  easily seen to  be  distinct and positive.  There  are 

r(r - 1) = (n3  - n) /3  such  expressions, and hence 

1 + 2 + 3 + . . . + ( n 3 - n ) / 3  

3C ( a , + a , - a , ) = C   r ( r -  l)ar(l). 

The set a, - a,, a, - a,- - . , a, - a0 is also  a  set of 
increasing  integers with distinct  triple  sums; and SO, by 
induction a, - a, 2 (ri - r)310/57, or a, < a, - (n - 

- 
n - 
1 

2 

3 

4 

5 

6 

7 

8 

9 - 

n %  
1 1  

2 4  

3 

27 4 

11 

1235 13 

1013 12 

737 11 

591 10 

405 9 

257 8 

156 7 

120 6 

5 5 6  

14 1873 

15 2154 

16 2491 

17 2959 

?== 

I, 1 

),1,2 

3,1,2.4 

0. 1,3,5,6 

0.1,4.6.8.9 

0.1.4.6,10,11.13 

0,1.4.6,10,15.17,18 

0. 1,4 ,6 ,  11, 13, 19,22. 23 

0. 1. 3,8. IO. 14, 20, 25, 28.  29 

TABLE 111 
a ,......... a,,] 
), 1 

3,1.4 

3.1.8.11 

0, 1, 7, 16.27 

0,14,18,45,51,56 

0. 52. 73.97, 106. 114, 120 

0.7. 15, 18,72. 116, 154, 156 

0, 18.20, 49, 86, 128.204. 229,  257 

0.80.81,85.103.223.317,337,368,405 

0. 21.30, 80, 9 1 ,  107, 224,405,563, 567, 591 

0,3,35,7i,  88,101,228,378,582,  591,628,737 

0.45,72.  149,309,355,379,518,538,786,983,1000, 1013 

0,129.152.212,335,349.362,733,854,971,982, 1030, 
1184.1235 

0.43, 152. 221,434,601,  656,748, 1385, 1433, 1581, 1615. 
1766,1823,1873 

0, 104, 137.293.339.,441, 874. 1037, 1157. 1161. 1447, 1772. 
1849,1962,1967,2154 

0. 240,507.  581,915,966, 1143. 1212. 1997. 2015.  2078. 
2193, 2252,2266,2383,2467,2491 

0.29,  124,136,496,611,717,751,  893,1365,1931,2023. 
2051,2248,2346,2471,2952,2959 

r)310/57 if r > 0. Using  this  last  inequality  in (1) now gives 
the  result. 

C.  Numerical Results 
Using  the  constructions  mentioned  above, we have  found, 

as  shown in Table 111, the  suboptimal  sets of integers  whose 
triple.  sums  are  distinct.  The  corresponding  frequency  assign- 
ments  are  therefore  free of both third-order and -fifth-order 
intermodulation  interference. 

It is of interest  to know whether  the  limit  limn+- a,/n3 
exists  and, if so, its  value. By analogy with the  case k = 2,  
one might conjecture  that  (the  optimal) a,, is asymptotic  to n3 .  
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k m m a r y  of the model is given by the following  equations and 
the explanation qf $e various  quantities that follows. 

each  transmitted  sequence. 

r ( t )  = S(x, t ,  I k ( t ) )  + 8 a ( t )  

An Asymptotically Optimal Receiver for Heterodyne 
Opticai Communication 

COSTAS N. GEORGHIADES 

Abstract-An incoherent receiver is derived for the heterodyne optical 
channel under the assumption  of phase coherence at the start of each 
transmitted sequence. The receiver is optimal in the limit of small bit 
intervals with respect to the coherence .time of the laser oscillators, and 
reduces to that proposed by Jeromin and Chan [l] when no initial phase 
coherence is: present. Computer ‘simulaiiens indicate that the small 
amount of performance improvement obtained by resolving an initial 
phase uncertainty may not  justify the extraxomplexity  needed,  for the 
data rates currently considered. 

I .  INTRODUCTION 

Recent developments in semiconductor  lasers and other 
technology-related issues have focused considerable attention 
on heterodyne  optical  systems, both for fiber-optic as well as 
intersatellite link (ISL) applications. 

One of  the main problems  that  faces  heterodyne  system 
designers  is  the  large  phase  noise associated with semiconduc- 
tor  laser  oscillators.  Even with the  advent  of  semiconductor 
laser  technology,  the  laser  phase  noise results in a  spread of 
the  intermediate-frequency (IF) spectrum. of the laser, with 
typical linewidths  in  excess of 10 MHz. Although these 
linewidths are small  compared to the optical carrier frequency, 
they are sometimes too  large  to be neglected compared to the 
data rates of a  few megabits per second  envisiqned for some 
ISL applications. It is  clear then that to avoid excessive 
performance  degradation,  the  receiver design must account for 
laser  -phase noise. In  a  recent publication [l], Jeromin and 
Chan  proposed  that an incoherent  receiver  be  ,used in 
heterodyne  optical  systems with unstable local oscillators. We 
show next that  according to their  channel  model, the asymptot2 

, .  
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In (l) ,  r( t )  is the observation  process, and it is the sum of the 
signal process S and white Gaussian noise of spectral density 
N0/2; Ik ( t )  is the kth modulation sequence of length N 
symbols, with each  symbol of duration T seconds derived in 
general from a  Q-ary  alphabet. The signal process S ,  
described explicitly in (2), is a sinusoid at an electrical 
intermediate  frequency f &  whose  phase  is  corrupted by the 
random process x(t), described by the Ito equation in (3). In 
integral form, (3). implies that x( t )  i s  the sum of a  Wiener 
process W(t)  = ( l / K )  w(t)  modeling the phase instability 
and a random variable 0, uniform  in ( -  ?r, x), modeling the 
absence qf an absolute  phase  reference between transmitter 
and receiver at the  start of each transmitted sequence of length 
N symbols.  Notice  that if the. receiver has provisions for 
resolving the initial phase uncertainty 0,  then ( 2 )  applies with 
x( t )  = W(t) .  The parameter T~ will be  referred to as the 
coherence  time of the  transmitter and receiver osciIlators, and 
it is related to the  transmitter and receiver  linewidths, f r . r  and 
fLr, respectively, by [3] 

Thus, T~ is  a  parameter that can  be obtained relatively easily 
from  experimental  measurements and,describes the quality of 
the  transmitter and receiver  laser pcillators.  The motivation 
for modeling the  laser  phase noise as.a  w-iener process  is  that, 
for this  model,  the  power  spectium of S can  be shown to be 
Lorentzian, which matches the * experiment!ally observed 
Lorentzian spectrum [4]. . .  

3 ,  

111. DERIVATION OF THE  INCOHERENT RECEIVER 
From the  observation  equation (l), it i s  obvious that given 

the  phase noise x( t ) ,  the maximum likelihood functional is 
well known (see, for example, Van Trees [5,  ch. 41) and is 
given by 

. sin [2nfil;t +x( t )  + I j n  ( t ) ]  dt 

-x i:nT-l)T sin2 [2nfiFt+x(t)+l jn(t)]  dt . ( 5 )  
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