
Finding Good Coffee in Paris

Paola Flocchini1, Matthew Kellett2, Peter C. Mason2, and Nicola Santoro3

1 School of Electrical Engineering and Computer Science, University of Ottawa
2 Defence R&D Canada – Ottawa, Government of Canada

3 School of Computer Science, Carleton University

Abstract. Finding a good cup of coffee in Paris is difficult even among
its world-renowned cafés, at least according to author David Downie
(2011). We propose a solution that would allow tourists to create a map of
the Paris Métro system from scratch that shows the locations of the cafés
with the good coffee, while addressing the problem of the tourists losing
interest in the process once they have found good coffee. We map the
problem to the black hole search problem in the subway model introduced
by Flocchini et al. at Fun with Algorithms 2010. We provide a solution
that allows the tourists to start anywhere and at any time, communicate
using whiteboards on the subway trains, rely on much less information
than is normally available to subway passengers, and work independently
but collectively to map the subway network. Our solution is the first to
deal with scattered agents searching for black holes in a dynamic network
and is optimal both in terms of the team size and the number of carrier
moves required to complete the map.

1 Introduction

Paris is filled with cafés, and Parisian culture is synonymous with café culture.
The coffee served in these cafés, however, is not necessarily the best, at least
according to American author and longtime Paris resident David Downie. In
his book Paris, Paris: Journey into the City of Light [11], Downie devotes an
entire chapter to lamenting the dearth of good coffee to be found among the
otherwise fabulous cafés. Assuming that Downie is correct in his assessment,
is it possible to map the locations of the good coffee in the city from scratch?
Parisians can find their own good coffee over time. The problem is really one for
tourists visiting the city. The tourists use maps of the city to guide themselves
from landmark to museum, but most of their trips begin and end on the Paris
Métro subway system. If they had a map of the Métro that showed which stops
are closest to the best coffee, they may have the chance to go just a little out of
their way for a guaranteed good café crème or café express.

Perhaps the tourists themselves can work together to build a map of the
subway system that shows the stops with the best coffee. Tourists, however,
don’t come to Paris for the coffee, they come for the Eiffel tower, or the Louvre,
or the Musée d’Orsay. We have a problem of motivation. The tourists are happy
to help in the mapping until they find a café with good coffee, but once they have

E. Kranakis, D. Krizanc, and F. Luccio (Eds.): FUN 2012, LNCS 7288, pp. 154–165, 2012.
c© Her Majesty the Queen in Right of Canada, as represented by the Minister of National Defence, 2012

Finding Good Coffee in Paris 155

found their café they go back to their sightseeing. The problem is not dissimilar
to finding faults in computer networks. The faults are often caused by computers
that have crashed undetectably or network equipment that has malfunctioned or
been misconfigured. Solutions to mapping these types of networks generally focus
on the mobile agent model, where a mobile agent is a computational entity that
can move autonomously in the network, not unlike our tourists moving around
the subway system. When an agent encounters a fault—or a tourist encounters
a good coffee—it ceases to participate in the solution without the other agents
being aware. A computer or network node with such a fault is referred to as
black hole, while a network link that behaves in the same way is referred to
as a black link. A great deal of research has focussed on finding or mapping
these faults in static computer networks under the names of black hole search
(Bhs) [2–10, 12, 17, 19–22] or dangerous graph exploration (Dge) [13]. The Bhs
problem is for a team of agents to locate the black holes in a network, have at
least one agent survive, and have all surviving agents know the locations of the
black holes. The Dge problem is similar but includes both black holes and black
links.

Unfortunately, the Paris Métro has little in common with static computer
networks. The tourists are not free to walk from station to station as they would
in a more standard network model, they have to wait for the subway train to
arrive. Fortunately, we have a model that captures the dynamics of a subway
network, which was presented at FUN 2010 [14] and is fully described in [15].
Based on urban subway systems like the Paris Métro, the subway model allows us
to model dynamic network environments where the edges of the network appear
in cyclical routes. The edge appearance is abstracted as a subway train or carrier.
The subway model covers a large class of networks that are characterized in [1]
as having a “periodicity of edges” and the model is related to the carrier-only
movement of agents in the periodically varying graphs described in [16, 18]. It
is even possible to solve problems in subway networks where there is much less
information than the average urban subway system; for instance, it assumes that
no map exists and that all stations are more or less identical, two things that
would make a real subway system extremely difficult to use.

In this paper, we map the problem of finding good coffee in Paris to the more
general problem of black hole search in subway networks. Using pseudocode to
specify our algorithm and the coffee problem to illustrate it, we propose a solution
to the black hole search problem that works when the agents start scattered in
the network. Although there has been work on scattered agent black hole search,
it focusses on ring networks [8, 10] and static arbitrary networks [2, 13, 22]. Our
solution is the first to look at black hole search by scattered agents in a dynamic
network.

Like the existing solution for co-located agents [14, 15], our solution for scat-
tered agents uses an optimal number of agents and its complexity matches the
lower bound proven in [15] of Ω(k · n2

C · lR + nC · l2R) carrier moves, where k
is the number of agents, nC is the number of carriers, lR is the length of the
longest route, and carrier moves is a measure specific to the subway model that

156 P. Flocchini et al.

combines how much an agent moves on a carrier and how many carrier moves it
waits for a carrier to arrive.

In the next section, we discuss how the Paris Métro can be mapped onto the
subway model. We describe our algorithm from the perspective of a tourist in
Section 3. We conclude with the correctness and complexity of our algorithm in
Section 4. Due to space limitations, some of the proofs are omitted.

2 Modelling the Paris Métro

Our solution to the black hole search problem is applicable to any network that
meets the basic limitations on exploration and black hole search in the subway
model. In this section, we describe the model and how it applies to the Paris
Métro. Although we describe the model here in terms of Paris’ subway system,
the model could easily be applied to other urban subway systems and, more
importantly, to processes and communications in computer networks that create
the same dynamics described by the model. For instance, it may be possible to
piggyback agent movements on regular network communications, such as web
traffic, routing table updates, or client/server database queries.

The subway model [14, 15] defines a subway network as a collection of stations
or sites and the subway trains or carriers that run between them. Each carrier
follows an ordered route of stops among the sites in its domain. Notice that
there is no concept of a subway line here, which is a collection of trains that for
the most part follow the same route. Each subway train is treated separately.
Formally, we have a set C of nC = |C| carriers and a set S of nS = |S| sites. A
carrier c’s domain S(c) is the set of all the sites it visits and its route R(c) is the
order in which the sites are visited. Let carrier c be a train from the small 7bis
line on the Paris Métro. Its domain is S(c) = {Louis Blanc, Jaurès, Bolivar,
Buttes Chaumont, Botzaris, Place des Fêtes, Pré-Saint-Gervais, Danube} and
the size of its domain is nS(c) = |S(c)| = 8. The route it takes is R(c) = 〈Louis
Blanc, Jaurès, Bolivar, Buttes Chaumont, Botzaris, Place des Fêtes, Pré-Saint-
Gervais, Danube, Botzaris, Buttes Chaumont, Bolivar, Jaurès〉 and the length
of its route is l(c) = |R(c)| = 12. After stopping at stop ri the carrier moves to
stop ri+1, where all operations on the indices are modulo l(c). A carrier moves
asynchronously in that it takes a finite but unpredictable amount of time to reach
the next stop. In other words, we make no assumptions about the trains running
on time. We define lR to be the length of the longest route in the network. We
define a transfer site as any site that is in the domain of two or more carriers.
On the 7bis line, Louis Blanc, Jaurès, and Place des Fêtes are all transfer sites
to trains on other subway lines.

A carrier’s route R(c) defines an edge-labelled directed graph G(c) called a
carrier graph. The nodes of the carrier graph are the stops ri ∈ S(c) of the
route and an edge labelled (c, i + 1) exists between any two stops ri and ri+1,
where all operations on indices and inside labels are modulo l(c). The resulting
graph is always a cycle, often virtual, and shows a view of the network from the
perspective of someone riding on the carrier. Fig. 1(a) shows the carrier graph

Finding Good Coffee in Paris 157

Louis Blanc

Jaurès

Bolivar
Buttes Chaumont

Botzaris

Place des Fêtes

Pré-Saint-Gervais

Danube

Botzaris
Buttes Chaumont

Bolivar

Jaurès

(a) Carrier graph.

Louis Blanc

Jaurès

Bolivar

Buttes Chaumont

Botzaris

Place des Fêtes Pré-Saint-Gervais Danube

(b) Portion of Paris Métro subway
graph.

Fig. 1. (a) Carrier graph and (b) subway graph portion for a carrier on the 7bis line of
the Paris Métro. Node labels are the station names. The green filled nodes are transfer
sites.

for a train on the 7bis line. The entire network can be represented as a edge-
labelled directed multigraph G called a subway graph. The nodes of the subway
graph are the sites si ∈ S and an edge exists between any two sites for each edge
connecting the two sites in the carrier graphs of all the carriers in the network.
The subway graph is essentially a directed version of the subway map provided
for users of major subway systems such as the Paris Métro. Fig. 1(b) shows the
subset of the Paris Métro subway graph that corresponds to a carrier on the
7bis line and, except for the directed links, is similar to the individual line maps
displayed prominently on most subway trains. Note that we omit edge labels
where no ambiguity arises.

Associated with a subway graph G is a transfer graph H(G). The nodes of
the transfer graph are the carriers and an edge exists between any two carriers
for each transfer site they share. Fig. 2 shows the transfer graph for the entire
Paris Métro system. To reduce the complexity of the graph and our examples in
the rest of the paper, we assume that only one carrier is associated with each
subway line. The edge labels are omitted, but the edges associated with one
transfer site—Châtelet in central Paris—are highlighted in thick blue.

The tourists running the algorithm are represented by the set A of k = |A|
agents (or computational entities). The agents start scattered in the network
(like the tourist’s hotels would be) and at varying times. An agent moving in
the system can disembark from a carrier to a site or board a carrier from a site
but cannot directly go from one carrier to another. An agent takes a finite but
unpredictable amount of time to do computations, which practically means that
it can take any amount of time to go looking for coffee. All agents follow the
same protocol as laid out in the next section. They communicate using shared
memory in the form of whiteboards located on the carriers, which they access

158 P. Flocchini et al.

1

2

4

5

6

7

8

9

11

12

13
14

3

7bis

3bis

10

Fig. 2. Transfer graph associated with the Paris Métro assuming one subway train per
line. Node labels are line numbers. Edges represent separate transfer sites with the
edges associated with Châtelet station in central Paris highlighted in thick blue.

in fair mutual exclusion; in other words, on each carrier they must line up and
only one tourist gets the pen at a time.

We now have to deal with the black holes. Formally, a black hole is a site
that eliminates agents disembarking on it without leaving a discernible trace.
Mapping that to our coffee problem, a tourist finding a café with good coffee
near the station she is searching goes back to sightseeing. There are nB < nS

black hole sites. The number of stops a carrier cmakes at black hole sites is called
its faulty load, γ(c), while all the stops at black hole sites of all the carriers is
the network’s faulty load γ(G), or simply γ where no ambiguity arises.

The subway black hole search (Bhs) problem is for a team of agents to explore
a subway graph and within finite time to determine which stops are at black
hole sites. We say that the problem is solved if at least one agent survives, all
surviving agents enter a terminal state, and all surviving agents know which
stops are black holes.

The following additional assumptions are proven in [15] to be necessary for any
solution to the Bhs problem in the subway model. Each carrier has a distinct
id. The agents know the number of carriers nC . Each transfer site is labelled
with the number of carriers stopping there. Since the agent knows the number
of carriers and can wait for all the carriers to pass by, we assume that each
transfer site is also labelled with the ids of the carriers. The additional cost for
this assumption is not significant. We assume that the standard assumptions for
Bhs apply: the agent’s starting site is safe (not a black hole), the transfer graph
remains connected when the black holes are removed, there are more agents than
faulty stops (k > γ), and the agents know the number of faulty stops γ.

Because the whiteboards themselves are moving on the carriers, we make the
following additional assumptions. We assume that there is a function rcurr (c)
that returns a distinct id for the current stop when the agent is on carrier c.

Finding Good Coffee in Paris 159

Since the agent can record every stop during the carrier’s traversal, we assume
that there is a second function R(c) that returns the set of all stops on the route,
which can also be used to determine the route’s length.

The model is slightly different from the reality of the Paris Métro. For instance,
we make no assumptions about the availability of a map of the system or the
agents being able to distinguish between stations before disembarking, two things
that most subway designers go out of their way to provide. Nevertheless, the
subway model describes a large class of networks that include—but are not
limited to—urban subway systems, and the lack of these assumptions makes the
solution we describe in the next section more widely applicable.

3 Finding the Good Coffee

In this section, we describe our solution to the Bhs problem in the subway model
from the perspective of a tourist following our algorithm to find good coffee. We
start with an overview and then describe briefly each type of task performed by
the tourist. We provide a formal and complete specification of the algorithm in
pseudocode in Algorithms 1-4.

To get an intuition of how the algorithm works, we start with an overview. The
tourists work independently but collectively to find when a carrier stops at a site
near a café with good coffee, which are the black holes. The tourists each carry
a map, initially blank, that records what they know about the subway network.
As the tourists move around the network, they synchronize their maps with the
maps kept on whiteboards on the subway trains, which are the carriers. Any
new carrier that they learn about because of this merging of maps is included
in the next iteration of their search. At the start of each iteration, each tourist
constructs a spanning tree on the transfer graph of the subset of the subway
graph in her map. The tourist then traverses that tree from carrier to carrier
looking for work. Work in the algorithm is the visiting of a previously unexplored
stop to look for good coffee. The work is coordinated using the whiteboard on
the carrier to ensure that at most one tourist searches each stop of a carrier’s
route. If the tourist finds no carriers with unexplored stops and her map does
not yet contain all the carriers, she waits on her home carrier until she is notified
of new carriers to be searched. A tourist terminates the algorithm when her map
contains all the carriers and she found no new work on her last search.

The algorithm starts with the tourist visiting the station closest to her hotel,
her starting site. She takes the first carrier that arrives at the site and this
becomes her home carrier. If she is the first tourist running the algorithm to
ride the carrier, she sets up the whiteboard. Once that is done, the tourist starts
looking for work. Notice that we ignore the fact that most subway stations
have separate platforms for trains on separate lines and many have trains with
multiple cars. Algorithm 1 shows the pseudocode for starting Algorithm Find
Good Coffee.

Each time our tourist finds a carrier that has not been previously visited, she
sets up the whiteboard with a map and the information needed to search that

160 P. Flocchini et al.

Algorithm 1. Find Good Coffee

Agent a awakes on a safe site s.

1: a.M ← info about s � Agent’s map M of network
2: board first carrier cs arriving at s � Board home carrier cs
3: if whiteboard is blank then
4: Initialize Work Info (cs)
5: end if
6: Find Work

carrier’s stops. There are three lists of stops on the whiteboard: unexplored stops,
stops being explored, and explored stops. The list of unexplored stops initially
includes all the carrier’s stops except the one from which the tourist boarded
the carrier, which is added to the list of explored stops. The list of stops being
explored is initially empty. The pseudocode for initializing a carrier’s whiteboard
is in Algorithm 2.

Our tourist searches for work by calculating a spanning tree on the transfer
graph of her map. She traverses this tree looking for carrier stops remaining in
the list of unexplored stops on its whiteboard. If she finds such a carrier, she
works on the carrier using the procedure outlined below. During the traversal,
she synchronizes or merges her map with the maps of all the carriers she passes.
Since all tourists do this synchronization, at the end of her traversal she checks
to see if there are carriers in her map that are not in the tree she has been
traversing. If so, she does another traversal. If not, after one more traversal to
check for new work, she waits on her home carrier. She periodically checks the
map on her home carrier until new carriers appear and then she continues to look
for work. She terminates the algorithm when her map contains all the carriers
and there is no work left. The termination is implicit with the algorithm being
complete when the last tourist terminates. The termination can be made explicit
by having every tourist wait until its home carrier’s map shows that the number
of stops being explored is equal to the number of faults, γ, which is known. The
pseudocode for finding work is in Algorithm 3.

Algorithm 2. Initialize work information

Agent a is initializing the whiteboard of carrier c with information needed to do
work on the carrier.
Functions used:
� R(c) returns the set of stops for current carrier c
� rcurr (c) returns the current stop on current carrier c

7: procedure Initialize Work Info (carrier c)
8: U ← R(c) \ rcurr(c) � Set of c’s unexplored stops
9: D← ∅ � Set of c’s stops being explored
10: E ← rcurr(c) � Set of c’s explored stops
11: M ← a.M � Carrier’s map of network
12: end procedure

Finding Good Coffee in Paris 161

Algorithm 3. Find work

Agent a is looking for work starting from its home carrier cs. The agent knows nC ,
the number of carriers, which is needed for termination. The operator ⊕ denotes
the merger of two maps.
Functions used:
� H(M) returns the transfer graph of a map M
� T (H) returns a spanning tree of a transfer graph H
� C(M) or C(T) returns the set of carrier ids in a map M or tree T

13: procedure Find Work
� Main loop

14: repeat
15: a.worked ← false � Work flag
16: M ←M ⊕ a.M ; a.M ← M ; � Synchronize maps M and a.M
17: a.T ← T (H(a.M)) � Compute spanning tree of transfer graph of agent’s

map
18: while depth-first traversal of a.T do � Preorder traversal

� On each carrier c in the traversal
19: a.M ← a.M ⊕ info about carrier c
20: if U �= ∅ then
21: a.worked ← true
22: Do Work (c)
23: end if
24: M ←M ⊕ a.M ; a.M ←M ; � Synchronize maps M and a.M
25: take transfer link to next carrier in traversal of a.T
26: end while

� Back on home carrier cs
27: if ¬a.worked ∧ C(a.M) = C(a.T) ∧ |C(a.M)| < nC then � No new work
28: wait until |C(a.M)| < |C(M)| � Awake periodically to check cs’s map

M
29: end if
30: until ¬a.worked ∧ C(a.M) = C(a.T) ∧ |C(a.M)| = nC

31: end procedure

When our tourist finds a carrier with unexplored stops, she works on it until
there are no more unexplored stops or until she finds a stop with good coffee. To
explore a stop, she moves it from the list of unexplored stops to the list of stops
being explored. She then disembarks and exits the station looking for a café with
good coffee. If she finds one, she enjoys the coffee and has no incentive to spend
the rest of her vacation traipsing around the Paris Métro. If she does not find
one, she returns to the station, gets back on the carrier where she is working,
and moves the stop from list of stops being explored to the list of explored stops.

The most complicated part of the algorithm is what happens when the stop
the tourist explores is a transfer site. We want to ensure that we add any new
carriers that might stop at the site. The tourist boards any carrier that is not in
her map and either sets up its whiteboard or merges her map with the one on the
carrier’s whiteboard. After one circuit of the carrier’s route, she disembarks back
onto the transfer site. She does this for every carrier not in her map. She then

162 P. Flocchini et al.

Algorithm 4. Do work

Agent a is working on carrier c.

32: procedure Do Work (carrier c)
33: while U �= ∅ do
34: M ←M ⊕ a.M ; a.M ← M ; � Synchronize maps M and a.M
35: choose a stop r ∈ U
36: U ← U \ {r} � Remove r from the set of unexplored stops
37: D ← D ∪ {r} � Add r to the set of stops being explored
38: disembark when rcurr (c) = r

� If not eliminated by black hole
39: a.M ← a.M ⊕ info about r

� If r is transfer site check the carriers passing by for information
40: for each carrier ci /∈ a.M stopping at r do � If r is a transfer site
41: board ci
42: if whiteboard is blank then
43: Initialize Work Info (ci)
44: else
45: U ← U \ {r} � Remove r from set of unexplored stops
46: E ← E ∪ {r} � Add r to set of explored stops.
47: end if
48: M ←M ⊕ a.M ; a.M ←M ; � Synchronize maps M and a.M
49: disembark when rcurr (ci) = r
50: end for
51: board c
52: D ← D \ {r} � Remove r from the set of stops being explored
53: E ← E ∪ {r} � Add r to the set of explored stops

� If previously unknown carriers found distribute new map
54: if |C(a.M)| > |C(M)| then
55: M ←M ⊕ a.M ; a.M ←M ; � Synchronize maps M and a.M
56: a.Tnotify = T (H(a.M)) � Compute spanning tree for notification
57: while depth-first traversal of a.Tnotify do � Preorder traversal

� On each carrier in the traversal
58: a.M ← a.M ⊕ info about carrier
59: M ←M ⊕ a.M ; a.M ←M ; � Synchronize maps M and a.M
60: take transfer link to next carrier in traversal of a.Tnotify

61: end while
� Back on carrier c

62: end if
63: end while
64: end procedure

boards the carrier that she is working from and compares her map to the one on
the carrier. If her map has new carriers then there may be some agent waiting
to find out about them. After synchronizing her map with the carrier’s, she
calculates a new spanning tree—separate from the one she had calculated to find
work—and traverses the new tree to synchronize her map with all the carriers’
maps. When she gets back to the carrier she is working from, she continues her
work and traversal as normal. If there were new carriers found, she will include

Finding Good Coffee in Paris 163

them in the spanning tree she calculates for her next traversal. The pseudocode
for doing work is in Algorithm 4.

4 Proving It Works on Every Subway-Like Network

We assert a series of lemmas that leads to the theorem about the correctness of
our algorithm. First, we show that the number of agents that can be eliminated
by a black hole stop is bounded.

Lemma 1. Let r ∈ R(c) be a black hole. At most one agent is eliminated by
stopping at r when riding carrier c ∈ C.

Since we have more agents than faults, k > γ, we get the following.

Lemma 2. There is at least one agent alive at all times.

An agent does work by visiting a previously unexplored stop.

Lemma 3. Within finite time, an agent that undertakes work completes it.

Next, we look at an agent looking for work.

Lemma 4. Within finite time, an agent looking for work either finds it, waits
on its home carrier, or terminates the algorithm.

While working and terminating are useful, waiting would seem to be something
that agent could do indefinitely. We prove that that does not happen.

Lemma 5. Within finite time, a waiting agent learns of a new carrier.

Proof. By Lemma 4, we know that a waiting agent found neither work nor new
carriers on its last traversal. This situation can only arise if all the links leading
out of the subgraph described by the agent’s map are either explored or being
explored. If the waiting agent’s map contained all the carriers, it would have
terminated, so there must be carriers that do not appear in the agent’s map.

There must be at least one stop being explored that is a safe transfer site
that connects to a carrier that is not in the map. By contradiction, assume that
no such transfer site exists. All the stops being explored must be black holes,
safe non-transfer sites, or transfer sites that do not connect to new carriers.
However, that would mean that the transfer graph of the network is disconnected,
a contradiction.

By Lemma 3, we know that a working agent exploring a transfer site that
connects to new carriers finishes its work within finite time. Its work includes
synchronizing its map with the map of every carrier in the subgraph its map
describes. Since the working agent’s map has been synchronized with the map
of the carrier from which it was working, and that carrier’s map includes the
waiting agent’s home carrier cs because it was synchronized with the map of the
waiting agent on its last traversal, the working agent within finite time must
update cs with a map that contains new carriers. Hence, the lemma follows. ��
In fact, if work is available, it gets done.

164 P. Flocchini et al.

Lemma 6. If there is work available, some agent eventually does it.

As a consequence, we get the following corollary:

Corollary 1. All carriers are eventually added to each carrier’s map.

We can now state the correctness of our algorithm based on the preceding lem-
mas. Note that our algorithm uses an optimal number of agents.

Theorem 1. Algorithm Find Good Coffee correctly and in finite time solves the
mapping problem with k ≥ γ(G) + 1 agents in any subway graph G.

We can now assert an upper bound on the complexity of our solution.

Theorem 2. Algorithm Find Good Coffee solves black hole search in a con-
nected dangerous asynchronous subway graph in O(k · n2

C · lR + nC · l2R) carrier
moves in the worst case.

The lower bound on any solution to the Bhs problem in the subway model is
proven in [15] to be Ω(γ(G) · n2

C · lR + nC · l2R) carrier moves. The optimality
of the protocol with respect to the number of agents and the number of carrier
moves now follows.

Theorem 3. Algorithm Find Good Coffee is agent-optimal and move-optimal.

References

[1] Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-Varying Graphs
andDynamicNetworks. In: Frey,H., Li, X., Ruehrup, S. (eds.) ADHOC-NOW2011.
LNCS, vol. 6811, pp. 346–359. Springer, Heidelberg (2011)

[2] Chalopin, J., Das, S., Santoro, N.: Rendezvous ofMobile Agents inUnknownGraphs
with Faulty Links. In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 108–122.
Springer, Heidelberg (2007)

[3] Cooper, C., Klasing, R., Radzik, T.: Searching for Black-Hole Faults in a Network
Using Multiple Agents. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS,
vol. 4305, pp. 320–332. Springer, Heidelberg (2006)

[4] Cooper, C., Klasing, R., Radzik, T.: Locating and Repairing Faults in a Net-
work with Mobile Agents. In: Shvartsman, A.A., Felber, P. (eds.) SIROCCO 2008.
LNCS, vol. 5058, pp. 20–32. Springer, Heidelberg (2008)

[5] Czyzowicz, J., Kowalski, D., Markou, E., Pelc, A.: Complexity of searching for a
black hole. Fund. Inform. 71(2,3), 229–242 (2006)

[6] Czyzowicz, J., Kowalski, D., Markou, E., Pelc, A.: Searching for a black hole in
synchronous tree networks. Combin. Probab. Comput. 16(4), 595–619 (2007)

[7] Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Searching for a black hole
in arbitrary networks: Optimal mobile agents protocols. Distrib. Comput. 19(1),
1–19 (2006)

[8] Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Mobile search for a black hole
in an anonymous ring. Algorithmica 48(1), 67–90 (2007)

Finding Good Coffee in Paris 165

[9] Dobrev, S., Santoro, N., Shi, W.: Locating a Black Hole in an Un-oriented Ring
Using Tokens: The Case of Scattered Agents. In: Kermarrec, A.-M., Bougé, L.,
Priol, T. (eds.) Euro-Par 2007. LNCS, vol. 4641, pp. 608–617. Springer, Heidelberg
(2007)

[10] Dobrev, S., Santoro, N., Shi, W.: Using scattered mobile agents to locate a black
hole in an un-oriented ring with tokens. Internat. J. Found. Comput. Sci. 19(6),
1355–1372 (2008)

[11] Downie, D.: Paris, Paris: Journey into the City of Light. Broadway (2011),
ISBN 978-0307886088

[12] Flocchini, P., Ilcinkas, D., Santoro, N.: Ping pong in dangerous graphs: Optimal
black hole search with pebbles. Algorithmica 1–28 (2011)

[13] Flocchini, P., Kellett, M., Mason, P.C., Santoro, N.: Map construction and ex-
ploration by mobile agents scattered in a dangerous network. In: Proceedings of
IPDPS 2009, pp. 1–10 (2009)

[14] Flocchini, P., Kellett, M., Mason, P.C., Santoro, N.: Mapping an Unfriendly Sub-
way System. In: Boldi, P. (ed.) FUN 2010. LNCS, vol. 6099, pp. 190–201. Springer,
Heidelberg (2010)

[15] Flocchini, P., Kellett, M., Mason, P.C., Santoro, N.: Searching for black holes in
subways. Theory of Computing Systems 50(1), 158–184 (2012)

[16] Flocchini, P., Mans, B., Santoro, N.: Exploration of Periodically Varying Graphs.
In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp.
534–543. Springer, Heidelberg (2009)

[17] Glaus, P.: Locating a Black Hole without the Knowledge of Incoming Link. In:
Dolev, S. (ed.) ALGOSENSORS 2009. LNCS, vol. 5804, pp. 128–138. Springer,
Heidelberg (2009)

[18] Ilcinkas, D., Wade, A.M.: On the Power of Waiting When Exploring Public Trans-
portation Systems. In: FernàndezAnta,A., Lipari, G., Roy,M. (eds.) OPODIS 2011.
LNCS, vol. 7109, pp. 451–464. Springer, Heidelberg (2011)

[19] Klasing, R., Markou, E., Radzik, T., Sarracco, F.: Hardness and approximation
results for black hole search in arbitrary networks. Theor. Comput. Sci. 384(2-3),
201–221 (2007)

[20] Klasing, R., Markou, E., Radzik, T., Sarracco, F.: Approximation bounds for black
hole search problems. Networks 52(4), 216–226 (2008)

[21] Kosowski, A., Navarra, A., Pinotti, M.C.: Synchronization Helps Robots to Detect
Black Holes in Directed Graphs. In: Abdelzaher, T., Raynal, M., Santoro, N. (eds.)
OPODIS 2009. LNCS, vol. 5923, pp. 86–98. Springer, Heidelberg (2009)

[22] Shi, W.: Black Hole Search with Tokens in Interconnected Networks. In:
Guerraoui, R., Petit, F. (eds.) SSS 2009. LNCS, vol. 5873, pp. 670–682. Springer,
Heidelberg (2009)

	Finding Good Coffee in Paris
	Introduction
	Modelling the Paris Métro
	Finding the Good Coffee
	Proving It Works on Every Subway-Like Network
	References

