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Abstract
Given two solid geometric figures on the plane (eg. rectangles) we say that  A  fits in  B  (denoted  A

< B)  if there is a translation, a rotation  and (if needed) a reflection that maps  A  into  B.  Given a family

F   of geometric figures, we say that the relation  "<"  on the elements of  F  is reducible to vector

dominance if there exists an  n  and a mapping  f:F ÆRn  such that for  A,BŒF  A < B  iff f(A) < f(B)

coordinate by coordinate.  A recent result states that if  F  is the set of all rectangles,  "<" is not reducible

to a vector dominance relation regardless of the finite value of  n.  In this paper we extend this result to

other families of geometric figures and to a partial order obtained from quadratic polynomials.
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1.  Introduction
In recent years, the study of relationships between geometry and partial orders has

attracted the attention and the interest of many researchers from different fields, as
witnessed by the large number of results on the subject published in the last few years
(for a survey, see [16]). Depending on whether the geometric objects under
considerations are fixed in the plane (the "static" case) or can be moved in the plane
through translation, rotation or even reflection (the "dynamic" case), different problems
arise and have been studied. The majority of the investigations in both cases have
focused on "simple" geometric figures such as rectangles [1,7,11,12,16], polygons
[3,13,15,16], circles [2,14,15,16], angular regions [5,6,7,13,16], etc.

In this paper, we continue the investigation of the "dynamic" case started in [12].
Specifically, the following question will interest us here :

Given a class of geometric figures, how many real variables are required to
parameterize the class in such a fashion that one figure from the class is contained
in another (perhaps after translation, rotation and even reflection) if and only if the
parameter values for the first figure are no greater than those for the second
figure?  In particular, when will finitely many parameters suffice?

or equivalently:
Is it possible to reduce geometric containment to vector dominance?

The problem of determining whether a figure is contained in another is of principal
interest in computational geometry; thus, an answer to the above questions would be of
immediate practical relevance due to the existence of efficient computational methods
for determining dominance relationships among vectors [8,9]. Furthermore, reduction
to vector dominance has already been successfully employed to solve other basic
geometric problems [4,10,17]. Also, it is not hard to visualize applications of positive
results to packing problems as well as others.

For some families H of figures, this reduction can be easily accomplished. For
example, ƒ(A) defined as the area of A, will work for the family Pk of regular polygons
with k≥3 sides, as well as for the family  C of circles. A more interesting example is the
family  E of ellipses: for each EiŒE, define ƒ(Ei)=(xi,yi) where xi and yi denote the
length of the minor and major axis of Ei, respectively; it is an easy to show that Ei can
be contained in Ek if and only if ƒ(Ei)≤ƒ(Ek). Similiarly, two parameters (namely, the
lengths of the diagonals) suffice also for rhombi.

In the opposite direction, it was shown that finitely many parameters do not
suffice for plane rectangles [12]; this result also implies that a finite reduction does not



exist for convex polygons with at least k≥4 sides. On the other hand, in the same paper
it was also shown that a reduction is possible using a countable number of parameters.

Many families of figures commonly considered do have "natural" finite
parameterizations, but these may not faithfully reflect the containment relation.
Typically these parameterizations do possess natural monotonicity and homogeneity
properties (example:  length and width for rectangles).  In section 2 parameterizations
with these properties (denoted (M) and (H)) are studied, and used to provide an abstract
version of the rectangle theorem; it is then shown how the proof of the (negative)
rectangle theorem in [12]  can be formulated as an instance of the abstract result.  In
section 3 the negative results are extended from rectangles to some other classes of
figures, including right circular cylinders and isosceles triangles; in particular, several
instances are given using a known low-dimensional negative result (for instance,
rectangles) to obtain a new higher-dimensional one (for instance, cylinders).  In section
4 the abstract theorem is used to show that a certain natural algebraic partially ordered
set cannot be faithfully represented by finitely many parameters.  Finally, section 5
echoes section 4 of [12], displaying a representation of the family of (congruence
classes of) non-empty compact (= closed and bounded) sets in Rk by countably many
parameters which are continuous in an appropriate sense.

2.  Preliminaries, and the abstract theorem.

If  x = (xi) iŒI and y = (yi) iŒI are vectors in RI for some non-empty index set I,
write  x  s  y  provided xi ≤ yi  for all iŒI; s is a partial order known as "vector
dominance" or "Pareto dominance".

Let P = (P, t) be any partially ordered set (or poset).   Thus P is a non-empty set
and t is a transitive binary relation on P such that for elements a, b of P, a t b and b t a
if and only if a=b.  Any injection j: PÆRI induces a partial order tj on j(P)={j(a):aŒP}
by the rule  j(a) tj j(b)  iff a t b.  If tj coincides with the restriction of s to j(P), we say
that  j reduces t to vector dominance in RI.  It is easy to see that any partial order can
be reduced to vector dominance in RI for some (possibly infinite) index set I.  Indeed, if
P = (P,t) is any poset, take I = P and define j: P∅{0,1} I Ã RI by j(a)i = 0 if a t i and
j(a)i = 1 otherwise; clearly a t b implies j(a) s j(b), while if a t b is false, then j(a)b = 1
while j(b)b = 0, so j(a) s j(b) is false.  Note that the same construction of j will work if
instead of I = P we take I = S for any subset S of P which is separating in the sense that



a≠b implies {i Œ S: a t i}  ≠ {i Œ S: b t  i} ; this observation will be of some use later.

Congruence is an equivalence relation on the class of non-empty subsets of Rk.
Typically, our poset P = (P,t) will be designed so that each element a of P is a
congruence class of compact subsets of some fixed Rk, and a  t b means that some
representative for a is a subset (in Rk) of some representative for b; this usage differs
slightly from that in [12], but would not if in [12] rectangles and ellipses had been
defined so as to include their interiors (and not just their boundary curves).  This partial
order t will be denoted k and called "containment" (for the family P).  Thus our main
problem can be stated as follows:  When can the containment partial order be reduced
to vector dominance in Rk for some finite k?

We shall not in this paper explore "containment" using various natural sub-
equivalence relations of congruence obtained by starting with a closed subgroup G of
the group of isometries of Rk; for instance, one choice of G leads to orientation-
preserving congruence (which changes nothing for most of the classes of figures we
shall study).

We now state the abstract theorem.  Fix a positive integer k and a cone K in

Rk
+ = {x = (x1,...,xk) Œ Rk : xi > 0 i=1,...,k} .

(That K is a cone means that K ≠ ø and t x Œ K whenever x Œ K and t > 0).  We
consider a partial order  n on K which satisfies the following monotonicity and
homogeneity hypotheses:

(M)  x Œ K, y Œ K, x s y together imply x n y.

(H)  x Œ K, y Œ K, x n y, t > 0 together imply tx n ty.

Theorem 1.  Suppose that K is a cone in Rk and n is a partial order on K that satisfies
(M) and (H).   Suppose that there are distinct points z, w in K and sequences (x(n)), (y
(n)) in K such that:

(1.1)  x(n) n w and z n y(n) n w for all n.

(1.2)  x(n) n y(n) is false for all n.



(1.3)  x(n)∅z and y(n)∅w in Rk as n∅•.

Then n is not reducible to vector dominance in Rm for any finite m.

Proof.  Suppose, to obtain a contradiction, that j = (f1,...,fm): KÆRm reduced n to
vector dominance in Rm  for some finite m.  Each of the 2m functions tÆfi(tz),
tÆfi(tw) is non-decreasing for 0 < t < • by (M), so they have a common point of
continuity t0.  By (H) we may replace x (n), y (n), z , w  by t0x(n), t0y(n), t0z , t0 w
respectively without affecting the hypotheses, so we may suppose t0 = 1.  Given a
positive number e, there is a positive number d < 1 such that  |t-1|  ≤ d implies |fi(tz) -
fi(z)| < e and |fi(tw) - fi(w)| < e for all i.  Thus by (M)

U = {x Œ Rk: (1-d)z s x s (1+d)z}

and

V = {y Œ Rk: (1-d)w s y s (1+d)w}

are neighborhoods of z and w respectively in Rk such that x Œ U«K implies |fi(x) - fi
(z)| < e for all i, and y Œ V«K implies  |fi(y) - fi(w)| < e for all i.  In other words, z
and w are points of continuity of each fi as a function of a (k-dimensional) variable
from K.

By (1.1) and the properties of j,

fi(x(n)) ≤ fi(w)  and fi(z) ≤ fi(y(n))≤ fi(w)

for all i and n.  Since z ≠ w, j(z) ≠ j(w), so there is a non-empty set A of indices in
{1,...,m}  such that

fi(z) < fi(w) "   i Œ A

fi(z) = fi(w)   " i Œ {1,...,m}\A.

By this and (1.1)



(1.4)  fi(x(n))≤ fi(w) = fi(y(n)) = fi(z)    i Œ {1,...,m}\A

holds for every n.  Let 2e = min {|fi(w) - fi(z)|: i Œ A}  > 0.  By (1.3) and continuity of
each fi at z and at w, if n is large enough we have

 |fi(x(n)) - fi(z)| < e and  |fi(y(n)) - fi(w)| < e   " i,

so if i Œ A then
 fi(x(n)) - fi(y(n)) < (fi(z) + e) - (fi(w) - e) = 2e - ( fi(w) - fi(z)) ≤ 0,

 so fi(x(n)) < fi(y(n)); with (1.4) this shows that j(x(n)) s j(y(n)), that is, x(n) n  y(n) for
large n, contradicting (1.2).

 []
We shall now outline the proof of the rectangle containment theorem in [12] in

such a way that Theorem 1 is the central device; this will provide a model for our
proofs below.  By a "rectangle" we mean the congruence class R of {(x,y) Œ R2: 0 ≤
x ≤ W,  0 ≤ y ≤ L}  for some point jr(R) = (W,L) Œ R2

+ with W ≤ L; r denotes the set
of all rectangles. The map jr : rÆ R2 converts containment k on r into a partial order
nr = kjr  on the cone K= {(W,L) Œ R2

+ : W ≤ L} , and n= nr clearly satisfies (M) and

(H).  It only remains to provide points in K which satisfy (1.1)-(1.3).  This is
accomplished by analyzing the "containment curve" of a square.  In our language,
take any positive number S and let z = ((√2-1) S,S), w = (S,S).  Among the points x Œ
K which satisfy x nr w but x ≠ w, the nr-maximal ones turn out to be the points xu =
(u,  √2S - u) for 0 < u < (√2-1)S, and in fact x nr w is equivalent to x s xu for some u
or x s w.  In particular, if 0 < u(n) < (√2-1)S ≤ v(n) < S, u(n)Æ(√2-1)S and v(n)ÆS, we
may take x(n) = (u(n), √2S-u(n)) and y(n) = (v(n),S) to get (1.1)-(1.3).

3.  Application to other figures.

We wish to apply Theorem 1 to several additional classes of figures (besides
rectangles), each exhibiting somewhat different features.  We begin with cylinders.

Theorem 2.  Containment for (congruence classes of) right circular cylinders in R3 is
not reducible to vector dominance in Rm for any finite m.



Proof.  The theorem will follow from the stronger result, which we will state more
formally and prove below, that containment for rectangles and containment for
cylinders induce the same partial order on the cone K = {(W,L) Œ R2

+: W ≤ L} .  By
a "right circular cylinder" we mean the congruence class C of {(x,y,z) Œ R3: x2 + y2 ≤
(W/2)2,   |z|  ≤ L/2}  for some point J x(C) = (W,L) Œ R2

+; x is the set of such C.  The
map jx : xÆR2 converts containment k on x into a partial order nx = kj on R2

+, and n
= nx satisfies (M) and (H).  We shall prove:

(2.1)  The restriction of nx to K coincides with nr.

Let (Wi, Li) Œ K be given (i=1,2).

First, suppose (W1, L1) nx (W2, L2).  Let  gi be a  representative for jx-1 (Wi, Li)
(i=1,2) such that g1 Ã g2.  We may assume that the central axes of g1 and g2 both lie in
planes parallel to
the xy-plane.  Let  ri be the set of points in the xy-plane obtained by projecting all the
points of gi  perpendicularly onto the xy-plane (i=1,2).  Then r1 Ã  r 2 and r i is a
representative for jr-1 (Wi, Li),  so (W1, L1 ) nr (W2, L2).

Conversely, suppose (W1, L1) nr (W2, L2).  We may suppose that (W1, L1) is s-
maximal in K with respect to this property, that is, that (W,L) Œ K, (W,L) nr (W2, L2)
and (W1, L1) s (W, L) imply  (W, L) = (W1, L1).  From [12] W1 ≤ W2.  If  (W1, L1) =
(W2, L2) there is nothing to prove, so we may  assume (W1, L1) ≠ (W2, L2), hence s-
maximality of (W1, L1) forces L1 > L2, then W1 < W2. Let ri be a representative of jr-

1 (Wi, Li) (i=1,2) such that  r1 Ã r2.  We may assume that the four vertices of r2 lie at
(+ W2/2, + L2/2). By [12] the interior of each edge of r2 contains one vertex of r1,
hence r1 (like r2) is centered at the origin.  We may suppose that the midpoints of the
short (length W1)  sides of r1 lie in (the interior of) the first and third quadrants, so on
a line lq = {(x,y) Œ R2: y cos q = x sinq}  for some q,
0 < q<  p/2.  Let g1 be obtained by rotating r1 about lq, and g2 by rotating r2 about the
y-axis.  Then gi is a representative for jx-1 (Wi, Li), and we need only check that g1  Ã
g2.  While this may seem geometrically obvious, it does deserve a proof, since it
genuinely depends on the particular nature of the inclusion r1 Ã  r2.

First, computing the x-coordinate of the right-most vertex of r1  and the y-
coordinate of the top-most vertex of r1 gives the equations



(L1/2) cosq + (W1/2) sinq = W2/2

(L1/2) sinq + (W1/2) cosq = L2/2.

Solving for cosq and sinq gives

(2.2)  cosq = W2 L1 - W1 L2     ,      sinq=  L1 L2 - W1 W2    .  
                L1

2 - W1
2                                 L1

2 - W1
2

A typical point of g1 has the form

(x,y,z) = (t cosq + u sinq, t sinq - u cosq, v)
where

(2.3)    ˙ t˙ ≤ L1/2,    u2 + v2 ≤ (W1/2)2.

To prove that (x,y,z) Œ g2 amounts to showing that if (2.3) holds then

(2.4)   ˙ t sinq - u cosq ˙ ≤ L2/2,

(2.5)   (t cosq + u sinq) 2 + v2 ≤ (W2/2)2.

˙ t sinq - u cosq˙ ≤ ˙ t˙ sinq + ˙ u˙ cosq ≤ (L1/2) sinq + (W1/2) cosq = L2/2 gives
(2.4).  For (2.5), begin with

(t cosq + u sinq)2 + v2 ≤ (˙ t˙ cosq + ˙ u˙ sinq)2 + (W1/2)2 - u2

=  t2 cos2q + 2˙ t˙˙ u˙ cosq sinq - u2 cos2q + (W1/2)2

≤ (L1/2)2 cos2q + 2(L1/2)˙ u˙ cosq sinq - u2 cos2q + (W1/2)2.

Varying ˙ u˙, this increases until ˙ u˙ = (L1/2) tanq, that  is (using (2.2)) until
˙ u˙ = (L1/2)[(L1L2-W1W2)/(W2L1-W1L2)], which is at least as great as W1/2.  Since
˙ u˙ ≤ W1/2 by (2.3), we have



(t cosq + u sinq)2 + v2 ≤

(L1/2)2 cos2q + 2(L1/2) (W1/2) cosqsinq - (W1/2)2 cos2q + (W1/2)2 =

 ((L1/2) cosq + (W1/2) sinq)2 = (W2/2)2

proving (2.5), hence (2.1) and the theorem.
[]

It is possible to prove the theorem with a little more economy by not proving the
full strength of (2.1).  We shall now consider triangles.

Theorem 3.  Containment for (congruence classes of) isosceles triangles in R2 is not
reducible to vector dominance in Rm for any finite m.

Proof.  By an "isosceles triangle" we mean the congruence class of T = {(x,y) Œ R2 :
0 ≤ y ≤ H, ˙x˙ ≤ (W/2)(1- y/H)}  for some point jt(T) = (W,H) Œ R2

+; t is the set of
isosceles triangles, and jt : tÆ R2 converts contaiment  k on t  into a partial order nt

= Kjt on R 2
+ which satisfies (M) and (H).   We shall show that nt  satisfies the

hypotheses of Theorem 1, so is not reducible to vector dominance in any Rm, by
examining the "containment curve" for an equilateral triangle.

Fix S > 0 and let w  =(S, (√3/2)S), so jt-1(w) is the congruence class of
equilateral triangles of side S.  For 0 < W ≤ S let h(W) = max {H : (W,H) nt w} , so
(W, h(W)) nt w and (√3/2) S ≤ h(W) ≤ S.  Let W0 = √3 S tan p/18.  Lengthy but

unenlightening computations show that h(W) has one of the following two forms,
depending on the value of W:

(3.1)  If W = u ≤ W0 then

h(W) = (√3/2) S cosb/cos (p/6 - 2b)

where b = b(u) satisfies     0 < b ≤ p/18 and



u = √3 S sin b/cos (p/6 - 2b).

(3.2) If W = v ≥ W0 then h(W) = (√3/2)S.

If W = W0 the two formulae for h(W) agree.  In case (3.1) b(u) is half the "odd" angle
of jt-1 (W,h(W)), and increases with W=u.  (The form of any inclusion tw Ã tSof a
representative for jt-1(W,h(W)) in a representative for jt-1(w) is easily specified:  the
"odd" vertex of tW must coincide with a vertex of tS, and its opposite side in case
(3.2), or one of its adjacent sides in case (3.1), must lie along a side of tS).

Let xu = (W,h(W)) in case (3.1), let yv = (W,h(W)) in case (3.2), and let z = x
W0 = yW0.  Assuming u ≠ W0, one verifies that xu nt x nt w iff x = xu or x = w or u =
W0 and x = yv for some v, and that yv nt x  nt w iff x = yv', for some v' ≥ v.  Thus
taking sequences (u(n)), (v(n)) with 0 < u(n) < W0 ≤ v(n) < S, u(n) Æ W0, and v(n) Æ S,
we may take x(n) = x u(n) and y (n) = yv(n) to get (1.1)-(1.3).

 []

We shall close this section with some remarks on lifting negative results from
low dimensions to higher dimensions.  For example, does the fact that containment of
rectangles is not reducible to vector dominance in any Rm imply a corresponding
result for rectangular boxes in R3?  The simplest approach to the box problem seems
to use the "local" character of Theorem 1 and the rectangle result: only a small
portion of the cone K = {(W,L) Œ R2

+ : W ≤ L}  is actually needed, and the widths
W in this portion are bounded away from 0.

Proposition.  Let F be a non-empty family of congruence classes of sets in Rk for
some finite k.  Suppose there is a positive number d such that, for every line L in Rk,
every representative of every member of F contains a segment of length d parallel to
L.  Fix d, 0 < d < d.  For F Œ F let F denote the congruence class of  zF • [0,d] in
Rk+1, where zF is any representative for F.  Then if Fi ŒF  (i=1,2), we have F1 k F2
iff F1 k F2.

The point here is that a rectangle with sides d and d can be placed in one with
sides d and g>d  only with the sides of length d lying along those of length g.  This
forces any embedding of a representative of F1 in a representative of F2 to be induced



in the obvious way by an embedding of a represeentative of F1 in a representative of
F2.  It is clear how the proposition permits one to prove the box result from the
rectangle theorem.

4.  An example:  quadratic polynomials.

Not all interesting consequences of Theorem 1 involve geometric containment.
A natural partial order a is given on the set of all polynomials with real coefficients
by declaring that P1 a P2  provided P1(x) ≤ P2(x) for all non-negative real numbers x.
It is easy to see that the restriction of a to the class of linear polynomials is reducible
to vector dominance in R2: associating the point j(P) = (A,B) to P(x) = Ax + B does
the job.  It is perhaps surprising that this result does not extend one step further to the
class Q of quadratic polynomials P(x) = Ax2 + 2Bx + C with real coefficients A, B,
C.

Theorem 4.  The restriction of the partial order a  to the set Q of quadratic
polynomials with real coefficients is not reducible to vector dominance in Rm for any
finite m.

Proof.  We prove the stronger result that a restricted to the set Q+ of polynomials in Q
with strictly positive coeeficients A, 2B, C is  not so reducible.  The map jQ : Q+ ∅
R3 which takes P(x) = Ax2 + 2Bx + C into jQ (P) = (A,B,C) Œ R3

+ induces a partial
order nQ = ajQ on R3

+ which satisfies (M) and (H).  It is easy to see that (A1, B1, C1)
nQ (A2, B2, C2) precisely if the following two conditions hold:

(4.1) A1 ≤ A2 and C1 ≤ C2; and

(4.2) Either B1 ≤ B2 or (B1 - B2)2 ≤( A2 - A1) (C2 - C1).

Now let z = (1, 1, 1), w = (2, 1, 1) (any pair of points of R3
+ which agree in two

coordinates will do here).  Let (e(n)) be a sequence of positive numbers such that e(n) <
1/2 and e(n) Æ 0, and let d(n)= (e(n)(1 - e(n))) 1/2.  Set x(n) = (1 + e(n), 1 + d(n), 1 - e(n)),
and y(n) = (2 - e(n), 1, 1).  A short computation shows that (1.1)-(1.3) hold for  n = nQ,
completing the proof.



 []

This theorem can be interpreted as a result about the inclusion relationship for
the family of plane sets EA,B,C = {(x,y) Œ R2 : x ≥ 0,   y ≤ Ax2 + 2Bx + C} ; it says
that this inclusion partial order is not reducible to vector dominance in any Rm.

5. Containment for compact sets.

In section 4 of [12] it was shown that the family ¨ of congruence classes of
plane rectangles can be mapped into the space l2 of square-summable sequences of
real numbers in a manner that converts containment to vector dominance, and that
this can be accomplished continuously, if l2 is equipped with the usual metric

dl (u, v) = [Ân≥1 (un - vn)2] 1/2

for u = (un)n≥1 and v = (vn)n≥1 in l2.  We shall now indicate how to extend this result
substantially.

Fix a positive integer k and endow Rk with its usual Euclidean metric dk.  Let
F denote the family of  non-empty compact subsets of Rk, ~ congruence for subsets
of Rk, F the congruence
class of F Œ F,  F = { F : F Œ F } , tF = {tx : x Œ F}  and tF = (tF)~ for F ŒF and t >
0.  For Fi Œ F   (i=1,2) set

  r1 (F1, F2) = sup      [inf dk (x, y)],
         x Œ F1    y Œ F2

 r1 (F1, F2) = inf {r1 (F1,F2):  F2 ~ F2} ,

 r(F1, F2)=r1 (F1, F2) + r1 (F2, F1),

  r(F1, F2) = inf {r(F1, F2) : F2 ~ F2} .

Thus (F, r) and (F, r) are metric spaces, and r (respectively r) is a good measure of
closeness of (congruence classes of) compact sets.  (Note that, in general, r(F1, F2) ≠
r1 (F1, F2) + r1(F2,F1); one need only consider a circle of radius r without interior and
a segment of length  2r to see this).  Clearly r1 ≤ r and r1 ≤ r.  Let (Ln)n≥1 be an



enumeration of all non-empty finite unions of boxes [a1, b1] •...• [ak, bk] with ai, bi
rational and ai < bi.  Define gn : FÆ R by gn(F)= r1(F,Ln) and let fn = 2 -n/2 tan -1 gn.
Let f = (fn) :F Æ   l2.  The crucial facts about gn are these:

gn (F)≥ 0 with equality iff F k Ln;

˙gn (F1) - gn (F2) ˙ ≤ max {r1(F1, F2),r1 (F2, F1)}  ≤ r(F1, F2);

if F1 k F2 then gn (F1) ≤ gn (F2); and

if it is false that F1 k F2, then for some n, gn (F1) > 0 = gn (F2).
From these facts it follows not only that f is continuous and converts  K  on F

into vector dominance in l2, but also that f satisfies the following Lipschitz condition:

(L)  dl(f(F1),f(F2)  ≤  (F1,F2).
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