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1. INTRODUCTION
1.1 Background and Motivations

 A distributed system is a network G=(V,E) of |V|=n processors connected by |E|=e
direct communication links, where each processor has a local non-shared memory and
can communicate by sending messages to and receiving messages from its neighbours.
The behaviour of these processors can be conveniently described as finite-state and event-
driven; that is, each processor at any time is in a particular state and, when a predefined
event occurs (e.g., a message is received, the internal clock reaches a predetermined
value, etc.), it will serially perform some operations whose nature depends on the current
state and on the occurred event. The operations that can be performed are local
computations, transmission of messages, and change of state. A distributed algorithm  is
the specification of what operations must be serially performed by a processor when a
predefined event occurs in a given state. To ensure a fully distributed computation in the
system, it is assumed that every processor has the same algorithm.

A fundamental computation in this environment is the election process; that is, the
process of changing from an initial system configuration, where every processor in the
network is in the same state, to a final configuration where exactly one processor is in a
predefined state (say, elected) and all other processors are in another predefined state
(say, defeated). Note that there is no a-priori restriction on which processor should
become elected.

A related basic computation is the minimum-finding process; that is, the process of
changing from an initial system configuration where every processor has an associated
value (from a totally ordered set) and is in the same state, to a final configuration where
the processors with the smallest value are in a predefined state (say, minimum) and all
other processor are in another predefined state (say, large).

Another related computation is the spanning-tree construction process; that is, the
process of determining at each processor a subset of its incident links such that the
overall collection of these subsets form a spanning-tree of the original network.

If each processor has a distinct value (e.g., identity), the election problem can
obviously be solved by first determining the smallest value and then electing the
processor which has this value; furthermore, once a leader is elected, a spanning tree can
be easily constructed using a distributed (single-initiator) graph traversal algorithm (e.g.,
see [7]) with an additional O(e) messages. Assuming distinct identities, different (upper
and lower) bounds for all three problems have been established depending on the actual
topology of the network and on the amount of topological information available to the
network processors.  For example, it has been shown that Ω(n log n) messages need to be



transmitted in a ring of n processors ([6],[9],[19]); several algorithms achieving this
bound have been presented (e.g., [5,6,8,15,20]).  In the case of complete networks,  the
number of messages needed to elect a leader has been shown to be O(n) and O(n log n)
depending on whether the processors have available a global sense of orientation [16] or
not [14], respectively. In the case when the network topology is unknown (the arbitrary
graph case), an election can be performed exchanging O(e+n log n) messages [12] which
is known to be worst-case optimal (e.g., see [2,21]). It should be noted that in all the
above solutions, a message is allowed to contain a processor value; hence, the total
number of bits transmitted is equal to the number of messages multiplied by O(log i),
where i is the smallest value in the network. Probabilistic algorithms which exchange
fewer bits in rings have been recently presented [1]. All these bounds have been derived
without any assumption on the network synchronicity .

In a synchronous  network  each processor has a clock locally available, and all
clocks "tick" simultaneously (although they might not all sign the same absolute time);
furthermore, if a processor sends a message at local time t to a neighbour, the message is
received and processed there at time t+1 (sender's time). By exploiting synchronicity,
Frederickson & Lynch [9] and Vitanyi [23] independently established that a leader can be
elected in a ring  using O(n) messages; since a message carries a processor value, the
total number of bits transmitted by the algorithm is O(n log i), where i is the smallest
value in the network. However, the number of synchronous rounds (i.e., time units)
required by their algorithm is O(n 2i) which is exponential in the range of the values. The
time bound has been subsequently reduced to O(n 2n + i2) with the same message and bit
complexity by Gafni [11]; a further reduction in time to O(n i) has been obtained by
Marchetti [17] at the expense of  a O(n log n log i) bit complexity. A more recent result,
by Overmars and Santoro [18], shows a time vs bit trade-off which, at one end of the
spectrum, yields the bounds of O(n log n) bits and O(n i) time; thus, it makes the bit
complexity independent of the processor values, and the time polynomial in both n and i.
All the above results have been established without any information about n at the
processors. If the network size n is known to the processors, Santoro and Rotem [22]
showed that O(e) bits and O(n i) time suffice to elect a leader in an arbitrary network (a
similiar result was established for rings by Gafni [11]).

If the assumption on the uniqueness of the values does not hold (the anonymous
network case), the election problem cannot obviously be solved by an extrema-finding
process. Furthermore, Angluin [2] has shown that, if the processors have no values (or,
analogously, all have the same value) then no deterministic solution exists for the election
problem, duly renamed symmetry breaking problem, regardless of whether the network



is synchronous or not. (Probabilistic solutions to this version of the problem  are however
possible if both symmetry and knowledge of n are assumed [10,13,22].) In spite of this
negative characterization for the election problem, certain computations can still be
deterministically performed in synchronous anonymous networks provided that some
information about the network is available to the processors; for example, if  each value
is a bit and the network is a ring  whose size n is known to all processors, then the
functions sum and xor  can be computed in O(n2) bits and O(n) time, while the functions
and and or can be computed in O(n) bits and O(n) time [3]. In particular, knowing the
number n of processors, the function min  (that is, the minimum-finding process) can be
computed using O(e) bits in time O(n i) in an arbitrary network [22].

1.2 Main Results
In this paper, it is shown that in an anonymous synchronous network where n is

known the smallest value can be determined in O(k e) bits and O(k i1/k n) time for any
integer k>0. The choice of k offers a time vs communication trade-off; in particular, by
choosing a fixed k, the existing O(i n) time bound is reduced with still a linear number of
bits. Furthermore, it is shown that this trade-off is optimal for the class of solutions
considered here.

As a consequence, election and spanning-tree construction in asynchronous
networks with unique values can both be performed in O(k e) bits and O(k i1/k n) time for
any  k>0, improving the existing O(e) bits and O(n i) time bounds.

These results apply regardless of the network topology to both undirected networks
(i.e., where the communication links are bidirectional) and strongly-connected directed
networks (i.e., where the communication links are unidirectional but it is possible to route
a message from each processor to any other processor). For brevity, the results will be
presented here only for unidirected networks.

Beside the improved bounds, an interesting contribution of this paper consists in the
reformulation of the minimum-finding problem in terms of a number-guessing game,
independent of the network topology and of its communication capabilities. The upper-
bounds are obtained by simply developing a solution for this game; the optimality is
proved by studying a related guessing game, determining the unique solution, obtaining a
closed formula for the complexity of this solution, and reinterpreting this result in terms
of the original game.

It is also shown that the results for these games lead to improved solutions for the
variable-cost comparison searching problems studied by Bentley and Brown [4]; this, in
turn, offers an improvement in some of the applications where the solutions by Bentley



and Brown had been applied: sensitivity analysis, broadcasting a point on a line, linear
recursion.

Finally, the proposed solution for minimum-finding leads to a new algorith for
symmetry breaking for the class of networks considered in [10,22] and whose complexity
matches the one of the most efficient algorithm for this class presented in the literature
[10].

2. MINIMUM FINDING AS A GUESSING GAME
A distributed system  can be described as a couple G=(V,E) where V is a set of

processors and E is a set of communication links between processors; if (u,v)ŒE,
processors u and v are said to be neighbours;  each processor u has an associated value iu
(e.g., an identity) from a totally ordered set in its local non-shared memory, and
communicates by sending messages to its neighbours. If the values iu are not (known to
be) distinct, the system is said to be anonymous. In a synchronous  distributed system G,
each processor u has locally availble a clock cu; all clocks "tick" simultaneously
(although they might not all sign the same absolute time), and a message sent by a
processor at local time t to a neighbour is received and processed there at time t+1
(sender's time). At any time, a processor is in a state (from a finite predefined set).

The minimum-finding problem is the problem of distributively computing
i=Min{iu} ; i.e., determining the smallest of the associated values. It is assumed that,
initially, all processors are in the same state, know n, and simultaneously start the
execution of the minimum-finding computation; at the end of the computation, all
processors whose associated value is i=Min{iu}  must be in a predefined state, all others
must be in another predetermined state.

In this section, a class of solution algorithms is characterized by reformulating the
minimum-finding problem in terms of a number-guessing game.

Consider the following distributed algorithm, where x is a parameter available to all
processors:

DECIDE(x)
1. Set clock:=0 and Senders:=Ø. If local_value≤x send "YES" to all neighbours

 and become decided, otherwise become undecided. Start counting.
2. If a "YES" is received with clock<n then:

if undecided: add to Senders the neighbour from which the "YES" has been
received, send the message to the neighbours not in Sender, and become
decided; otherwise, ignore the message.

An immediate and important property of this algorithm is expressed by the following



lemma:

Lemma 1 Let all processors know n  and x, and simultaneously start the
execution of DECIDE(x). Then, at time n:

(i) if all local values are greater than x, all processors have
become undecided;
(ii)  if there is at least one local value i≤x, all processors  are
decided.

Furthermore, the number of bits transmitted is zero in case (i) and at
most 2e in case (ii).

Proof.  (i) A processor will become undecided and send no message iff its value is greater
than x (step 1 of DECIDE). Thus, if all values are greater than x, no messages will be
transmitted during the execution of DECIDE; furthermore, all processors will remain
undecided.
(ii) If a processor v has a value i≤x, it will become decided, and send a YES to all its
neighbours (step 1 of DECIDE). Upon receiving such a message, an undecided processor
becones decided and forwards the message to all of its neighbours (step 2 of DECIDE). A
decided processorignores all received messages, while an undecided processor forwards a
received YES only to the neighbours from which such a message has not yet been
received;  thus, at most two messages will be transmitted on each edge for a total of at
most 2e bits. Since an undecided processor becomes decided as soon as it receives a
message, all processors will become decided within n-1 time units.

Using this property, a technique for minimum-finding can be developed by
performing a sequence of executions of DECIDE as follows. Initially, all nodes choose
the same initial value x1 and simultaneously performe DECIDE(x1). After n time units,
all nodes will be aware of whether the minimum value is greater or not than x1 (situation
(i) and (ii), respectively); based on this outcome, a new value x2 will be chosen by all
nodes which will then simultaneously perform DECIDE(x2). In general, based on the
outcome of the execution of DECIDE(xi), all nodes will choose a value xi+1 and
simultaneosly perform DECIDE(xi+1); the process is repeated until the minimum value is
unambigously determined. Depending on which strategy is employed for choosing xi+1
given the outcome of DECIDE(xi), different minimum-finding algorithms will result
from this technique.

This technique allows to reformulate the minimum-finding problem in terms of a
number-guessing game as follows:

Guessing Game



1. the network is a player;
2. the minimum value in the network is a number, previously chosen and unknown

to the player, which must be guessed;
3. the player can ask questions of the type "is the number greater than x?", where

each question corresponds to a simultaneous execution of DECIDE(x);
4. situations (i) and (ii) of Lemma 1 correspond to a "yes" and  a "no" answer to

the question, respectively.

First observe that, by definition, to each solution strategy for the number-guessing
game corresponds a solution algorithm for the minimum-finding problem. As for the
complexity of these solution algorithms, recall that, by Lemma 1, each execution of
DECIDE (i.e., each question) requires n time units; on the other hand, the number of bits
transmitted is either zero or at most 2e, depending on whether the answer is "yes" or
"no", respectively. In terms of the game, this situation can be interpreted as if there exist
two charging accounts, T(ime)  and B(it):  the player is charged one unit in the T account
for each question asked, and one unit in the B account for each over-estimate (i.e., each
question where the answer is "no"). Therefore, a strategy which allows the player to
guess the number using t units in the T account and b units in the B account corresponds
to a minimum-finding algorithm which requires nt time and at most 2eb bits; that is

Theorem 1 Let S be a solution strategy for the number-guessing game which

requires b(x) overestimates and a total of t(x) questions in the worst

case, where x is the unknown number. Then:
i) minimum-finding can be performed in an anonymous synchronous

network using at most  n t(i) time and  2 e b(i) bits;
ii) election in a synchronous network with distinct values can be

performed using at most n t(i) time and  2 e b(i) bits;

iii) a spanning-tree can be constructed in a synchronous network with
distinct values using at most n t(i) time and  2e(b(i) +2) bits;

where i is the smallest value in the network, provided n is known.

3. GUESSING GAMES
In this section, some variations of the game described in the previous section are

considered and solved; because of the correspondence between number-guessing game
and minimum-finding, these solutions will provide upper and lower bounds on the



communication complexity of the distributed problem. All these games will be
characterized by the triple <N,t,b>, where N denotes the size of the interval in which the
number to be guessed is known to lie, t  is the number of total questions allowed, and b is
the number of allowed overestimates. In the following, replacing one of these three
parameter by the symbol * will indicate that the parameter is unknown or that the goal of
the game is to optimize the quantity represented by the parameter.

The games being considered are the following:
1. <*,t,b>-game. The unknown number is a positive integer, and the total amounts t

and b of admissible charges are predetermined. The game consists in determining and
searching the largest interval [1,N] for which it is always possible to find the unknown
number using at most t questions and b overestimates, given that the unknown number is
in the interval.

2. <N,*,b>-game. The unknown number is a positive integer in the interval [1,N],
and the total amount b of admissible overestimates is predetermined. The game consists
in determining the unknown number using the minimum number of questions. (This
game is exactly the bounded-searching problem with variable-cost comparisons studied
in [4])

3. <*,*,b>-game. The unknown number is a positive integer and the total amount b
of admissible overestimates is predetermined. The game consists in determining the
unknown number using the minimum number of questions. (This game is exactly the
unbounded-searching problem with variable-cost comparisons studied in [4]).

3.1 <*,t,b>-Games and Binomial-Sum Trees
Consider first the case where the unknown number is a positive integer, and the

total amounts t and b of admissible charges are predetermined. The game, called a <*, t,
b>-game, consists in:

1. determining the largest interval [1, f(t,b)] for which it is always possible to find
such a number using at most t questions and b overestimates given that the
unknown integer is in the interval; and

2. searching in such an interval using at most t questions and b overestimates.
In this section, the size f(t,b) of the largest interval in a <*,t,b>-game is determined,

and the optimal searching strategy is presented. The value f(t,b) will provide lower-
bounds for the other games. Let BIN(x,y) denote the binomial coefficient.

Theorem 2    f(t,b) = ∑i=0,b' BIN(t,i), where b'=Min{b,t} .
Proof.Let t and b be the number of questions and of overestimates, respectively, allowed



in the game, and  let Q(x)= "is the number greater than x?" be the first  question asked. If
the answer is "yes", the unknown number is greater than x and the player is left with t-1
questions and b overestimates; thus, using Q(x) as the first question and assuming a "yes"
answer, the largest interval that can be correctly searched is [1,x+f(t-1,b)]. If the answer
is "no", the unknown number lies in the interval [1,x] and the player is left with t-1
questions and b-1 overestimates; that is, the largest value of x which allow for a correct
solution is x=f(t-1,b-1). Thus, f(t,b)=f(t-1,b-1)+f(t-1,b) where, for every t, f(t,1)=t+1;
since the number of overestimates cannot exceed the number of questions, f(t,t+j)=f(t,t)
for any j>0. By solving this recurrence relation (e.g., determining the generating function
F(x,y) = 1/(1-z)(1-y-z*y)), the theorem follows. ®

  

In order to determine the solution strategy, first reinterpret the recurrence relation
f(t,b)=f(t-1,b-1)+f(t-1,b) with boundary condition f(t,1)=t+1 as defining a class of binary
trees, herein called Binomial-Sum (or BS) trees, as follows: a [0,0]-BS tree consists
precisely of one external node; a [t,b]-BS tree for t≥b is a binary tree consisting of one
internal node whose left subtree is a [t-1,b-1]-BS tree and whose right subtree is a [t-
1,b']-BS tree, where b'=Min{t-1,b} .

Define a [t,b]-BS decision tree to be a [t,b]-BS tree in which the leaves have been
numbered from left to right from 1 to f(t,b), where each internal node contains the largest
integer in the left subtree, and where the left branches are labeled "≤" while the right
branches are labeled ">". An example of [t,b]-BS  decision tree  is shown in Figure 1.
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FIGURE 1   The [4,3]-BS decision tree solving the <*,4,3>-game

To determine the unknown number in a <*,t,b>-game is equivalent to searching in
a [t,b]-BS decision tree: the first question asked in the <*,t,b>-game will be Q(x)='is the
unknown number greater than x?', where x is the value contained at the root of the [t,b]-
BS decision tree; if the answer is "yes" ("no") the next value to be used will be the one
contained at the root of the right (left) subtree; and so on, until the leaf containing the



desired number is reached (which will be always the case since the unkown number is by
assumption in the interval [1,f(t,b)]).

In a [t,b]-BS decision tree, the number of internal nodes nodes in a path from the
root to any leaf has length at most t, and the number of left branches in any such path is
at most b; thus, the unknown number will always be found using at most t questions of
which at most b are overestimates.

 Therefore, the optimal solution strategy for a <*,t,b>-game is as follows:

Optimal Solution Strategy
input:: t, b; output:: X (the unknown number)

t:=t; b:=b; p:=0; finished:=false;
while not finished

x:=p+f(t-1,b-1);
if answer to Q(x) is "no" then

if b=1 then
X:=x; finished:=true;

else
t:=t-1; b:=b-1;

endif
else    /* answer to Q(x) is "yes" */

if b=1 then
X:=x+1; finished:=true;

else
t:=t-1; b:=Min{b,t} ; p:=x;

endif
endif

endwhile.

The BS decision tree achieving the optimal solution strategy for a <*,4,3>-game is shown
in Fig. 1.

An interesting by-product of the above result is the following. Given a sorted array
of size N, any element can obviously be found using binary search in at most »log N˘

comparisons; however, the number of overestimates is  »log N˘ -1 in the worst case.
However, using the proposed stategy, it is possible to bound the number of overestimates
to half of the comparisons using at most one more comparison:

Corollary  It is possible to search in a sorted array of size N with  »log N˘ +1
comparisons using at most ( »log N˘ +1)/2 overestimates.

Proof. f( »log N˘ +1, ( »log N˘ +1)/2)) = f( »log N˘ +1, »log N˘ +1) / 2 = 2 »log N˘  ≥ N.
Æ



3.2 <N,*,b>-Games
 Consider the case when the unknown number is a positive integer in the interval

[1,N ], and the total amounts b of admissible overestimates is predetermined. The
<N,*,b>-game consists in determining the unknown number asking as few questions as
possible.

A solution strategy to this game can be easily obtained using the solution to the
previous game Let h(N,b) denote the smallest integer t satisfying the relation ∑j=0,b

BIN(t,j)≥N.

Theorem 3 A <N,*,b>-game can be solved using at most h(N,b) questions.
Furthermore, this solution is worst-case optimal.

Proof: Let t=h(N,b). By employing the solution to the <*,t,b>-game (described in the

previous section), the interval to be searched will be exactly f(t,b); since f(t,b)≥N, this

interval will contain the unknown number. Furthermore, the unknown number will be
found asking at most t questions of which b are overestimates. Worse case optimality

follows from observing that (by Theorem 2) h(N,b) questions need to be asked when
f(t,b)=N.

The exact value of h(N,b) is not known;  however, it can be closely bounded as
follows:

Lemma 2: (b! N/2)1/b + Îb/2˚ -1 < h(N,b) < (b! N)1/n +b-1.

Proof: Let t be the smallest value such that f(t,b)≥n. The upper bound follows from N >
f(t-1), b) = Â j=0, b BIN(t-1, j) ≥ BIN(t-1, b) + Bin(t, b-1) = Bin(t, b) ≥ (t-b+1)b/b!. The

lower bound follows from f(t, b) = Âj=0, b BIN(t, j) < 2 BIN(t,b) < 2 (t+ Î b/2 ˚ + 1)b / b!.

3.3 <*,*,b>-Games
Consider the case when the unknown number is a positive integer and the total

amounts b of admissible overestimates is predetermined. The game, called a <*,*,b>-
game,  consists in determining the unknown number using as few questions as possible.

The main difference betwee this game and the previous ones is that there is no a-



priori bound on the value of the unknown number x to be guessed. Thus, a solution
strategy could be to first determine an interval (1,N) in which x lies, and then solve the
corresponding <N,*,b'>-game with the remaining b' overestimates.

To bound the value x, we will proceed through a sequence of questions Q(g(1)),
Q(g(2)),..., Q(g(k)), ..., where g:N->Z is monotonically increasing, until it is determined
that g(j)≥x>g(j-1); this will require exactly j questions and one overestimate. We are now
left to determine x in an interval of size ∆(j)=g(j)-g(j-1) with only b-1 overestimates; this
is exactly a <∆(j),*,b-1>-game (described in section 3.2) which can be solved with at
most t'  questions, where t'=h(∆(j),b-1). Thus, the entire process will require at most j+t'
questions. Depending on the choice of the function g, different bounds can be obtained.

Theorem 4 A <*,*,b>-game can be solved using at most 2t-1 questions, where x is
the unknown number and t=h(x,b).

Proof: Choose g(k)=f(k,b). Let t=h(x,b) (i.e. the smallest integer such that f(t,b)≥x); then
obviously, j=t. From this follows that D(j)=g(t)-g(t-1)=f(t,b)-f(t-1,b)=f(t-1,b-1); that is, t-1
questions will suffice to solve the resulting <*, D(j), b-1>-game for a total of 2t-1
questions.

4. IMPROVED BOUNDS FOR DISTRIBUTED PROBLEMS
Using the correspondence between guessing games and minimum-finding, the

results of the previous section will now be reinterpreted in the context of distributed
computations. First observe that, in the distributed problem, no upper-bound is assumed
on the range of the values among which the minimum must be found (as in the case of the
<*,*,b>-game). Further observe that each solution strategy for the <*,*,b>-game will
correspond to a minimum-finding algorithm requiring the transmission of O(b e) bits
(Theorem 1). Let Cb denote the class of such minimum-finding algorithms.

Theorem 5 The minimum value i in a synchronous anonymous network can be
determined using at most O(k e) bits in time O(k n i1/k) for any integer
k, provided n is known and the processors start simultaneously. This
bound is optimal among all algorithms in Ck for every value of the
integer k.

Proof: Let t be the smalles integer such that f(t. k) ≥ i; by Theorem 4, it follows that i can
be guessed using at most 2t-1 questions. Thus, by Theorem 1, the minimum value i can

be determined using at most (4t-2)n time and 2ke bits. By Lemma 2, t < (k! i)1/k + k –1

which is approximately i1/k k/e + k –1 (using Stirling’s approximation), from which the



bound follows. Bt Theorem 2 and Lemma 2, any given algorithm in Ck requires at least t

> (k! i/2)1/k questions from which optimality follows.

The choice of k in the above theorem yields a bit vs time trade-off. In particular, by
choosing k=O(1), the existing O(n i) time bound for minimum finding in an anonymous
network where n is known and the processors start simultaneously [22] is improved
without increasing the order of magnitude of the bit complexity.

In a similiar way, the following theorem can be proved

Theorem 6  In a synchronous network with distinct values election and spanning-
tree construction can be performed using at most O(k e) bits in time
O(n  i1/k) for any k, where i is the smalles value in the network,
provided n is known and the processors start simultaneously.

Again, by choosing k=O(1), the theorem yields an improvement in the time
complexity  without increasing the order of magnitude of the bit complexity.

5. APPLICATIONS

5.1 Searching with Variable-Cost Comparisons
In their study of resource trade-offs, Bentley and Brown [4] have examined

problems related or reducible to searching when the cost of performing a comparison
depends on the outcome of the comparison itself; namely, they assume that there are two
diffent cost measures, C1 and C2, and that a comparison (e.g., of x and y) which will
charged a C1 or C2 cost unit depending on whether x>y or x≤y, respectively. It is not
difficult to see that this is exactly the situation described by the guessing game described
in section 2.  In particular, they cosider and propose solutions for two problems,
bounded-searching and unbounded searching, occurring in such an environment. In the
bounded searching problem, the total number of c2 charges is predetermined, as well as
an interval [1,N] where the search must take place; the problem is to devise a strategy
which allows to search in the interval using no more that the allowed number of  C2
charges with as few number of C1 charges as possible. In the unbounded searching
problem, the total number of C2 charges is again predetermined but no upper-bound on
the size of the interval to be searched is known; the problem is to devise a strategy which
allows to search using no more that the allowed number of  C2 charges and with as few
number of C1 charges as possible. Let b denote the number of allowed C2 charges; then



the bounded searching problem is exactly the <N,*,b>-game described in section 3.2, and
the unbounded searching problem is exactly the <*,*,b>-game described in section 3.3.

Their solutions to these two problems are based on binomial decision trees (for a
detailed description of these trees, the reader is referred to [4]), much in the same way the
solutions proposed in this paper can be seen as based on BS decision trees (see section
3.1). Furthermore, their technique can also be used to solve the <*,t,b>-game. In the rest
of this section, the solutions described in Section 3 are compared with (and shown to
improve upon) the solutions obtained using Bentley and Brown's technique.

Using the searching process for a (t+1,b)-binomial decision tree as a solution
strategy for the <*,t,b>-game provides an efficient (but not optimal) solution to that
problem; in fact it yields an interval of size BIN(t+1,Min{b,»(t+1)/2˘} ), where  BIN(x,y)
denotes the binomial coefficient. The solution to the <*,4,3>-game generated by the
(5,3)-binomial decision tree is shown in Figure 2; the size of the interval achieved with
this solution should be contrasted with the one obtained with the optimal solution stategy
presented in section 3.1 and shown in Figure 1.
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FIGURE 2  The (5,3)-binomial decision tree solving the <*,4,3>-game

The difference between the size of the interval obtained by using binomial trees and the
size in the optimal solution (using BS trees) is exactly

f(t,b)-BIN(t+1,b)= ∑j=0,b BIN(t,j) -BIN(t+1,b) =  ∑j=0,b-2 BIN(t,j) = f(t,b-2)
which is greater than zero whenever b>1; in the case b=1, the two solutions coincide.

The <N ,*,b>-game discussed in section 3.2 is exactly the bounded-searching
problem with variable-cost comparisons studied by Bentley and Brown [4]; their solution
requires µ questions (using a (µ+1,b)-binomial decision tree), where µ is the smallest
integer satisfying the relation BIN(µ+1,b)≥N. Since

∑j=0,b BIN(t,j) ≥BIN(t,b)+BIN(t,b-1) =BIN(t+1,b),
it follows that t<µ whenever b>1; when b=1, the two solutions coincide.

The <*,*,b>-game is exactly the unbounded-searching  problem with variable-costs



discussed in [4] where an explicit solution was given only for b≤2; implicit in the paper
was that, for b>2, an upperbound on the unknown value x should first be established
using g(j)=BIN(j,b) (see sect. 3.3) and then the problem solved using their technique for
the bounded case with the ramaining b-1 overestimates. This would yield a solution to
the <*,*,b>-game requiring 2µ-1 questions, where µ is the smallest integer satisfying the
relation BIN(µ+1,b)≥x. The solution presented in this paper requires 2t-1 questions,
where t is the smallest integer such that f(t,b)≥x. As for the previous game, the two
solutions coincide for b=1; in all other cases t < µ.

5.2 Symmetry Breaking
As mentioned in the introduction, the election problem cannot be deterministically

solved in an anonymous synchronous network [2]; probabilistic solutions to this problem
(also known as symmetry breaking) do however exist [10,13,22]. In particular, solutions
have been proposed for a special class of networks which includes rings and complete
graphs [10,22]; these algorithms terminate with probability 1 and assume that both the
number n of processors and the girth g of G is known to the processors; except for the
case of rings, simultaneous initiation is also assumed. The employed strategy is
composed of a sequence of random selection rounds: at the beginning of each round,
every processor randomly selects an integer in [1,n]; the round consists now of finding
the minimum of the chosen values and determinining if this value is unique; if so, the
processor that has chosen this value becomes elected  and the algorithm terminates;
otherwise, a new round of random selection is started. The expected number of rounds of
this strategy is e-1=1.718. If a simple 'solitude' verification mechanism is added to the
minimum-finding algorithm proposed here (to detect if the smallest value is unique), this
algorithm can be employied in each round of random selection yielding a new symmetry-
breaking algorithm for this class of graphs; this new symmetry breaking  algorithm would
terminate with probability 1 using O(k e) bits in time O(k n1/k g) on the average for any
positive integer k. For a fixed k, this bound matches the best bound established for this
problem [10].

5.3 Other Applications
In [4], Benteley and Brown describe several problems where the use of binomial

trees would yield an improvement over existing solutions. A further improvement can be
obtained by using Binomial-Sum trees instead of binomial trees in at least the following
problems: reduced sensitivity analysis, broadcasting to points on a line, and linear
recursion. The definitions and details of these problems can be found in [4]; the



understanding of the improvement obtained using BS trees in these problems is left as an
exercise to the reader.

6. CONCLUDING REMARKS AND OPEN PROBLEMS
 In this paper, an improved solution algorithm has been presented for minimum-

finding in anonymous synchronous networks, and used to derive improved bounds for the
election and spanning-tree construction problems in synchronous networks with distinct
values. It has been shown that the proposed minimum-finding algorithm exhibits a time
vs communication trade-off which is optimal, at any point of the trade-off, among a class
of solution algorithms. These results have been derived by reducing minimum-finding to
a number-guessing game, and establishing upper and lower bounds on the complexity of
the solution strategy. The  guessing game considered here is strictly related to the
searching problems with variable-cost comparisons investigated by Bentley and Brown
[4]; the proposed solution strategy yields an improved solution for those searching
problems and their applications.

The proposed solution for minimum-finding in anonymous synchronous netwoks
has been developed under two assumptions: knowledge of n and simultaneous initiation.

The attentive reader might have already observed that, in sections 2 and 4,
knowledge of n can be replaced by knowledge of the diameter ∂(G) of the network; in
such a case, ∂(G) can replace n in the time bounds stated by theorems 5 and 6. That some
knowledge of ∂(G) is needed seems to be implied in the proof (by Attiya, Snir and
Warmuth [3]) that, in an anonymous ring network, non-costant functions (e.g., min)
cannot be computed without any knowledge of the ring size. However, exact  knowledge
of either ∂(G) or n is not actually required: any value m≥∂(G) would do in the proposed
algorithm, provided that this value is available to all processors. An interesting open
question is the following: regardless of the complexity, is knowledge of some
upperbound on ∂(G) really necessary  to solve this problem?

As for simultaneous initiation, this condition is crucial for the correct functioning of
the proposed solution. If this condition does not hold, it is always possible to bound the
delay between initiation times to at most ∂(G); it is however an open problem to find the
minimum value under these conditions in less than O(i n) time with a linear number of
bits.
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