
Connected Graph Searching∗†

Lali Barrière‡ Paola Flocchini§ Fedor V. Fomin¶ Pierre Fraigniaud‖

Nicolas Nisse∗∗ Nicola Santoro†† Dimitrios M. Thilikos‡‡

Abstract

In the graph searching game the opponents are a set of searchers and a fugitive in a graph.

The searchers try to capture the fugitive by applying some sequence of moves that include

placement, removal, or sliding of a searcher along an edge. The fugitive tries to avoid capture

by moving along unguarded paths. The search number of a graph is the minimum number

of searchers required to guarantee the capture of the fugitive. In this paper, we initiate

the study of this game under the natural restriction of connectivity where we demand that

in each step of the search the locations of the graph that are clean (i.e. non-accessible to

the fugitive) remain connected. We give evidence that many of the standard mathematical

tools used so far in classic graph searching fail under the connectivity requirement. We

also settle the question on “the price of connectivity”, that is, how many searchers more

are required for searching a graph when the connectivity demand is imposed. We make

estimations of the price of connectivity on general graphs and we provide tight bounds for

the case of trees. In particular, for an n-vertex graph the ratio between the connected

searching number and the non-connected one is O(log n) while for trees this ratio is always

at most 2. We also conjecture that this constant-ratio upper bound for trees holds also for

all graphs. Our combinatorial results imply a complete characterization of connected graph

searching on trees. It is based on a forbidden-graph characterization of the connected search

∗Results of this paper have appeared in the proceedings of the 14th ACM Symposium on Parallel Algorithm

and Architecture (SPAA 2002), the 29th Workshop on Graph Theoretic Concepts in Computer Science (WG

2003), the 13th SIAM Conference on Discrete Mathematics, (DM 2006), and the 7th Latin American Theoretical

Informatics Symposium (LATIN 2006).
†Correspondance author: Nicolas Nisse.
‡Departament de Matemàtica Aplicada IV, Universitat Politècnica de Catalunya, Spain. http://www-

ma4.upc.edu/˜lali
§School of Information Technology and Engineering, University of Ottawa, Canada.

http://www.site.uottawa.ca/˜flocchin/ Supported in part by NSERC Discovery Grant.
¶Department of Informatics, University of Bergen, Norway. http://www.ii.uib.no/˜fomin
‖CNRS and Université Paris Diderot, France. http://www.liafa.jussieu.fr/˜pierref/ Supported by the ANR

projects ALADDIN and PROSE, and by the INRIA project GANG.
∗∗MASCOTTE, INRIA, I3S (CNRS/Université Nice Sophia Antipolis), France. http://www-

sop.inria.fr/members/Nicolas.Nisse/ Supported by the ANR project AGAPE.
††School of Computer Science, Carleton University, Canada. http://www.scs.carleton.ca/˜santoro Supported

in part by NSERC Discovery Grant.
‡‡Department of Mathematics, National and Kapodistrian University of Athens, Greece.

http://www.thilikos.info Supported by the project “Kapodistrias” (AΠ 02839/28.07.2008) of the National

and Kapodistrian University of Athens (project code: 70/4/8757).

1

http://www-ma4.upc.edu/~lali
http://www-ma4.upc.edu/~lali
http://www.site.uottawa.ca/~flocchin/
http://www.ii.uib.no/~fomin
http://www.liafa.jussieu.fr/~pierref/
http://www-sop.inria.fr/members/Nicolas.Nisse/
http://www-sop.inria.fr/members/Nicolas.Nisse/
http://www.scs.carleton.ca/~santoro
http://www.thilikos.info


number. We prove that the connected search game is monotone for trees, i.e. restricting

search strategies to only those where the clean territories increase monotonically does not

require more searchers. A consequence of our results is that the connected search number can

be computed in polynomial time on trees, moreover, we show how to make this algorithm

distributed. Finally, we reveal connections of this parameter to other invariants on trees

such as the Horton-Stralher number.

Keywords: graph searching, cops-and-robbers, network security.

1 Introduction

The classical isoperimetric problem (often attributed to Dido, the legendary founder and first

queen of Carthage) can be stated as follows: Among all closed curves in the plane of given

length, which curve encloses the maximum region? While the circle appears to be an intuitive

solution to the problem, it took several thousands of years to develop tools for proving this

apparently evident fact. There is a conceptual link between the isoperimteric problem and

the principle of least action in physics. The most familiar illustration of this link is the shape

of a water drop: given a fixed amount of water, the surface tension forces the drop to take

a shape which minimizes the surface area of the drop. The study of discrete versions of the

isoperimetric problem in graphs has brought to the notion of expander graphs, a notion that is

now extensively used in different areas of mathematics and computer science [27].

A natural extension of discrete isoperimetric problem is the following dynamic version, where

the task is to expand a subset of elements S into another set T via a sequence of steps, under

the constraint that, at every step, the surface area – or simply its border size – be as small

as possible. Let us give two illustrative examples of frameworks in which this constrained ex-

pansion process finds application. The first example is from visualization, specifically from the

domain of compression techniques design used for streaming triangular meshes over communi-

cation channels with limited bandwidth. 3D meshes are used for a variety of applications in

entertainment, e-commerce, CAD, and medicine. Quite often, those meshes are acquired using

modern 3D scanning technologies, and they easily reach sizes of gigabytes. A common approach

for processing large meshes (those that are too large to fit into main memory) is to perform a

“conquest” of the mesh by starting from an arbitrary triangle, and by successively extending

the frontier by conquering a new vertex adjacent to one of the current conquered triangles. A

lower bound on the memory requirements for processing a streaming mesh is then provided by

the number of “border” vertices bounding the conquered part of the mesh [25,32].

The second example is from agent-based software-system testing [33]. Given a set of inter-

related functional units in a distributed system, the objective is to check the correctness of

these units, one by one. In order to avoid checked units to be subject to propagation of faults

from neighboring unchecked units, the “checker” uses resources to protect checked units against

unchecked neighboring ones. Once all neighboring units of a checked unit U have been checked,

2



there is no need to protect U anymore, and only the frontier between checked and unchecked

units has to be guarded. The objective is to minimize the amount of resources required for the

system to be entirely checked.

Both illustrative problems can be modelled as graph searching. In a graph searching game,

alternatively known as a pursuit-evasion game, the one part is a set of “escaping” mobile entities,

called fugitives (or evaders), that hide in a graph representing a network, and the other part

is a number of “chasing” entities, called searchers (or pursuers), that move systematically in

the graph and aim at capturing the evaders [39]. The game may vary significantly according to

the capabilities of the fugitives and the searchers in terms of relative speed, sensor capabilities,

visibility, mobility restrictions, etc. [19]. These variants are mainly application driven. However,

their study has inspired, and was linked to foundational issues in computer science. Some of

the former and current applications of graph searching are VLSI design [41], computational

complexity [35], network security [23], and databases [26].

The first mathematical models for the analysis of graph searching games where introduced

in the 70’s by Parsons [45, 46] and Petrov [47], while the first variants, along with the cor-

responding algorithmic and complexity results, appeared during the 80’s [34, 35, 39]. Graph

searching revealed the need to express several intuitive informal concepts in a formal math-

ematical way. These concepts include sense of direction/orientation, avoidance, surrounding,

hiding, persecution, threatening, etc. This led to the design of various advanced combinatorial

tools. Some of most powerful tools for tackling graph searching problems emerged from the

Graph Minors theory, developed by Robertson and Seymour towards proving the long-standing

Wagner’s Conjecture [50]. This theory has offered deep graph-theoretic results and techniques

with direct consequences to problems at the core of graph searching games.

In many applications of graph searching, especially those aiming at clearing a network, a

crucial issue is to guarantee secure communication channels between the searchers so that they

can safely exchange information. In graph-theoretic terms, the clean part of the network is

required to remain always connected. Unfortunately, the aforementioned combinatorial and

algorithmic tools used for tackling the graph searching problem, i.e., those tools coming from

Graph Minors theory, generally fail under such a global connectivity restriction. Hereafter, we

provide two open problems whose solutions currently escape the reach of Graph Minors theory.

Let us define a search strategy as an ordered sequence S of actions where each action is either

placing a searcher at a vertex, or removing a searcher from a vertex, or sliding a searcher along

an edge. The invisible fugitive is supposed to move arbitrarily fast from node to node along the

edges of the graph, and it can traverse any node that is not occupied by a searcher.

NP-membership. A straightforward reduction from classical graph searching shows that the

problem of checking whether a graph G can be connectedly cleared using at most k searchers is

NP-hard. However, NP-membership remains an insisting open problem. The standard approach

for proving NP-membership for searching problems is to prove that the corresponding game is

monotone, i.e. strategies allowing the fugitive to revisit (or “recontaminate”) an already cleaned

3



part of the graph cannot do better than strategies for which recontamination is not allowed. See,

e.g., [5,36]. If a game is monotone then NP-membership follows directly from the fact that the

existence of a monotone search strategy yields the existence of a search strategy with a bound on

its length, and such a strategy can be used as a succinct certificate. A basic technique for proving

monotonicity (emerging from the Graph Minors theory) is to represent each search strategy as

an expansion of clean edges, i.e., as a sequence E of edge sets X0, X1, . . . , Xt (representing

the clean territories at search step i) where X0 = ∅, Xt = E, and |Xi+1 \ Xi| ≤ 1 for every

i = 0, 1, . . . , t− 1. The objective is to find an expansion that minimizes the maximum frontier

size of the Xi’s, where the frontier of a set X ⊆ E, is defined as the set of vertices ∂(X) that

are both incident to an edge in X and to an edge in E \X. Let us denote by δ(X) the number

of vertices in ∂(X). It has been observed in [5, 18] that monotonicity essentially follows from

the fact that δ is a submodular function, that is, for every X,Y ⊆ E,

δ(X ∩ Y ) + δ(X ∪ Y ) ≤ δ(X) + δ(Y ).

However, the submodularity does not have a counterpart for connected search games because

X ∩Y is not necessarily connected. As first observed in [55], connected search is not monotone,

which implies than the conjectured NP-membership of the connected variant requires techniques

beyond monotonicity to be proved.

Polynomial time algorithms for fixed parameter. Monotonicity also establishes a close

relationship between graph searching and various notions of width, including pathwidth for graph

searching, and treewidth for “visible” graph searching. In particular, it enables the design of

efficient exponential-time exact or polynomial-time approximation algorithms for computing

the minimum number of searchers required to clear a graph (see, e.g., [7, 17]). For almost all

width parameters related to graphs searching, the problem is polynomial-time solvable for fixed

parameter [8]. In contrast, the absence of monotonicity in the case of connected graph searching

precludes using these powerful tools in this context. More specifically, let us denote by s(G) the

minimum number of searchers required to search (i.e., to clean) the graph G, and by cs(G) the

analogous graph searching parameter in the case where only connected strategies are permitted.

Let us first explain why the problem of checking whether a given graph G satisfies s(G) ≤ k

can be solved in polynomial time for every fixed non-negative integer k. The main observation

is that the class

Gk = {G | s(G) ≤ k}

is minor-closed. That is, if H is a minor of G ∈ Gk (i.e., if H is a subgraph of a graph obtained

from G after contracting some edges) then s(H) ≤ s(G). Combining this observation with

known results from Graph Minors theory, it follows that, for each fixed k, there is a finite set

of minor-minimal graphs (called obstructions) not in Gk. Therefore, G ∈ Gk if and only if G

does not contain any of these graphs as a minor. Since checking whether a graph M is a minor

of a graph G can be done in polynomial time for a fixed size graph M [13, 49], we conclude

that for each fixed k, Gk can be recognized in polynomial time. Actually, one can even conclude

4



that the problem is solvable in time f(k) · n where f is a function not depending on the size of

the graph. Unfortunately, no such good news exist for the connected counterpart of the search

problem because the graph class

Ck = {G | cs(G) ≤ k}

is not minor-closed. Actually, it is possible to show that parameter cs can increase twice by

removing just a single edge. Therefore it seems that the design of an algorithm that checks

cs(G) ≤ k in polynomial time for fixed k requires tools beyond those provided by the yet

powerful Graph Minors theory.

1.1 Our results

The results in this paper are directly motivated by the above open questions, and they constitute

a first attempt to studying the impact of the connectivity requirement on graph searching

problems. This impact is measured by the ratio

cs(G)

s(G)

between the number cs(G) of searchers required to clear a graph G under the connectivity

constraint, and the number s(G) of searchers required to clear the same graph in absence of such

a constraint. In other words, this paper tackles the price of connectivity in graph searching. In

this paper we make advances in understanding the price of connectivity by proving the following

two results:

1. For each connected n-vertex graph G, cs(G)
s(G) = O(log n);

2. For each tree T , cs(T )
s(T ) < 2.

To derive the first of these two results, we use the concept of a branch-decomposition intro-

duced by Robertson and Seymour in [48]. Branch-decompositions provide ways to decompose

a graph into smaller parts that are arranged in a tree-like fashion. Our result is based on the

fact that these parts can be made connected while maintaining the “separation cost” of this

decomposition (cf. Lemma 1). Then, by suitably defining an “orientation” of this connected

branch-decomposition, we are able to transform every search strategy into a connected one,

with just a logarithmic overhead on its cost in term of number of involved searchers. These

results, combined with existing recently derived algorithmic results on approximating the size

of minimal separators, and on approximating the value of the treewidth, imply that cs(G) can

be approximated in polynomial time up to a multiplicative factor O(log3/2 n).

Our second result is derived from a complete characterization of the connected search number

of trees. We first prove that, as opposed to the case of arbitrary graphs, connected search is

monotone on trees (cf. Lemma 3). Next, we identify, for each k, the obstruction set for the class

Tk = {T | cs(T ) ≤ k}. That is, we identify the set of contraction-minimal trees that are not in

5



Tk. We stress that this identification provides one of the very few examples of contraction-closed

graph classes for which the obstruction set can be entirely characterized. In fact, somewhat

surprisingly, the obstruction set for Tk is reduced to one element, which is in contrast to the fact

that the size of the obstruction set of all classic (non-connected) graph searching parameters

is growing (at least) exponentialy as a function of k. These combinatorial results are used for

the design of a linear-time algorithm computing cs(T ) for trees. This algorithm makes use of

the rooted variant, csv(T ), of the connected search number, in which we prescribe the vertex v

of T from which the connected search strategy should expand. An important byproduct of the

design of our algorithm for trees is that csv(T ) is equal to – and thus may serve as an alternative

definition for – the Horton-Strahler number [29, 52, 53]. This latter ubiquitous number serves

as a measure of the “branching complexity” of a rooted tree, and is known to find applications

in many different areas of science for the statistical analysis of hierarchical systems (including

hydrology [24], programming languages [14], mathematical biology [9, 28] and, recently, social

networks [1]).

All the results summarized above, in conjunction with additional considerations to be de-

tailed further in the text, allow us to conjecture the following:

lim
n→∞

sup
|V (G)|=n

cs(G)

s(G)
= 2. (1)

In other words, we conjecture that what we have proved for trees actually holds for all graphs.

The validity of this conjecture would imply –and there are indications for this (cf. Section 3)–

that the tree structure is critical towards evaluating the price of connectivity. Conceptually,

graph searching parameters ask for a “sense of direction” in a graph, or, stated differently, for

an arrangement of the vertices along a virtual axis along which the optimal search strategy

should be deployed. Informally, the connectivity requirement places another constraint on the

direction to be followed by the searchers during the deployment of the search strategy. As

indicated in the proof of Theorem 2, the existence of these two possibly conflicting directions

is the key motivation for our conjecture. In some sense, there are empirical evidences that the

worst-case conflict between these two orientations occurs in trees.

1.2 Related work

Graph searching is a well studied model in Mathematics and Theoretical Computer Science. The

first mathematical formulation of graph searching is due to Parsons [45, 46]. The formulation

was inspired by an earlier article of Breisch in Southwestern Cavers Journal [10] proposing a

“speleotopological” approach for the problem of finding an explorer lost in a system of dark

caves. Megiddo et al. [39], proved that the decision version of the problem is NP-complete in

general and solvable in linear time on trees. Let us remark that the proof that the problem is

in NP is based on the highly non-trivial fact that there are optimal monotone strategies [5,36].

For more references on graph searching, we refer to [19].

Since the appearance of the conference versions of this paper in [2, 3], the connected graph

6



searching has been studied both from algorithmic and combinatorial points of view. Yang et

al. proved that for the connected variant of searching, recontamination can be useful [55]. The

“cost of connectivity”: the ratio between the number of searchers required in the connected

case and the number of searchers required without the connectivity requirement, was studied

in [20,21,42].

A related problem on planar triangulations was studied in [44]. Connected searching with

visible fugitive is discussed in [22]. Finally, distributed connected search strategies have been

designed in [6, 15,16,31,43].

2 Model and definitions

Graph searching refers to a problem that has been thoroughly and extensively investigated in the

literature, and that describes a variety of application scenarios ranging from “decontaminating

a set of tunnels” to “capturing an intruder in a network”.

Using the original metaphor [10, 45], we are given a graph whose edges are all “contami-

nated”, and a set of “searchers”. The goal is to obtain a state of the graph in which all edges

are simultaneously “clear”. To clear an edge e = (u, v), a searcher must traverse the edge from

one end-point u to the other end-point v. A clear edge is preserved from recontamination if

either another searcher remains in u, or all other edges incident to u are clear. In other words,

a clear edge e is recontaminated if there exists a path between e and a contaminated edge,

with no searcher on any node of the path. The basic operations, called search steps, can be the

following:

(1) place a searcher on a node,

(2) move a searcher along an edge,

(3) remove a searcher from a node.

Graph searching is the problem of developing a search strategy, that is a sequence of search

steps that results in all edges being simultaneously clear. The main complexity measure is the

number of searchers used by the strategy. The smallest number of searchers for which a search

strategy exists for a graph G is called the search number s(G) of G.

An interesting line of investigation is the determination of efficient search strategies satis-

fying additional properties, which are desirable or even necessary for some applications. Two

properties are of particular interest: absence of recontamination, and connectivity of the cleared

area.

A search strategy is monotone if no recontamination ever occurs. The importance of mono-

tone searching arises in applications where the cost of clearing an edge by far exceeds the cost

of traversing an edge. Hence each edge should be cleared only once. Lapaugh [36] has proved

7



that for every G there is always a monotone search strategy that uses s(G) searchers. A short

and elegant proof of this result was found by Bienstock and Seymour [4, 5].

A search strategy is connected if the set of clear edges is always connected. Alternatively, one

can define such strategies by not allowing operation (3), and allowing (1) only in the beginning

of the search or when applied to vertices incident to an already cleared edge. The necessity for

connectivity arises, e.g., in applications where communication between the searchers can occur

only within completely clear areas of the network. Hence connectivity is required for their

coordination. Moreover, the same condition should be imposed in cases where the searchers

cannot “jump” from one node to a non-adjacent one (e.g., cannot pass through the “walls”

that determine the structure of the graph where the search takes place). Safety is another

motivation for connectivity, as it would always ensure the presence of secure routes between

all the searchers. We denote by cs(G), the connected search number of graph G, the minimum

number of searchers required to clear all edges of G by making use of connected strategy.

Correspondingly, the monotone connected search number of graph G, mcs(G), is the minimum

number of searchers required to clear all edges of G by making use of connected and monotone

strategy.

3 Price of connectivity

The main result of this section is the following theorem.

Theorem 1 For any n-vertex graph G, cs(G)/s(G) = O(log n).

To prove the theorem, we introduce several auxiliary notions and statements.

Branchwidth. A branch decomposition [51] of a graph G = (V,E) is a tree T with all internal

vertices of degree 3 and with a one-to-one correspondence between the leaves of T and the edges

of G. Given an edge e of T , removing e from T results in two trees T
(e)
1 and T

(e)
2 , and an e-cut

is defined as the pair {E(e)
1 , E

(e)
2 }, where E

(e)
i ⊂ E is the set of leaves of T

(e)
i for i = 1, 2. Note

that E
(e)
1 ∩ E(e)

2 = ∅ and E
(e)
1 ∪ E(e)

2 = E. The width of T is defined as ω(T ) = maxe δ(E
(e)
1 )

where the maximum is taken over all e-cuts in T , see Figure 1. The branchwidth of G is then

bw(G) = minT ω(T ), where the minimum is taken over all branch decompositions T of G. For

the purpose of our proof, we define the following notion.

Definition 1 A branch decomposition T of a graph G is connected if for every e-cut in T each

of the resulting two sets of edges forms a connected subgraph of G.

Let T be a branch decomposition of a graph G = (V,E). For a subtree A resulting from an

e-cut of a branch decomposition T , we use E(A) to denote the edge subset of E corresponding

to the leaves of A. For two disjoint sub-trees A and B of T , we denote by ∂(A,B) the subset of

8



e3

2
2 2

3

3

3

3

2
22

3

2

e1

e4

e7

e8

e6

e5

e2

e1

e7

e8

e6

e4 e5
e2

e3

2

Figure 1: A graph and one of its branch decompositions, of width 3.

vertices of V having at least one incident edge in E(A) and at least one incident edge in E(B).

In other words, ∂(A,B) is the set of vertices in G separating edges corresponding to leaves of

A from edges corresponding to the leaves of B. We denote by δ(A,B) = |∂(A,B)| the number

of vertices in ∂(A,B).

Definition 2 A quartet in a branch decomposition T is an ordered set (A1, A2, B1, B2) of four

mutually disjoint subtrees of T satisfying the following:

1. there is an edge e = {x, y} of T such that the roots a1 and a2 of A1 and A2 are both

adjacent to x in T , and the roots b1 and b2 of B1 and B2 are both adjacent to y in T ; (cf.

the left graph in Figure 2.)

2. ∂(A1, B1) != ∅ and ∂(A2, B2) != ∅;

3. ∂(A1, A2) = ∅;

Let us notice that by the above definition, the leaves corresponding to the subtrees A1, A2, B1, B2

form a 4-partition of E.

In Figure 3, we provide Algorithm Make-it-Connected which proceeds as follows. Given a

quartet (A1, A2, B1, B2) in S, the algorithm replaces this quartet by (A1, B1, A2, B2), resulting

in a tree S′ obtained by connecting a1 and b1 to x, and a2 and b2 to y (See Fig. 2). Actually, if

(A1, A2, B1, B2) and (A1, A2, B2, B1) are both quartets in S, then the algorithm considers the

two possible replacements, and chooses the one that has smaller width. Clearly S′ is also a

branch decomposition of G. Note however that neither (A1, B1, A2, B2), nor (A2, B2, A1, B1) is

a quartet in S′ since ∂(Ai, Bi) != ∅ for i = 1, 2, by the definition of the quartet (A1, A2, B1, B2)

in S. Algorithm Make-it-Connected proceeds by successive replacements of quartets in the

branch decomposition. The algorithm stops when there is no quartet in the current branch-

decomposition (we later prove that such a situation eventually occurs).

The next Lemma is the most crucial part in the proof of Theorem 1.

9

Figure 1: A graph and one of its branch decompositions, of width 3.

vertices of V having at least one incident edge in E(A) and at least one incident edge in E(B).

In other words, ∂(A,B) is the set of vertices in G separating edges corresponding to leaves of

A from edges corresponding to the leaves of B. We denote by δ(A,B) = |∂(A,B)| the number

of vertices in ∂(A,B).

Definition 2 A quartet in a branch decomposition T is an ordered set (A1, A2, B1, B2) of four

mutually disjoint subtrees of T satisfying the following:

1. there is an edge e = {x, y} of T such that the roots a1 and a2 of A1 and A2 are both

adjacent to x in T , and the roots b1 and b2 of B1 and B2 are both adjacent to y in T ; (cf.

the left graph in Figure 2.)

2. ∂(A1, B1) 6= ∅ and ∂(A2, B2) 6= ∅;

3. ∂(A1, A2) = ∅;

Let us notice that by the above definition, the leaves corresponding to the subtreesA1, A2, B1, B2

form a 4-partition of E.

In Figure 3, we provide Algorithm Make-it-Connected which proceeds as follows. Given a

quartet (A1, A2, B1, B2) in S, the algorithm replaces this quartet by (A1, B1, A2, B2), resulting

in a tree S′ obtained by connecting a1 and b1 to x, and a2 and b2 to y (See Fig. 2). Actually, if

(A1, A2, B1, B2) and (A1, A2, B2, B1) are both quartets in S, then the algorithm considers the

two possible replacements, and chooses the one that has smaller width. Clearly S′ is also a

branch decomposition of G. Note however that neither (A1, B1, A2, B2), nor (A2, B2, A1, B1) is

a quartet in S′ since ∂(Ai, Bi) 6= ∅ for i = 1, 2, by the definition of the quartet (A1, A2, B1, B2)

in S. Algorithm Make-it-Connected proceeds by successive replacements of quartets in the

branch decomposition. The algorithm stops when there is no quartet in the current branch-

decomposition (we later prove that such a situation eventually occurs).

9



to the leaves of A. For two disjoint sub-trees A and B of T , we denote by ∂(A,B) the subset of

vertices of V having at least one incident edge in E(A) and at least one incident edge in E(B).

In other words, ∂(A,B) is the set of vertices in G separating edges corresponding to leaves of

A from edges corresponding to the leaves of B. We denote by δ(A,B) = |∂(A,B)| the number

of vertices in ∂(A,B).

Definition 2 A quartet in a branch decomposition T is an ordered set (A1, A2, B1, B2) of four

mutually disjoint subtrees of T satisfying the following:

1. there is an edge e = {x, y} of T such that the roots a1 and a2 of A1 and A2 are both

adjacent to x in T , and the roots b1 and b2 of B1 and B2 are both adjacent to y in T ; (cf.

the left graph in Figure 2.)

2. ∂(A1, B1) != ∅ and ∂(A2, B2) != ∅;

3. ∂(A1, A2) = ∅;

Let us notice that by the above definition, the leaves corresponding to the subtrees A1, A2, B1, B2

form a 4-partition of E.

In Figure 3, we provide Algorithm Make-it-Connected which proceeds as follows. Given a

quartet (A1, A2, B1, B2) in S, the algorithm replaces this quartet by (A1, B1, A2, B2), resulting

in a tree S′ obtained by connecting a1 and b1 to x, and a2 and b2 to y (See Fig. 2). Actually, if

(A1, A2, B1, B2) and (A1, A2, B2, B1) are both quartets in S, then the algorithm considers the

two possible replacements, and chooses the one that has smaller width. Clearly S′ is also a

branch decomposition of G. Note however that neither (A1, B1, A2, B2), nor (A2, B2, A1, B1) is

a quartet in S′ since ∂(Ai, Bi) != ∅ for i = 1, 2, by the definition of the quartet (A1, A2, B1, B2)

in S. Algorithm Make-it-Connected proceeds by successive replacements of quartets in the

branch decomposition. The algorithm stops when there is no quartet in the current branch-

decomposition (we later prove that such a situation eventually occurs).

a2

x

b1

y

b2

a1

A1

B1
b1

x

a2

y

b2

a1

A1 B1

B2A2

A2

B2

Figure 2: Replacing quartets in Make-it-Connected

The next Lemma is the most crucial part in the proof of Theorem 1.

9

Figure 2: Replacing quartets in Make-it-Connected

The next Lemma is the most crucial part in the proof of Theorem 1.

Lemma 1 Let T be a branch decomposition of a 2-edge-connected graph G with width k. Then

algorithm Make-it-Connected returns a connected branch decomposition T ′ of G with width at

most k, in time O(m3).

Proof. The proof of the lemma proceeds through a sequence of claims.

Claim 1 The replacement of a quartet as specified in Algorithm Make-it-Connected does not

increase the width of the branch-decomposition.

Proof. The only possible change in the width can occur because of the cut separating A1∪A2

from B1 ∪ B2. We consider two cases depending whether or not (A1, A2, B2, B1) is a quartet.

If (A1, A2, B2, B1) is also a quartet (i.e., ∂(A1, B2) 6= ∅ and ∂(A2, B1) 6= ∅), then

δ(A1 ∪B1, A2 ∪B2) + δ(A1 ∪B2, A2 ∪B1) ≤ δ(E(B1)) + δ(E(B2)). (2)

Indeed, if u ∈ ∂(A1 ∪ B1, A2 ∪ B2) \ ∂(E(B1)) then u ∈ ∂(E(B2)) because ∂(A1, A2) = ∅.
Similarly, if u ∈ ∂(A1 ∪ B2, A2 ∪ B1) \ ∂(E(B2)), then u ∈ ∂(E(B1)). Therefore, every vertex

counted on the left hand side of Equation 2 appears as many times on the right hand side. Thus

Equation 2 holds. Hence δ(A1 ∪B1, A2 ∪B2) + δ(A1 ∪B2, A2 ∪B1) ≤ 2k, and thus the smallest

of the two boundaries is of size ≤ k. If (A1, A2, B2, B1) is not a quartet, then assume, w.l.o.g.,

that ∂(A1, B2) = ∅. We get δ(A1 ∪B1, A2 ∪B2) ≤ δ(E(B1)) ≤ k.

Claim 2 The branch decomposition T ′ returned by Algorithm Make-it-Connected is connected.

Proof. Targeting towards a contradiction, let us assume that there is an e-cut that splits T ′

into two subtrees A and B such that the edges of E(A) form a disconnected subgraph of G.

Then there exists an e-cut such that A is the union of two disjoint subtrees A1 and A2 with

10



input: branch decomposition T of a 2-edge-connected graph of width k;

output: connected branch decomposition T ′ of width ≤ k;

begin

S := T ;

while there exists a quartet (A1, A2, B1, B2) in S do

replace (A1, A2, B1, B2) in S by (A1, B1, A2, B2) to get S′;

if (A1, A2, B2, B1) is not a quartet in S then S := S′

else

replace (A1, A2, B1, B2) in S by (A1, B2, A2, B1) to get S′′;

if ω(S′) ≤ ω(S′′) then S := S′ else S := S′′;

endif

endwhile

T ′ := S;

end

Figure 3: Algorithm Make-it-Connected

∂(A1, A2) = ∅. Among all such cuts, we choose an e-cut with the maximum number |E(A)|.
The other subtree B of this e-cut contains at least two leaves because otherwise removing

the single edge corresponding to the leaf of B would result in disconnecting the graph G, a

contradiction with the fact that G is 2-edge-connected. Thus B is the union of two disjoint

subtrees B1 and B2 which roots are adjacent to the root of B. Since |E(A)| is maximum, we

have that ∂(A,Bi) 6= ∅ for i = 1, 2. Moreover, since G is connected, and ∂(A1, A2) = ∅, we have

∂(Ai, B) 6= ∅ for i = 1, 2. Therefore, either ∂(A1, B1) 6= ∅ and ∂(A2, B2) 6= ∅, or ∂(A1, B2) 6= ∅
and ∂(A2, B1) 6= ∅, or both. In each of the cases, there is a quartet in T ′, which is a contradiction

because the tree returned by Algorithm Make-it-Connected has no quartet.

Claim 3 Algorithm Make-it-Connected terminates.

Proof. We use a potential argument, based on a measure defined in [51] for carvings. Any

internal vertex x of the branch-decomposition S is of degree 3, and thus it defines three subtrees

S1, S2, S3 whose roots are connected to x. Then let

φ(S1, S2, S3) =

{
0, if ∂(Si, Sj) 6= ∅ for any i 6= j;

|E(S`)| − 1, if ∂(Si, Sj) = ∅ for some i 6= j, where ` /∈ {i, j}.

This function is well defined: G is connected and thus, if ∂(Si, Sj) = ∅ for some i 6= j, then

∂(Si, S`) 6= ∅ and ∂(Sj , S`) 6= ∅ for ` ∈ {1, 2, 3} \ {i, j}. Now, we define a potential function φ

defined on any branch-decomposition S with set of internal vertices I(S) by

φ(S) =
∑

x∈I(S)

φ(Sx
1 , S

x
2 , S

x
3 ).

11



We show that after every step of Algorithm Make-it-Connected φ strictly decreases. For that

purpose, it is sufficient to prove that

φ(A1 ∪B1, A2, B2) + φ(A1, B1, A2 ∪B2) < φ(A1, A2, B1 ∪B2) + φ(A1 ∪A2, B1, B2)

for every quartet (A1, A2, B1, B2). By the definition of a quartet, ∂(A1, A2) = ∅, and we get

that φ(A1, A2, B1 ∪B2) = |E(B1)|+ |E(B2)| − 1. Hence, for

L = φ(A1∪B1, A2, B2)+φ(A1, B1, A2∪B2) and R = φ(A1∪A2, B1, B2)+|E(B1)|+|E(B2)|−1,

it is enough to prove that L < R for every quartet (A1, A2, B1, B2). Since R > 0, the lemma

holds if L = 0. Thus we restrict our analysis to the case L > 0, which means that either

φ(A1 ∪ B1, A2, B2) > 0 or φ(A1, B1, A2 ∪ B2) > 0. W.l.o.g. we can examine the case where

φ(A1, B1, A2 ∪ B2) > 0 which excludes that ∂(A1, A2 ∪ B2) 6= ∅ and ∂(B1, A2 ∪ B2) 6= ∅ hold

simultaneously. Hence we consider two cases:

Case 1: ∂(A1, A2 ∪ B2) = ∅. If ∂(A1 ∪ B1, A2) 6= ∅ and ∂(A1 ∪ B1, B2) 6= ∅ then L =

|E(B1)| − 1 < |E(B1)|+ |E(B2)| − 1 ≤ R. Therefore, we consider two sub-cases:

• If ∂(A1 ∪B1, A2) = ∅, then L = |E(B1)|+ |E(B2)| − 2 < |E(B1)|+ |E(B2)| − 1 ≤ R.

• If ∂(A1 ∪ B1, B2) = ∅, then ∂(B1, B2) = ∅, and thus R = |E(A1)| + |E(A2)| +
|E(B1)|+ |E(B2)| − 2. It follows that L < R because, by the definition of a quartet,

∂(Ai, Bi) 6= ∅ for every i = 1, 2.

Case 2: ∂(B1, A2∪B2) = ∅. Then ∂(B1, B2) = ∅, and thus R = |E(A1)|+ |E(A2)|+ |E(B1)|+
|E(B2)| − 2. Hence, L < R because ∂(Ai, Bi) 6= ∅ for every i = 1, 2.

In all cases, the inequality L < R holds, which completes the proof.

Now everything is settled to conclude with the proof of the lemma. By Claims 1 and 2,

if Algorithm Make-it-Connected terminates, then it returns a connected branch decomposi-

tion of width ≤ k. By Claim 3, the algorithm terminates. To compute the execution time

of the algorithm, let us consider the potential function φ defined in the proof of Claim 3.

Since φ(S1, S2, S3) ≤ m − 1, we have that the potential cannot exceed O(m2). Thus there

are O(m2) updates of the branch-decomposition. Each update is local to the subtree of

six vertices interconnecting the roots a1, a2, b1, b2 of A1, A2, B1, B2. For each of the edges

{x, a1}, {x, b1}, {y, a2}, {y, b2}, deciding whether the edge defines a quartet takes O(m) times.

Thus Algorithm Make-it-Connected terminates in O(m3) steps.

Expansions is a convenient tool for addressing the graph searching problem.

Connected Expansions. Let G = (V,E) be a graph (with possible multiple edges and loops),

and let n = |V |, and m = |E|. A k-expansion in G is a sequence X0, X1, . . . , Xr where Xi ⊆ E
for every i = 0, . . . , r, X0 = ∅, Xr = E, and satisfying the following:

12



• |Xi+1 \Xi| ≤ 1 for every i = 0, . . . , r − 1;

• δ(Xi) ≤ k for every i = 0, . . . , r.

A k-expansion X0, X1, . . . , Xr is monotone, if Xi+1 ⊂ Xi for every i = 0, . . . , r − 1. Using the

terminology of [5], a k-expansion is hence a crusade of frontier at most k. In this paper we deal

only with expansions in graphs, however this notion can be defined for more general structures

as well [18].

A k-expansion X0, X1, . . . , Xr of a graph G is connected if for each i = 1, . . . , r, the subgraph

formed by edges Xi is connected.

Lemma 2 Given a connected branch decomposition T of width k for a graph G, one can com-

pute in O(m3)-time a monotone connected (k log2m)-expansion X0, X1, . . . , Xm in G .

Proof. We prove by induction on the number m of edges in G a slightly stronger statement:

Given a connected branch decomposition T of width k for a graph G, and given any edge e of

G, one can compute in O(m3)-time a monotone connected (k log2m)-expansion X0, X1, . . . , Xm

in G with X1 = {e}.
For any m ≥ 1, let Pm be the following property: for any k ≥ 0, given a connected branch

decomposition T of width k for a graph G with m edges, and given any edge e of G, one can

compute in O(m3)-time a monotone connected (k log2m)-expansion X0, X1, . . . , Xm in G with

X1 = {e}. We now show that Pm is satisfied.

If m = 1, then ∅ = X0, X1, where X1 is the only edge of G, is the connected 0-expansion in

G, and thus P1 holds. If m = 2, then G is either a path of three vertices, or two vertices linked

by an edge and a loop attached to one of the two vertices, or two loops attached to a vertex, or

two vertices connected by a double edge. In the first three cases, bw(G) = 1. In the latter case

bw(G) = 2. In all cases though, one can construct a connected bw(G)-expansion X0, X1, X2 in

G starting from any edge. Thus P2 holds.

For m > 2, let us assume that Pq holds for every 2 ≤ q ≤ m − 1. There is a vertex

x of T whose removal results in three disjoint subtrees T1, T2, and T3, with |Ei| ≤ bm/2c
for every i ∈ {1, 2, 3}, where |Ei| is the number of leaves of Ti. Since T is a connected branch

decomposition, we have that the leaves of each of these subtrees form three connected subgraphs

G1, G2, G3 of G, and, for any i ∈ {1, 2, 3}, Ti is a connected branch decomposition of Gi. Given

a set of edges X in Gi = (Vi, Ei), we denote by ∂Gi(X) the set of vertices of Gi that has at least

one incident edge in X, and at least one incident edge in Ei \X.

Because m > 2 and bm/2c < m−1, we have that each Gi (with mi ≤ bm/2c edges) satisfies

the induction assumption. Let e be an edge of G. Edge e belongs to some Gi. Assume, w.l.o.g.,

that e is an edge of G1. By the induction assumption, there is a monotone connected (k log2m1)-

expansion X0, X1, . . . , Xm1 in G1 with X1 = {e}. Removing the edge connecting x to the root

of T3 in T results in a connected subgraph G1 ∪G2. Thus, there is a vertex u in G that has at

13



least one incident edge in G1, and at least one incident edge f in G2. Again, by the induction

assumption, there is a (k log2m2)-expansion Y0, Y1, . . . , Ym2 in G2 with Y1 = {f}. Finally, since

G is connected and G = G1∪G2∪G3, we have that there is a vertex v in G that has at least one

incident edge in G1 ∪G2, and at least one incident edge g in G3. By the induction assumption,

we can select a monotone connected (k log2m3)-expansion Z0, Z1, . . . , Zm3 in G3 with Z1 = {g}.
By putting three expansions together, we obtain a monotone connected expansion

X0, X1, . . . , Xm1 , Xm1 ∪ Y1, . . . , Xm1 ∪ Ym2 , Xm1 ∪ Ym2 ∪ Z1, . . . , Xm1 ∪ Ym2 ∪ Zm3

in G. It remains to bound the “frontier” of this expansion. We have

δ(Xi) ≤ δG1(Xi) + k ≤ k log2m1 + k ≤ k log2bm/2c+ k ≤ k log2m/2 + k ≤ k log2m.

We also have

δ(Xm1 ∪ Yi) ≤ δG2(Yi) + δ(Xm1 ∪ Yi, G3) ≤ k log2bm/2c+ k ≤ k log2m.

Finally, we have

δ(Xm1 ∪ Ym2 ∪ Zi) ≤ δG3(Zi) + δ(Zi, G1 ∪G2) ≤ k log2bm/2c+ k ≤ k log2m.

Hence Pm is satisfied.

To complete the proof of the lemma, we observe that the time τ(m) needed to construct

the expansion in an m-edge graph satisfies τ(m) ≤ 3τ(m/2), and thus the complexity of the

construction is 3log2 m = O(m3).

Now everything is ready to proceed with the proof of the main result of this section.

Proof of Theorem 1. If bw(G) ≤ 1, then G is isomorphic to K1,p, the tree with at most one

non-leaf vertex. In this case, cs(G) = s(G).

cs(G) = s(G) =


0, if p = 0;

1, if p ≤ 2;

2, if p > 2

Claim 4 Given a branch decomposition T of width k ≥ 2 for a connected graph G, one can

compute in O(m3)-time a monotone connected k(1 + log2m)-expansion X0, X1, . . . , Xm in G.

Proof. Indeed, if G is 2-edge-connected, then by application of Lemma 1, one can compute in

O(m3) time a connected branch decomposition T ′ of G of width ≤ k. The requested expansion

is then obtained by Lemma 2. If G is not 2-edge-connected, then we add a double edge to

each isthmus (i.e., cut-edge) in G so that the resulting graph G′ is 2-edge-connected. Since

k ≥ 2, we obtain that bw(G′) = bw(G). More precisely, given a branch decomposition T of

G, one can construct a branch decomposition T ′ of G′ such that ω(T ′) = ω(T ). We construct

14



G′ and T ′, and then compute a connected branch decomposition T ′′ of G′ in time O(m3). We

have ω(T ′′) ≤ ω(T ′) ≤ ω(T ) = k. By application of Lemma 2, we obtain a monotone connected

(k logm′)-expansion in G′. By removing in this expansion the second occurrence of every double

edge added to isthmuses, we obtain a connected (k log2m
′)-expansion in G. We complete the

proof by noticing that m′ ≤ 2m.

Finally, by Claim 4, there is a monotone connected k(1+ log2m)-expansion X0, X1, . . . , Xm

in G. This expansion can be transformed into a monotone connected strategy of k(1+log2m)+1

searchers as follows. Suppose that for some i ≥ 1, k(1 + log2m) + 1 searchers are able to clean

the set of edges Xi and that the only vertices occupied by the searchers at this step are the

vertices of ∂(Xi). Moreover, every vertex of ∂(Xi) contains exactly one searcher. For X1, which

consists of one edge, 1 ≤ δ(X1) ≤ 2, and this condition clearly holds. Let e = {x, y} = Xi+1\Xi.

Expansion X0, X1, . . . , Xm is connected and thus at least one of the endpoints of e, say x, is

in ∂(Xi). Because δ(Xi) ≤ k(1 + log2m), there is at least one unused searcher. We put this

searcher on x, clear e by sliding from x to y, and then remove searchers from all vertices of

∂(Xi) \ ∂(Xi+1). We also remove one searcher from y if y ∈ ∂(Xi)∩ ∂(Xi+1), and thus arrive to

the situation when all edges ofXi+1 are cleared, and the searchers occupy the vertices of ∂(Xi+1).

By repeating these arguments for each 1 ≤ i ≤ m− 1, we construct a monotone search strategy

of at most k(1 + log2m) + 1 searchers. To conclude, for any graph G, bw(G) ≤ s(G) [?, 48].

Hence, we construct a monotone search strategy of at most s(G)(1 + log2m) + 1 searchers.

Let us remark, that the proof of Theorem 1 implies a more general result, namely,

mcs(G)/s(G) = O(log n).

4 Connected search in trees

4.1 Price of connectivity in trees

In this section we show that the price of connectivity in trees is at most 2. In particular, we

prove the following theorem.

Theorem 2 For any tree T that is not a line, it holds that s(T ) ≤ cs(T ) ≤ 2 · s(T ) − 2 and

this inequality is tight.

Our first step is the following lemma on the monotonicity of cs on trees.

Lemma 3 For any tree T with connected search number at most k, there exists a monotone

connected search strategy for T using at most k searchers. In other words, cs(T ) = mcs(T ) for

any tree T .

Proof. Let T be a tree, with cs(T ) ≤ k. Let T̂ be the tree obtained from T by subdividing

every edge e of T into two consecutive edges e′ and e′′. Consider a connected search strategy

15



for T , and replace every slide action along an edge e in this strategy by two consecutive slide

actions along the corresponding edges e′ and e′′. That way we get a connected search strategy

for T̂ using the same number of searchers as the original strategy for T . As a consequence,

cs(T̂ ) ≤ cs(T ).

Claim 5 There exists a connected k-expansion in T̂ .

Proof. To prove the claim, let us consider a connected search strategy S in T̂ using at most

k searchers. Let F = X0, X1, . . . , Xt be the sequence of subsets of edges defined as follows:

X0 = ∅, and, for i ≥ 1, Xi is the set of clear edges after step i of S. Since at most one edge is

cleared at every step of S, it follows that |Xi \Xi−1| ≤ 1, i.e., F is an expansion. As S is using

at most k searchers, we obtain that the frontier of each set in F is of size at most k. Finally,

all Xi’s are connected for 1 ≤ i ≤ t because S is a connected strategy.

The core of the proof of the lemma is the following result:

Claim 6 There exists a monotone connected k-expansion in T̂ .

Proof. By Claim 5, there exists a connected k-expansion in T̂ . Let us choose a connected

k-expansion X0, X1, . . . , Xt in T̂ that satisfies:

(C1)
∑t

i=0(δ(Xi) + 1) is minimum, and

(C2)
∑t

i=0 |Xi| is minimum subject to (C1).

Let us show that X0, X1, . . . , Xt is monotone. If for some i ≥ 1, |Xi \Xi−1| = 0, i.e., if Xi ⊆
Xi−1, then X0, X1, . . . , Xi−1, Xi+1, . . . , Xt is also a connected k-expansion, contradicting (C1).

Therefore |Xi \Xi−1| = 1 for every i ≥ 1. Now, we show that Xi−1 ⊆ Xi for every i ≥ 1. First,

observe that

δ(Xi−1 ∪Xi) ≥ δ(Xi) (3)

for every i ≥ 1. Indeed, assume for the purpose of contradiction that δ(Xi−1 ∪ Xi) < δ(Xi).

Then Xi−1 ∪ Xi is connected because otherwise δ(Xi−1 ∪ Xi) = δ(Xi−1) + δ(Xi) ≥ δ(Xi).

Therefore,

X0, X1, . . . , Xi−1, Xi−1 ∪Xi, Xi+1, . . . , Xr

is a connected k-expansion because |(Xi−1 ∪Xi) \Xi−1| = |Xi \Xi−1| ≤ 1 and |Xi+1 \ (Xi−1 ∪
Xi)| ≤ |Xi+1 \ Xi| ≤ 1. This connected k-expansion would yield a contradiction with (C1),

and Equation 3 follows. To prove Xi−1 ⊆ Xi for every i ≥ 1, we use the submodularity of

the connectivity function δ, stating that for any two edge-sets A and B of any graph, δ(A ∩
B) + δ(A ∪ B) ≤ δ(A) + δ(B). By combining submodularity with Equation 3, we get that

δ(Xi−1 ∩Xi) ≤ δ(Xi−1) for every i ≥ 1. Therefore

X0, X1, . . . , Xi−2, Xi−1 ∩Xi, Xi, . . . , Xt

16



is a k-expansion because |(Xi−1 ∩ Xi) \ Xi−2| ≤ |Xi−1 \ Xi−2| ≤ 1 and |Xi \ (Xi−1 ∩ Xi)| =

|Xi \ Xi−1| ≤ 1. The fact that this expansion is connected follows from the fact that both

Xi−1 and Xi are subtrees of T̂ , and therefore their intersection is also a subtree of T̂ , and thus

connected. By (C2), |Xi−1 ∩ Xi| ≥ |Xi−1|, and thus Xi−1 ⊆ Xi. Therefore, the considered

expansion is a monotone connected k-expansion, which completes the proof.

Claim 7 There exists a monotone connected search strategy in T̂ using at most k searchers.

Proof. Let X0, X1, . . . , Xt be a monotone connected k-expansion in T̂ whose existence is

guaranteed by Claim 6. For i = 1, . . . , t, let ei = {xi, yi} = Xi \Xi−1. If one of the endpoints

of ei is of degree 1, then xi is set to be that vertex. We construct a monotone connected search

strategy that successively clears the edges e1, e2, . . . , et, as follows. Initially, place k searchers

in x1. Clear edge e1 by sliding one searcher from x1 to y1 along e1. No recontamination occurs

because either k = 1 and x1 is incident to e1 only, or k > 1 and k − 1 searchers remains at x1.

Assume now that all edges e1, . . . , ei−1 have been cleared (without recontamination). The edge

ei = {xi, yi} is incident to Xi−1 because the expansion X0, X1, . . . , Xt is connected. Assume,

w.l.o.g., that xi ∈ ∂(Xi−1). If δ(Xi−1) < k, then there is at least one free searcher, which

can be slid from xi to yi along ei to clear that edge without recontamination. If δ(Xi−1) = k,

then we claim that at least one endpoint of ei is not in ∂(Xi). Indeed, since xi ∈ ∂(Xi−1), if

xi ∈ ∂(Xi) then deg(xi) > 2. As a consequence, yi has to be of degree exactly 2 because every

edge has one of its endpoints incident to exactly one other edge. If in turn yi ∈ ∂(Xi) then

the unique edge fi 6= ei incident to yi is contaminated, and therefore yi /∈ ∂(Xi−1). We get a

contradiction because then δ(Xi) = δ(Xi−1) + 1 > k, contradicting the fact that we are dealing

with a k-expansion. So, as claimed, at least one endpoint of ei is not in ∂(Xi). If xi ∈ ∂(Xi)

and yi /∈ ∂(Xi) then, as shown before, deg(yi) = 2, and the unique edge fi 6= ei incident to yi

belongs to Xi−1. Therefore, there is at least one searcher occupying yi, which can be slid along

ei to clear it without recontamination. If xi /∈ ∂(Xi) then this vertex is occupied by at least

one searcher because xi ∈ ∂(Xi−1). This searcher can be slid along ei from xi to yi, clearing ei

without recontamination. One proceeds that way until all edges have been cleared. During the

process, no recontamination occurs and the successive sets of clear edges are always connected.

Hence, the constructed search strategy is monotone and connected. By construction, it uses at

most k searchers.

To complete the proof of Lemma 3, we observe that we can directly get a monotone connected

search strategy in T using at most k searchers from the monotone connected search strategy in

T̂ using at most k searchers by merely replacing the clearing of each edge in T̂ by the clearing

of the corresponding subdivided edge in T .

The proof of Theorem 2 is based on the notion of k-caterpillar recursively defined as follows:

• a 0-caterpillar is a path graph,

17



• for k ≥ 1, a graph G is a k-caterpillar if it is a tree containing a path P , called spine,

such that, for any connected component C of G \ V (P ), C is a (k− 1)-caterpillar with an

extremity of its spine adjacent to a vertex in P .

The spine of a 0-caterpillar is the graph itself. Notice that, according to the above definition,

an 1-caterpillar is a subdivision of a caterpillar in the usual sense, i.e., a path x1, . . . , xk with

ki ≥ 0 paths pending from every xi. Clearly, every tree is a k-caterpillar for k large enough.

The notion of k-caterpillar is related to the notion of caterpillar dimension introduced in [38]

(see also [37]).

Our second step for the proof of Theorem 2 is to prove that k-caterpillars are exactly the

graphs that can be connectedly cleared with at most k + 1 searchers.

Given a tree T and two vertices v, w of T , we denote by Tv the tree T rooted at v, and by

Tv[w] the subtree of Tv rooted at w. Recall that the depth of a rooted tree T is the maximum

length of a path from its root to the leaves. We denote by Bk the complete binary tree of depth

k rooted on its unique vertex of degree 2, and by Dk the tree obtained by connecting the three

roots of three copies of Bk−1 to a unique new root vertex. We denote by T1 � T2 the relation

“T1 is a contraction of T2”. Finally, given a tree T1 rooted on x1 and a tree T2 containing a

vertex x2, we denote by T1 �x2 T2 the relation “T1 is a x2-rooted minor of T2”, that is vertex

x1 is either x2 or the result of contracting a series of edges, some of them containing x2 as

end-point.

Lemma 4 Let T be a tree and e be an edge of it. Let also T ′ be the tree created if we contract

e in T . Then mcs(T ′) ≤mcs(T ).

Proof. Let we be the vertex created in T ′ after contracting e = {v, u}. Given a monotone

search strategy S ′ for T that uses ≤ k searchers with n steps, we make a strategy S ′ for T ′ as

follows: Suppose that e is cleaned at the ith step of this strategy. Then, the new strategy is

constructed by taking the first i − 1 steps of S followed by the last n − i − 1 steps of S and

then replacing each action concerning v or u with a same type action concerning we. It is easy

to verify that the new strategy is monotone and that it uses at most k searchers.

Lemma 5 For any tree T and k ≥ 1, the following three properties are equivalent:

(1) T is not a (k − 1)-caterpillar;

(2) Dk � T ;

(3) cs(T ) ≥ k + 1.

Proof. (1) ⇒ (2): We start by a preliminary statement. Let T be a tree and v be a vertex

of T such that Bk 6�v T , k ≥ 1. We claim that T is a (k − 1)-caterpillar and v is an extremity

of its spine. The proof of that claim is by induction on k. If B1 6�v T then clearly T is a path

18



with extremity v. If k > 1 and there is a vertex v such that Bk 6�v T , then there are two cases.

If Bk−1 6�v T , then by induction hypothesis, T is a (k− 2)-caterpillar with v as the first vertex

of the spine. If Bk−1 �v T , then let S be the set of vertices w such that Bk−1 �w Tv[w]. S

induces a path starting at v, and all the connected components of T −S are (k−2)-caterpillars,

in which the corresponding spine starts at the vertex adjacent to one of the vertices of S in T .

Indeed, if z /∈ S and z is adjacent to w ∈ S, then Tv[z] is one of the connected components of

T − S and Bk−1 6� Tv[z].

To complete the proof of the statement, it is enough to prove that if Dk 6� T , then T contains

a vertex v such that Bk 6�v T . Towards a contradiction, assume that for every vertex v of T ,

Bk �v T . There is a vertex z with two neighbors, z1 and z2, such that Bk−1 �z1 Tz[z1] and

Bk−1 �z2 Tz[z2]. This implies that, either Bk �z1 Tz[z1] or Bk �z Tz1 [z]. In both cases, we get

Dk � T , a contradiction.

(2) ⇒ (3): We first claim that mcs(Dk) ≥ k + 1. For this, we prove that, for any connected

search strategy in Dk, there is a step in which at least k+1 searchers are required for a monotone

search of T . As this is obvious when k = 1, we assume that k > 1.

Let T1, T2, and T3 be the three sub-trees attached to the root of Dk and isomorphic to

Bk−1. Consider the first step i1 during which an edge e incident to the root of Dk is being

cleaned. Assume, w.l.o.g., that e is an edge of T1, which means that after step i1, T2 and T3

are still completely contaminated. Let i2 > i1 be the first step during which an edge incident

to a leaf f of T2 or T3, say of T2 is reached by a searcher. The path P from the root r to this

leaf should be clean and has length k. Moreover, at step i2, for every vertex x 6= f of P , there

is a path from x to a contaminated leaf, and thus at least one searcher is needed for every x for

a monotone search. Moreover, there is one additional searcher used to clear f . Hence, at least

k + 1 searchers are required at step i2.

Applying inductively Lemma 4 for the edges that are contracted in T in order to create Dk,

one can prove that mcs(T ) ≥mcs(Dk). Therefore mcs(T ) ≥ k+ 1 and the result follows from

Lemma 3.

(3) ⇒ (1): We show the stronger statement that, if T is a k-caterpillar with spine P , then

there is a connected search strategy using k + 1 searchers starting at one extremity of P . The

proof is by induction. For k = 0, a 0-caterpillar is a path and hence the result holds trivially.

Assume now that every (k − 1)-caterpillar with spine P ′ = {w0, . . . , w`} can be cleared with k

searchers, starting at w0. Let T be a k-caterpillar with spine P = {v0, . . . , vm}. Let us denote by

wi,0 . . . wi,di the set of neighbors of vi not in P . Then, Twi,j [vi] is a (k−1)-caterpillar with spine

Pi,j starting at wi,j . The search strategy for T is the following. Start at v0 with k+ 1 searchers.

Every time you reach a new vertex vi of P , let one searcher at vi and, for j = 0, . . . , di, clear

every tree Twi,j [vi] with the k remaining searchers, using the strategy that starts at wj (there

is one, by induction hypothesis). Then, follow the path to the next contaminated vertex vi+1,

with the k + 1 searchers.

19



We define Mk = {G | s(G) ≤ k} and Dk = {G | cs(G) ≤ k} and denote by obs(Mk) (resp.

obs(Dk)) the set of all the contraction minimal graphs that do not belong in Mk (resp. Dk).

According to Lemma 5, obs(Dk) contains a unique graph that is Dk. This comes to a contrast

to the fact that the size of obs(Mk) increases rapidly as shown by Parsons in [46] (in fact,

|obs(M)| = 2 Ω(k log k), as indicated in [54]).

Proof of Theorem 2. Let T be a tree, and assume that s(T ) ≤ k. Let Mk be any tree obtained

from a complete ternary tree of depth k after removing one leaf from every set of three sibling

leaves (i.e., vertices at distance k from the root). Parsons [46] has proved that Mk ∈ obs(Mk).

Therefore Mk 6� T .

Observe that Mk is a subgraph of the graph obtained from D2k−2 by contracting every edge

connecting a vertex of level 2j − 1 to a vertex of level 2j, for 0 < j < k − 1. Therefore, for any

k ≥ 1, Mk � D2k−2. Thus D2k−2 6� T , which implies, by Lemma 5, that cs(T ) ≤ 2k − 2 =

2s(T )− 2.

To prove that the bound is tight, we first consider D2k−1. We have s(D2k−1) ≤ cs(D2k−1) =

2k and Mk � D2k−1, which implies that s(D2k−1) ≥ k+ 1. On the other hand, we give a search

strategy for D2k−1 that uses k + 1 searchers. The strategy starts by placing a searcher in the

root r. Next, it proceeds to clear the edges of the three branches which are isomorphic to B2k−2.

It is easy to see that this can be done with k searchers, and the edges connecting r to the three

branches need no additional searcher. Therefore cs(D2k−1) = 2s(D2k−1)− 2.

Finally, let us consider the graph Mk. It is easy to observe that Dk+1 6� Mk and that

Dk �Mk which, from Lemma 5, implies that cs(Mk) = k + 1 = s(Mk).

4.2 Computing optimal connected search strategies in trees

In this section, we show that computing the connected search number of trees can be achieved

in polynomial time.

Theorem 3 There is a linear-time algorithm that, given any tree T , computes the connected

search number and an optimal monotone connected search strategy for T .

The proof of Theorem 3 is constructive. A monotone connected strategy depends on the

choice of the initial vertex x where all searchers are originaly placed. For every tree T , let

csx(T ) denote the minimum number of searchers required to clear T by a monotone connected

strategy starting from vertex x. Hence,

cs(T ) = min
x∈V (T )

csx(T ).

Our algorithm computes csx(T ) for all vertices x of the tree T . In fact, it computes the related

values cs+
x (T ), x ∈ V (T ), where

cs+
x (T ) = max{1, csx(T )}.

20



The tree T rooted at vertex x is denoted by Tx. For a vertex y of T , let Tx[y] denote the subtree

of Tx rooted at y, consisting of y and all its descendants in Tx. Our algorithm relies mostly on

the following lemma:

Lemma 6 Let y1, y2, . . . , yd be the d ≥ 1 children of vertex y in the tree Tx.

• If d = 1 then cs+
y (Tx[y]) = cs+

y1(Tx[y1]).

• If d ≥ 2 then by ordering the yi’s such that cs+
yi(Tx[yi]) ≥ cs+

yi+1
(Tx[yi+1]) for every i,

1 ≤ i < d, we have

cs+
y (Tx[y]) = max{cs+

y1(Tx[y1]), cs+
y2(Tx[y2]) + 1}.

Proof. First observe that csy(Tx[y]) ≥ csy1(Tx[y1]) for d ≥ 1. Indeed, Tx[y1] cannot be cleared

in a monotone connected way by fewer than csy1(Tx[y1]) searchers reaching subtree Tx[y1] by

edge {y, y1}.
Assume d = 1. Then, by the previous observation, we get cs+

y (Tx[y]) ≥ cs+
y1(Tx[y1]). Con-

versely, cs+
y1(Tx[y1]) searchers are sufficient to clear Tx[y] by a monotone connected strategy

whenever y has a unique child y1, by moving cs+
y1(Tx[y1]) searchers from y to y1, and then using

csy1(Tx[y1]) searchers to clear Tx[y1]. Thus csy(Tx[y]) ≤ cs+
y1(Tx[y1]), from which we derive

cs+
y (Tx[y]) ≤ cs+

y1(Tx[y1]). Hence the lemma holds for d = 1. So assume now that d > 1. We

consider two cases.

Case 1: cs+
y1(Tx[y1]) > cs+

y2(Tx[y2]). Then cs+
y1(Tx[y1]) = csy1(Tx[y1]) ≥ 2. In that case,

csy1(Tx[y1]) searchers suffice to clear Tx[y] starting from y, by clearing Tx[y1] last among the chil-

dren of y, and by letting one searcher occupying vertex y while the other subtrees are successively

cleared. Indeed, every subtree Tx[yi] with i > 1 requires at most cs+
y2(Tx[y2]) < csy1(Tx[y1])

searchers to be cleared. So, csy(Tx[y]) ≤ csy1(Tx[y1]), and thus cs+
y (Tx[y]) ≤ cs+

y1(Tx[y1]). To

prove equality, assume that cs+
y (Tx[y]) < cs+

y1(Tx[y1]). Then, since cs+
y1(Tx[y1]) = csy1(Tx[y1]),

we get csy(Tx[y]) < csy1(Tx[y1]), a contradiction.

Case 2: cs+
y1(Tx[y1]) = cs+

y2(Tx[y2]). First, we consider two sub-cases for proving cs+
y (Tx[y]) ≤

cs+
y2(Tx[y2]) + 1.

• If csy1(Tx[y1]) = 0 or csy2(Tx[y2]) = 0 then Tx[y] consists in a set of d paths pending

from vertex y, in which case two searchers are sufficient to clear Tx[y] starting from y.

Therefore, csy(Tx[y]) ≤ 2, from which we derive cs+
y (Tx[y]) ≤ cs+

y2(Tx[y2]) + 1.

• If csy1(Tx[y1]) 6= 0 and csy2(Tx[y2]) 6= 0 then cs+
y1(Tx[y1]) = csy1(Tx[y1]) and cs+

y2(Tx[y2]) =

csy2(Tx[y2]). In this case, csy2(Tx[y2]) + 1 searchers are sufficient to clear Tx[y] from y

by letting one searcher occupying vertex y while all subtrees are successively cleared. In-

deed, every subtree Tx[yi] with i = 1, . . . , d, requires at most cs+
yi(Tx[yi]) ≤ cs+

y2(Tx[y2]) =

csy2(Tx[y2]) searchers to be cleared starting from yi. Thus csy(Tx[y]) ≤ csy2(Tx[y2]) + 1,

and therefore cs+
y (Tx[y]) ≤ cs+

y2(Tx[y2]) + 1.

21



To prove equality, let us assume, for the purpose of contradiction, that cs+
y (Tx[y]) < cs+

y2(Tx[y2])+

1. Thus csy(Tx[y]) < cs+
y2(Tx[y2]) + 1. It follows from this inequality that if cs+

y2(Tx[y2]) = 1

then csy(Tx[y]) ≤ 1, yielding a contradiction because d > 1. If otherwise cs+
y2(Tx[y2]) > 1 then

we get csy(Tx[y]) < csy2(Tx[y2]) + 1. In other words, there exists a monotone connected search

strategy using at most csy2(Tx[y2]) searchers for Tx[y] starting from y. Let a ∈ {1, 2} be such

that Tx[ya] is completely cleared before Tx[yb] is completely cleared, where b ∈ {1, 2} \ {a}.
Then let t be the first step of the strategy at which Tx[ya] becomes completely cleared. During

all steps t′, t′ ≤ t, at least one searcher must occupy a vertex outside Tx[ya] because other-

wise {y, ya} would be recontaminated. Thus clearing Tx[ya] from ya has been achieved with

strictly less than csy2(Tx[y2]) searchers, a contradiction since cs+
y2(Tx[y2]) > 1 insures that

csy1(Tx[y1]) ≥ csy2(Tx[y2]). This completes Case 2, and the proof of the lemma.

We remark that the above proof could become shorter (but also less self-contained) by

making use of the results in Section 4.1. Note that a straightforward application of Lemma 6

enables to compute cs(Tx) in O(n) time, resulting in an O(n2)-time algorithm for computing

cs(T ). We show that this complexity can be reduced to O(n), and, more importantly, that an

optimal search strategy can also be computed in linear time.

Proof of Theorem 3. Let T be a tree. For every vertex x of T , we define the following

labeling λx of the edges incident to x. Let e = {x, y} be an edge incident to x. If y is a leaf, then

λx(e) = 1. Otherwise, let y1, . . . , yd be the d ≥ 1 neighbors of y in T distinct from x. If d = 1,

we define λx(e) = λy({y, y1}). If d > 1, then assume, w.l.o.g., that λy({y, yi}) ≥ λy({y, yi+1})
for every i, 1 ≤ i < d. We then define

λx(e) = max{λy({y, y1}), λy({y, y2}) + 1}.

Note that every edge e = {x, y} is assigned two labels: λx(e) and λy(e). The following result is

straightforward.

Claim 8 All edges can be labeled in O(n) time.

The following result establishes the relationship between the labels and the connected search

numbers.

Claim 9 For every edge e = {x, y} of T , we have λx(e) = cs+
y (Tx[y]).

Proof. The proof is by induction on the height h(y) of Tx[y], i.e., on the length of the longest

simple path from y to the leaves of Tx[y]. The lemma holds for h(y) = 0, i.e., when y is a leaf,

since then λx(e) = cs+
y (Tx[y]) = 1. Let us assume that the lemma holds whenever 0 ≤ h(y) < k

for k > 0, and let us consider the case when h(y) = k. Let y1, y2, . . . , yd be the d ≥ 1 children

of y in Tx[y], where, w.l.o.g., λy({y, yi}) ≥ λy({y, yi+1}). By definition of λx, if d > 1 then

λx({x, y}) = max{λy({y, y1}), λy({y, y2}) + 1}.

22



For every i, 1 ≤ i ≤ d, the height of Ty[yi] is h(yi) < k. Thus, by induction hypothesis,

λy({y, yi}) = max{cs+
y1(Tx[y1]), cs+

y2(Tx[y2]) + 1}.

Similarly, for d = 1, we get λy({y, yi}) = cs+
y1(Tx[y1]). The claim thus follows by Lemma 6.

Consider now the following labeling µ of the vertices of T , which assigns to each vertex x a

label µ(x) as follows. Let e1, e2, . . . , ed be the d edges incident to x in T . If d = 0 then µ(x) = 1.

If d = 1 then µ(x) = λx(e1). If d ≥ 2 then assume, w.l.o.g., that λx(ei) ≥ λx(ei+1) for each i,

1 ≤ i < d. Set

µ(x) = max{λx(e1), λx(e2) + 1}.

Claim 10 For every vertex x of tree T , µ(x) = cs+
x (T ).

Proof. To prove the claim, add a virtual vertex x′ to T and connect x′ to x, resulting in a

tree T ′. Let λ′ be the edge-labeling in T ′. By definition, we have µ(x) = λ′x′({x′, x}). In view

of Claim 9, we get µ(x) = cs+
x (Tx′ [x]). It follows that µ(x) = cs+

x (T ).

It follows from Claim 8 that all µ(x)’s can be computed in O(n) time. Therefore, the

connected search number of every tree T can be compute in linear time. Indeed, unless T is

reduced to a single vertex, we have csx(T ) = cs+
x (T ) for every vertex x of T . We now show

that an optimal monotone connected search strategy can also be computed in linear time.

Given a tree T and the labelings {λx, x ∈ V (T )} and µ, consider the connected search

strategy S constructed as follows. Let x be such that µ(x) = miny µ(y). For each vertex y,

order locally its incident edges in T according to the labels assigned by λy listed in increasing

order. A monotone connected search strategy of Tx is obtained by starting with µ(x) searchers

in x, and performing a tour in Tx according to a depth-first search (DFS) traversal respecting

the local ordering of the edges. That is, at vertex y, the edges e incident to y with smallest

labels λy(e) are visited first. During this tour, the searchers are moved according to two simple

rules:

• when moving from a vertex y to one of its children, z, slide λy({y, z}) searchers along

{y, z} from y to z;

• when returning from z to y, slide these λy({y, z}) searchers from z back to y along {y, z}.

The following claim follows from a simple induction on the depth of the tree once we have

observed that when sliding λy({y, z}) searchers along {y, z} from y to z, we actually move

cs+
z (Tx[z]) searchers to z (cf. Claim 9). This number of searchers is sufficient to clear Tx[z] from

z in a connected monotone way.

Claim 11 The above search strategy is monotone, connected, and uses the optimal number of

searchers.

23



Since the DFS traversal can be performed in O(n) time in n-vertex trees, this completes

the proof of Theorem 3. (Note that the number of actions performed by the computed search

strategy is O(n · cs(T )) because searchers are actually moved one by one in the search strategy;

nevertheless the computed strategy can be coded compactly in O(n) time and space).

Note that, as opposed to what was claimed in [2], Theorem 3 does not trivially extend to the

weighted version of the problem for which clearing an edge may require more than one searcher,

and guarding a node may also require more than one searcher (see, e.g., [30], page 111 for a

counterexample). In fact, it is known [40] that weighted versions of the pathwidth problem are

NP-hard even for the case of trees.

5 Concluding Remarks and Open Problems

In this paper we initiated the study of the complexity of the main variant of the graph searching

problem under the connectivity demand. To conclude, we first discuss an important byproduct

of the design of our algorithm for trees.

Horton-Strahler number. The property satisfied by the connected search number, as stated

in Lemma 6, is precisely the one defining the so-called Horton-Strahler number, originally pro-

posed in hydrology by Horton [29] and Strahler [52, 53]. The Horton-Strahler number was

initially defined as a measure of the propensity of a river to flood. It later appeared in many

different contexts, including register allocation [14], mathematical biology [9, 28] (concerning

the study of bifurcations in natural trees and in the respiratory system), and, recently, social

networks [1]. The design of our linear-time algorithm for computing the connected search num-

ber cs(T ) of a tree T is actually based on the fact that the “rooted” connected search number

csx(T ) is precisely the Horton-Strahler number of a river with shape T , and whose mouth is

vertex x.

Interestingly enough, the edge-labeling λ and the vertex-labeling µ used in the design of our

algorithm shows that the Horton-Strahler number of a river T depends on the shape of the river

basin modeled by T , but not much on the position of the mouth. (Indeed, it is easy to check

that the labeling µ satisfies |µ(x)− µ(y)| ≤ 1 for every two vertices x and y.) This observation

holds for all hierarchical structures modeled by trees, such as the ones modeling arithmetical

evaluations, or the ones modeling the hierarchical structure of social networks. Although all

these trees are inherently rooted, only the structure of the tree actually matters, while the

position of the root has almost no impact on the Horton-Strahler number.

Perhaps more interesting, the notion of connected search number may serve as a general-

ization of the Horton-Strahler number to arbitrary structures (i.e., graphs), beyond the simple

case of trees. Determining what could be the interpretation of such a generalization in the

framework of complex hydrological systems like swamps is an intriguing question (although is

beyond the competences of the authors). Moreover, it would be of high interest to compute

24



and compare the connected search numbers of various types of social networks. For instance, a

small connected search number may indicate that information can be spread from one source to

everyone while simultaneously using only few people as transmitters at each step. Conversely, a

large connected search number may rather indicate that a rumor cannot spread in the network

if less than a certain number of people are simultaneously acting as propagators.

Open problems. We conclude with a several open problems.

• Is it true that for any connected graph G, cs(G)/s(G) ≤ 2?

• It is not hard to show that deciding if cs(G) ≤ k for some k is NP-hard. We do not know

if the problem belongs to NP and this is another open question. Let us remark, that by

the result of Yang et al. [55], an optimal search strategy can use recontamination.

• The graph searching problem is fixed parameter tractable with a standard parameteriza-

tion by the number of searchers. For connected search problem we even do not know if

cs(G) ≤ k can be decided in polynomial time when k is not part of the input. Can it be

that the problem is NP-hard already for small values of k like k = 3 or 4?

Final remarks. While this paper was under review, Dariusz Dereniowski solved the first open

question stated in this paper, by proving that, for any connected graph G, cs(G)/s(G) ≤ 2 [12].

Moreover, the same author also proved that the weighted version of the problem is strongly

NP-hard, even in the case of trees [11].

Acknowledgments: Many thanks to Binh Minh Bui Xuan for attracting our attention to

the Horton-Strahler number of trees.

References

[1] A. Arenas, L. Danon, A. D́ıaz-Guilera, P. M. Gleiser, and R. Guimerá, Com-

munity analysis in social networks, The European Physical Journal B - Condensed Matter

and Complex Systems, 38 (2004), pp. 373–380.

[2] L. Barrière, P. Flocchini, P. Fraigniaud, and N. Santoro, Capture of an intruder

by mobile agents, in Proc. of the 14th annual ACM Symposium on Parallel Algorithms and

Architectures (SPAA 2002), ACM Press, 2002, pp. 200–209.

[3] L. Barrière, P. Fraigniaud, N. Santoro, and D. M. Thilikos, Searching is not

jumping, in Proc. of the 29th International Workshop on Graph-Theoretic Concepts in

Computer Science (WG 2003), vol. 2880 of Lecture Notes in Computer Science, Springer,

2003, pp. 34–45.

25



[4] D. Bienstock, Graph searching, path-width, tree-width and related problems (a survey),

in Reliability of computer and communication networks (New Brunswick, NJ, 1989), vol. 5

of DIMACS Ser. Discrete Math. Theoret. Comput. Sci., Amer. Math. Soc., Providence, RI,

1991, pp. 33–49.

[5] D. Bienstock and P. Seymour, Monotonicity in graph searching, J. Algorithms, 12

(1991), pp. 239–245.

[6] L. Blin, P. Fraigniaud, N. Nisse, and S. Vial, Distributed chasing of network intrud-

ers, Theor. Comput. Sci., 399 (2008), pp. 12–37.

[7] H. L. Bodlaender, J. R. Gilbert, H. Hafsteinsson, and T. Kloks, Approximating

treewidth, pathwidth, frontsize, and shortest elimination tree, J. Algorithms, 18 (1995),

pp. 238–255.

[8] H. L. Bodlaender and D. M. Thilikos, Computing small search numbers in linear

time, in Proc. First International Workshop on Parameterized and Exact Computation,

(IWPEC 2004), Bergen, Norway, 2004, pp. 37–48.

[9] R. Borchert and N. A. Slade, Bifurcation ratios and the adaptive geometry of trees,

Botanical Gazette, 142 (1981), p. 394.

[10] R. Breisch, An intuitive approach to speleotopology, Southwestern Cavers (A publication

of the Southwestern Region of the National Speleological Society), VI (1967), pp. 72–78.

[11] D. Dereniowski, Connected searching of weighted trees, Theor. Comput. Sci., 412 (2011),

pp. 5700–5713.

[12] , From pathwidth to connected pathwidth, in 28th International Symposium on Theo-

retical Aspects of Computer Science (STACS), LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum

fuer Informatik, 2011, pp. 416–427.

[13] M. R. Fellows and M. A. Langston, Nonconstructive tools for proving polynomial-

time decidability, J. Assoc. Comput. Mach., 35 (1988), pp. 727–739.

[14] P. Flajolet, J.-C. Raoult, and J. Vuillemin, The number of registers required for

evaluating arithmetic expressions, Theoret. Comput. Sci., 9 (1979), pp. 99–125.

[15] P. Flocchini, M. J. Huang, and F. L. Luccio, Decontamination of chordal rings and

tori using mobile agents, Int. J. of Found. of Comp. Sc., 18 (2007), pp. 547–564.

[16] , Decontamination of hypercubes by mobile agents, Networks, 52 (2008), pp. 167–178.

[17] F. V. Fomin, P. Fraigniaud, and N. Nisse, Nondeterministic graph searching: from

pathwidth to treewidth, Algorithmica, 53 (2009), pp. 358–373.

[18] F. V. Fomin and D. M. Thilikos, On the monotonicity of games generated by symmetric

submodular functions, Discrete Appl. Math., 131 (2003), pp. 323–335.

26



[19] F. V. Fomin and D. M. Thilikos, An annotated bibliography on guaranteed graph search-

ing, Theor. Comput. Sci., 399 (2008), pp. 236–245.

[20] F. V. Fomin, D. M. Thilikos, and I. Todinca, Connected graph searching in out-

erplanar graphs, Electronic Notes in Discrete Mathematics, 22 (2005), pp. 213–216. 7th

International Colloquium on Graph Theory. Short communication.

[21] P. Fraigniaud and N. Nisse, Connected treewidth and connected graph searching, in

Proc. of the 7th Latin American Symposium on Theoretical Informatics (LATIN 2006),

vol. 3887 of Lecture Notes in Computer Science, Springer, 2006, pp. 479–490.

[22] , Monotony properties of connected visible graph searching, Information and Compu-

tation, 206 (2008), pp. 1383–1393.

[23] M. Franklin, Z. Galil, and M. Yung, Eavesdropping games: a graph-theoretic ap-

proach to privacy in distributed systems, J. Assoc. Comput. Mach., 47 (2000), pp. 225–243.

[24] A. Gleyzer, M. Denisyuk, A. Rimmer, and Y. Salingar, A fast recursive GIS

algorithm for computing Strahler stream order in braided and nonbraided networks, J. Amer.

Water Resourc. Assoc., 40 (2004), pp. 937–946.

[25] C. Gotsman, On the optimality of valence-based connectivity coding, Comput. Graph.

Forum, 22 (2003), pp. 99–102.

[26] G. Gottlob, Z. Miklós, and T. Schwentick, Generalized hypertree decompositions:

NP-hardness and tractable variants, J. Assoc. Comput. Mach., 56 (2009), pp. 1–32.

[27] S. Hoory, N. Linial, and A. Wigderson, Expander graphs and their applications, Bull.

Amer. Math. Soc. (N.S.), 43 (2006), pp. 439–561 (electronic).

[28] K. Horsfield, Some mathematical properties of branching trees with application to the

respiratory system, Bull. of Math. Biol., 38 (1976), pp. 305–315.

[29] R. E. Horton, Erosional development of streams and their drainage basins: hydro-physical

approach to quantitative morphology, Geol. Soc. of America Bull., 56 (1945), pp. 275–370.

[30] F. Huc, Conception de Réseaux Dynamiques Tolérants aux Pannes, PhD thesis, Nice

Sophia Antipolis, Projet MASCOTTE, (CNRS - UNSA) INRIA, Novembre 2008.

[31] D. Ilcinkas, N. Nisse, and D. Soguet, The cost of monotonicity in distributed graph

searching, Distributed Computing, 22 (2009), pp. 117–127.

[32] M. Isenburg, P. Lindstrom, S. Gumhold, and J. Snoeyink, Large mesh simplifi-

cation using processing sequences, in Proc. of the 14th IEEE Visualization (VIS 2003),

Washington, DC, USA, 2003, IEEE Computer Society, p. 61.

[33] N. R. Jennings, An agent-based approach for building complex software systems, Commun.

ACM, 44 (2001), pp. 35–41.

27



[34] L. M. Kirousis and C. H. Papadimitriou, Interval graphs and searching, Discrete

Math., 55 (1985), pp. 181–184.

[35] , Searching and pebbling, Theoret. Comput. Sci., 47 (1986), pp. 205–218.

[36] A. S. LaPaugh, Recontamination does not help to search a graph, J. Assoc. Comput.

Mach., 40 (1993), pp. 224–245.

[37] N. Linial, A. Magen, and M. E. Saks, Trees and Euclidean metrics, in Proceedings

of the 30th Annual ACM Symposium on the Theory of Computing (STOC 1998), Dallas,

Texas, New York, 1999, ACM, pp. 169–175.

[38] J. Matoušek, On embedding trees into uniformly convex Banach spaces, Israel J. Math.,

114 (1999), pp. 221–237.

[39] N. Megiddo, S. L. Hakimi, M. R. Garey, D. S. Johnson, and C. H. Papadimitriou,

The complexity of searching a graph, J. Assoc. Comput. Mach., 35 (1988), pp. 18–44.

[40] R. Mihai and I. Todinca, Pathwidth is NP-hard for weighted trees, Frontiers in Algo-

rithmics, (2009), pp. 181–195.

[41] R. H. Möhring, Graph problems related to gate matrix layout and PLA folding, in Com-

putational graph theory, vol. 7 of Comput. Suppl., Springer, Vienna, 1990, pp. 17–51.

[42] N. Nisse, Connected graph searching in chordal graphs, Discrete Appl. Math., 157 (2009),

pp. 2603–2610.

[43] N. Nisse and D. Soguet, Graph searching with advice, Theor. Comput. Sci., 410 (2009),

pp. 1307–1318.

[44] R. J. Nowakowski and N. Zeh, Boundary-optimal triangulation flooding, Internat. J.

Comput. Geom. Appl., 16 (2006), pp. 271–290.

[45] T. D. Parsons, Pursuit-evasion in a graph, in Proc. Internat. Conf., Western Mich.

Univ., Kalamazoo, Mich., 1976, Theory and applications of graphs, Springer, Berlin, 1978,

pp. 426–441. Lecture Notes in Math., Vol. 642.

[46] , The search number of a connected graph, in Proc. of the Ninth Southeastern Con-

ference on Combinatorics, Graph Theory, and Computing, Florida Atlantic Univ., Boca

Raton, Fla., Congress. Numer., XXI, Winnipeg, Man., 1978, Utilitas Math., pp. 549–554.

[47] N. N. Petrov, A problem of pursuit in the absence of information on the pursued, Dif-

ferentsial’nye Uravneniya, 18 (1982), pp. 1345–1352, 1468.

[48] N. Robertson and P. D. Seymour, Graph minors. X. Obstructions to tree-

decomposition, J. Combin. Theory Ser. B, 52 (1991), pp. 153–190.

[49] , Graph minors. XIII. The disjoint paths problem, J. Combin. Theory Ser. B, 63 (1995),

pp. 65–110.

28



[50] , Graph minors. XX. Wagner’s conjecture, J. Combin. Theory Ser. B, 92 (2004),

pp. 325–357.

[51] P. D. Seymour and R. Thomas, Call routing and the ratcatcher, Combinatorica, 14

(1994), pp. 217–241.

[52] A. N. Strahler, Hypsometric (area-altitude) analysis of erosional topology, Geol. Soc. of

America Bull., 63 (1952), pp. 1117–1142.

[53] , Quantitative analysis of watershed geomorphology, Trans. of the Amer. Geoph. Un.,

8 (1957), pp. 913–920.

[54] A. Takahashi, S. Ueno, and Y. Kajitani, Minimal acyclic forbidden minors for the

family of graphs with bounded path-width, Disc. Math., 127 (1994), pp. 293–304.

[55] B. Yang, D. Dyer, and B. Alspach, Sweeping graphs with large clique number, Disc.

Math., 309 (2009), pp. 5770–5780.

29


	Introduction
	Our results
	Related work

	Model and definitions
	Price of connectivity
	Connected search in trees
	Price of connectivity in trees
	Computing optimal connected search strategies in trees

	Concluding Remarks and Open Problems

