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In a network environment supporting mobile entities (called robots or agents), a black
hole is a harmful site that destroys any incoming entity without leaving any visible trace.
The black-hole search problem is the task of a team of k > 1 mobile entities, starting from
the same safe location and executing the same algorithm, to determine within finite time
the location of the black hole. In this paper, we consider the black hole search problem in
asynchronous ring networks of n nodes, and focus on time complexity. It is known that
any algorithm for black-hole search in a ring requires at least 2(n − 2) time in the worst
case. The best known algorithm achieves this bound with a team of n − 1 agents with
an average time cost of 2(n − 2), equal to the worst case. In this paper, we first show
how the same number of agents using 2 extra time units in the worst case, can solve the
problem in only 7

4
n−O(1) time on the average. We then prove that the optimal average

case complexity of 3
2
n − O(1) can be achieved without increasing the worst case using

2(n − 1) agents. Finally, we design an algorithm that achieves asymptotically optimal
both worst and average case time complexities employing an optimal team of k = 2
agents, thus improving on the earlier results that required O(n) agents.
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1. Introduction

1.1. The problem

Black Hole Search (BHS) is a multi-agents problem set in a graph G: A team of
(identical) cooperating mobile entities called agents (or robots) must determine the
location in G of a black hole (BH): A node where any incoming agent is destroyed
without leaving any detectable trace. The problem is solved if at least one agent
survives and knows the location of the black hole.

A black hole can model several types of faults, both hardware and software,
arising in networked systems with code mobility. For example, the crash failure of
a site in an asynchronous network turns such a site into a black hole; similarly, the
presence at a site of a malicious process (e.g., a virus) that thrashes any incoming
message (e.g., by classifying it as spam) also renders that site a black hole. Clearly,
in the presence of such a harmful host, the first step must be to identify it, if possible;
i.e., to determine and report its location; following this phase, a “rescue” or “repair”
activity would conceivably be initiated [16]. The black hole search problem is also
theoretically interesting because it is a generalization of the classical problem of
graph exploration (e.g., see [1, 7, 17]). In fact, it is easy to see that to locate a black
hole the agents necessarily have to “explore” all safe nodes; in this exploration
process some agents may disappear in the black hole. In other words, while the
existing wide body of literature on exploration assumes that the graph is safe, BHS
opens the problem of the exploration of dangerous graphs.

In this paper, we consider the BHS problem in a ring network.

1.2. Related work

The BHS problem has been originally studied in ring networks [12] and has been
extensively investigated in various settings since then (e.g., see [4, 6, 8, 10, 13, 14,
19, 24]).

In order to locate the black hole, some of the agents of the team will necessarily
have to enter the dangerous site. The goal of all location algorithms studied in
the literature is to minimize the size of the exploring team, the number of moves
performed by the agents, and the time spent in the search.

The main distinctions made in the literature are whether the system is syn-
chronous or asynchronous, and whether the agents communicate through white-
boards or by using tokens.

The majority of the work focuses on the asynchronous whiteboard model, which is
the one considered in this paper. In this model, there are no assumptions on the time
required for each operation or movement other than it is finite. Each network node
provides a shared memory area, the whiteboard, which visiting agents can access
(in fair mutual exclusion) to write on and/or read from. The communication and
coordination between agents takes place solely via the whiteboards. Within this
model, a complete characterization has been done for the localization of a black
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hole in ring networks [12], providing protocols that are optimal in size, time, and
asymptotically optimal in number of moves. In [10], arbitrary topologies have been
considered and algorithms that are asymptotically optimal in number of agents
and number of moves have been proposed under a variety of assumptions on the
agents’ knowledge (knowledge of the topology, presence of sense of direction). An
improved algorithm when the topology is known has been described in [11], while
move-optimal algorithms for common interconnection networks have been studied in
[8]. In [19], the impact that knowledge of the link through which an agent reaches a
node has on the optimal team size has been studied and lower bounds provided. The
case of black links in arbitrary networks has been studied in [2, 15], respectively for
anonymous and nonanonymous nodes. BHS in directed graphs has been investigated
for the first time in [4], where it is shown that the requirements in number of agents
change considerably. A variant of dangerous node behavior has been studied in [22],
where the authors introduce black holes with Byzantine behavior (which do not
always destroy a passing agent) and consider the periodic ring exploration problem.

In the asynchronous token model, there are no whiteboards, but each agent is
provided with pebbles that it can place on (and pick up from) a node; the com-
munication and coordination among agents is achieved solely by manipulating the
pebbles. This model has been investigated in [9, 13, 14, 24].

In synchronous networks, where movements are synchronized and it is assumed
that it takes one unit of time to traverse a link, the techniques and the results
are quite different. Tight bounds on the number of moves have been established for
some classes of trees [6]. In the case of general networks finding the optimal strategy
is shown to be NP-hard [5, 20] and approximation algorithms are given in [20, 21].
The case of multiple black holes have been investigated in [3] where a lower bound
on the cost and close upper bounds are given.

1.3. Main contributions

In this paper, we turn our attention to the time complexity of locating a black hole
in a ring of n nodes using a team of k > 1 asynchronous agents communicating
by means of whiteboards (shared memory available at each node). The asynchrony
of the computational entities means that the algorithm must work regardless of
the time required for each computation or movement, which is finite but a priori
unknown (i.e., determined by an adversary); however, the time complexity of the
algorithm is measured assuming unitary time delays (i.e., determined by a syn-
chronous scheduler). Such a measure is called ideal time and is often employed in
distributed computing (e.g. [12, 18, 23]).

It has been shown in [12] that any asynchronous BHS algorithm for rings requires
2(n − 2) time in the worst case regardless of the number k > 1 of agents. The best
algorithm achieves this bound with a team of k = n − 1 agents with an average
time cost 2(n − 2), equal to the worst case [12].
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Table 1. Summary of results.

Algorithm Agents Time complexity

Average Worst

[12] n − 1 2(n − 2) 2(n − 2) (�)

Group n − 1 7
4
n + O(1) 2(n − 1)

OptAvgTime 2(n − 1) 3
2
n − O(1) (�) 2(n − 2) (�)

OptTeamSize 2 (�) 15
2

n + O(1) 8n + O(1)

(�) Indicates an optimal exact bound.

In this paper, we first show how the same number of agents can solve the problem
using on the average only 7

4n + O(1) time, and in the worst case two extra time
units from optimal. We also show that any asynchronous BHS algorithm for rings
requires 3

2n time in average regardless of the number k > 1 of agents, and then prove
that, with 2(n − 1) agents, the optimal average case complexity 3

2n − O(1) can be
achieved without increasing the worst case. Finally, observing that all considered
protocols achieve (worst and average) Θ(n) time using O(n) agents, we prove that
it is possible to locate a black hole in asymptotically optimal (worst and average)
Θ(n) time with just k = 2 agents. In fact, we design an algorithm that uses 8n+O(1)
time in the worst case and 15

2 n + O(1) on the average, employing an optimal team
of two agents thus improving the earlier result that employed n − 1 agents. These
results are summarized in Table 1. The costs in terms of number of moves of all these
algorithms is O(n2), the same as that of the algorithm in [12] they improve upon.

2. Preliminaries

2.1. Definitions and notations

The network environment is a ring R of n anonymous nodes (for simplicity indicated
as 0, 1, . . . , n− 1 in clockwise direction). Each node has two ports, labeled left and
right. Without loss of generality, we assume that this labeling is globally consistent
and the ring is oriented (if it is not the case, orientation can be easily obtained).
Each node is equipped with a limited amount of storage, called whiteboard. For all
our algorithms O(log n) bits of storage are sufficient.

In this network there is a set A of anonymous (i.e., identical) mobile agents,
which are all initially located on the same node, called the homebase (w.l.g. node 0).
The topology is known to the agents, as well as the number of nodes (as shown in
[12], not knowing the number of nodes makes the location process impossible).
The agents can move from node to neighboring node in R and have computing
capabilities and bounded storage. The agents obey the same set of behavioral rules,
the protocol, and all their actions are performed asynchronously, i.e., they take a
finite but unpredictable amount of time. The agents communicate by writing on
and reading from the whiteboards. Access to the whiteboards is governed by fair
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mutual exclusion; that is, within finite time every access request is satisfied and
access to the whiteboard is granted to one agent at a time.

A black hole is a stationary process located at a node, which destroys any agent
arriving at the node; no observable trace of such a destruction will be evident
external to the node in which black hole is located. The BHS problem is the one of
finding the location of the black hole. More precisely, the BHS problem is solved if
at least one agent survives, and all surviving agents know the location of the black
hole within a finite amount of time.

We evaluate the efficiency of a solutions based on the following measures:

(1) Number of agents used/needed in the protocol.
(2) Total number of moves performed by all agents.
(3) The amount of time between the earliest start time of the protocol by any

agent and the time all the agents that started the protocol have terminated the
execution of protocol. Since the system is asynchronous, when evaluating the
time complexity we will employ ideal time; i.e., we will assume that time delays
are unitary (e.g., see [12, 18, 23]).

3. Improving the Average Time Complexity

In this section we improve on the average time complexity of [12]. We describe an
algorithm that uses only n − 1 agents, as in [12], but only 7

4n + O(1) time on the
average (instead of 2(n − 2)). The worst case is 2(n − 1) (instead of 2(n − 2)).

The idea is to determine the location of the black hole on some node by having
a particular pair of agents (witnessing pair) returning successfully to the homebase
after exploring a subset of nodes that does not include the black hole. The way
subsets of nodes are associated to agents is complicated by the objective of reducing
the number of agents entering the black hole.

We recall that node 0 indicates the homebase and the other nodes are indicated
as 1, 2, . . . , n−1 in clockwise direction. For simplicity, let us assume that n is of the
form: n = 4q + 1, for some q > 1. The 4q agents are divided into four groups: Left,
Right, Middle and TieBreakers.

The groups Left and Right contain q agents each. The Middle group consists of
q + 1 agents and the TieBreakers group consists of q − 1 agents.

The witnessing pairs are chosen in a different way depending on the potential
location of the black hole. If the black hole is far from the homebase, it will be
witnessed by a pair from Left and Middle or from Right and Middle. If instead, the
black hole is closer to the homebase the witnessing pair will belong to TieBreakers
and Right or to TieBreakers and Left.

More precisely, the idea is that the agents of the Left, Right and Middle groups
explore each a region of size 3q appropriately chosen in such a way that the 2q

nodes farthest from the homebase are endpoints of complements of explored areas
of some agents. In other words, the presence of the black hole in one of those 2q



December 22, 2011 15:17 WSPC/S1793-8309 257-DMAA 00134

462 B. Balamohan et al.

nodes would be witnessed by a pair of agents being able to successfully return after
their exploration.

The agents of the Tiebreakers group are instead used to pair themselves either
with an agent from Right or with one from Left to locate the black hole when it is
within q nodes from the homebase. The details are given in Algorithm 1.

Algorithm 1 Algorithm GROUP
(1) The Left group consists of left i for 1 ≤ i ≤ q. An agent left i in this group

explores all node except the nodes {i, i + 1, i + 2, . . . , i + q − 1}. It moves left
first, then right and then returns to homebase. (See Fig. 3).

(2) The Right group consists of right i for 1 ≤ i ≤ q. An agent right i in this group
explores all node except the nodes {n− i− q, n− i− q + 1, . . . , n− i}. It moves
right first, then left and then returns to homebase.

(3) The Middle group consists of middle i for 1 ≤ i ≤ q + 1. An agent middle i in
this group explores all node except the nodes {q + i − 1, q + i, . . . , 2q + i − 1}.
It moves left first, then right and then returns to homebase. (See Fig. 3).

(4) The Tiebreaker group consists of tiebreaker i for 1 ≤ i ≤ q − 1. An agent
tiebreaker i in this group explores all nodes except nodes {i, i − 1, i − 2, . . . , 1}
at the right of the homebase starting as soon as either right i+1 or left i+1 passes
through the homebase. (See Fig. 3).

(5) The black hole is located on node i iff one of the following witnessing pairs return
safely: (left i, middle i), (right i,middleq−i), (tiebreaker i, left i), (tiebreaker i,
right i).

For the cases n = 4q + a with a �= 1 we can adapt the algorithm described
above as follows. The Left and Right groups are composed of q agents each, while
the Tiebreaker group is composed of q − 1 agents and the Middle group by q + a

agents. As before, agent middle i in the Middle group explores all nodes except nodes
{q + i − 1, q + i, . . . , 2q + i − 1} for 1 ≤ i ≤ q + a.

We have that:

Theorem 3.1. Algorithm GROUP correctly solves the black hole search problem.

Proof. Let us assume, for simplicity, that n = 4q + 1. If the black hole is one of
nodes {q, q + 1, q + 2, . . . , 2q} then, by construction, it is the unique node in the
intersection of the excluded segments of a pair of agents left i and middle i from the
Left and the Middle groups (for example, q + 1 is the only node not explored by
the pair left2, middle2). In such a case the black hole is located by the return of
such a witnessing pair and the location takes 3

2 (n − 2) time units as both agents
left i and middle i explore all but q = 1

4 (n − 1) agents. If the black hole is in node
i with i < q then agent right i+1, after exploring the i nodes on the right of the
homebase, passes back through the homebase. At this moment, by the rules of the
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Fig. 1. Algorithm GROUP: Protocol for left group.

Fig. 2. Algorithm GROUP: Protocol for middle group.

Fig. 3. Algorithm GROUP: Protocol for tiebreaker group.
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algorithm, agent tiebreaker i starts exploring all the nodes (except node i and the
i − 1 nodes between node i and homebase) moving to the right of the homebase.
If also agent lefti returns, it means that node i contains the black hole because
it is the only unexplored node. Hence, the return of the pair tiebreaker i, left i (or
tiebreaker i, right i) signals the presence of the black hole in node i. The case when
n �= 4q + 1 follows a very similar reasoning.

We now turn to the time complexity of the algorithm.

Theorem 3.2. Algorithm GROUP locates the black hole with average time 7n
4 +

O(1) and worst case time 2(n − 1).

Proof. Let us assume that n ≡ 1 (mod 4) (it is easy to see that this constitutes
the worst possible case for time complexity). Agent tiebreaker i begins the execution
after 2i time units, and it explores all but i nodes. Hence it returns back to the
homebase 2(n − 1) time units after the start of the execution of the first agent.
So, when the black hole is one of the q − 1 nodes closest to the homebase, it will
be located within 2(n − 1) units. A similar argument apply when the blackhole is
symmetrically placed on the other (right) half of the ring, and the worst-case result
follows.

As for the average time complexity, we have two situations: When the black hole
is within q nodes of the homebase, the time for locating it is 2(n − 1); otherwise,
it is 3

2 (n − 2) time units. Hence, the average ideal time complexity of Algorithm
GROUP for the case n ≡ 1 (mod 4) is:

2(q − 1)(2(n − 1)) + 2(q + 1)(3(n−2)
2 )

4q
=

7(n − 1)
4

− O(1).

It is clear that the average complexity when n �= 1 (mod 4) cannot be higher than
7(n−1)

4 + O(1).

4. Optimal Average Time

In this section we show that, by doubling the number of agents, it is possible to
achieve simultaneously optimal time both in the average and in the worst case,
establishing a lower bound on the average time complexity of BHS.

The idea of the algorithm is similar to the one of Algorithm GROUP, simplified
by the availability of more agents. The idea is to identify pairs of agents (left i, right i,
i ≤ 1 ≤ n − 1) among the 2(n − 1) available, and to assign each pair to “check” a
node of the ring. To check node i, an agent of the pair would move to node i − 1
clockwise (thus exploring nodes 1, 2, . . . , i − 1) and the other would move to node
i + 1 counterclockwise (thus exploring nodes i + 1, i + 2, . . . , n− 1). The presence of
the black hole in the ring insures that only one pair will come back to the homebase
intact while one agents of each of the other pairs will disappear in the black hole.
Once the successful pair returns, the black hole is located.
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Algorithm 2 Algorithm OPTAVGTIME
2(n − 1) co-located agent left i, right i, i ≤ 1 ≤ n − 1 at homebase node 0.

(1) Agent left i explores nodes (0, 1, 2, . . . , i − 1) and returns.
(2) Agent right i explores nodes (n − 1, n − 2 . . . , i + 2, i + 1) and returns.
(3) Let (left j , right j) be the only full pair safely returning. The black hole is node j.

Theorem 4.1. Algorithm OPTAVGTIME solves the black hole location problem
in average ideal time complexity 3

2n + O(1) and worst-case ideal time complexity
2(n − 2). Both complexities are optimal.

Proof. Correctness follows from the fact that for each node i there are two agents,
namely left i and right i such that the singleton set {i} is the intersection of the areas
that they do not explore.

Let us now consider worst-case time complexity: The time spent by left i and
right i to reach their destinations and come back is 2Max{i−1, n−i}; the worst-case
clearly occurs when the black hole is located on node 1 (or n − 2) and the corre-
sponding time complexity is 2(n − 2), which is optimal [12].

As for the average time, the presence of the black hole at a node i is witnessed
by agents reaching nodes i − 1 and n − i − 1. Hence, the ideal time delay for the
algorithm when the black hole is located at node i is 2Max{i−1, n−1− i}. 2(i−1),
which is greater than or equal to 2(n− 1− i) whenever i ≥ n

2 . Since all nodes other
than the homebase are equally likely to contain the black hole, the average time
complexity is:

∑n
2 −1
i=1 2(n − 1 − i) +

∑n−1
i= n

2
2(i − 1)

n − 1

=
(n − 1)(n − 2) +

∑n
2 −1
i=1 −2i +

∑n−1
n
2

2i

n − 1

=
(n − 1)(n − 2) − (n

2 − 1)n + (n − 1)n
n − 1

=
3
2
n + O(1).

Notice that nodes on either side of the black hole have necessarily to be reached
by some agents and their visit reported back. Hence the time when the black hole
is located at node i must be greater than or equal to both 2(i− 1) and 2(n− 1− i),
which precisely corresponds to the time complexity of our algorithm for node i. We
can then conclude that our bound is optimal.

5. Optimal Team Size

The algorithm of Dobrev et al. [12] as well as the improvements presented here have
optimal time complexities both in the worst and in the average case; however they
all use O(n) agents, which is order of magnitude larger than that of the optimal
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team size k = 2. One might think that this large number of agents used by the
time-optimal solutions is necessary. This is however not true, as we show in this
section.

In the following, we present an algorithm that allows k = 2 agents to locate
the black hole with asymptotically optimal time in both the worst and the average
case. The cost in terms of number of moves of this algorithm is O(n2), the same as
the one of [12] and all the others considered here.

5.1. Cautious walk

Before proceeding with the description of the algorithm, we recall the cautious walk
technique of [12], which is central to the algorithm presented below.

At any time during the search for the black hole, the ports (corresponding to
the incident links) of a node can be classified as follows:

(1) unexplored: if no agent has moved across this port.
(2) safe: if an agent arrived via this port.
(3) active: if an agent departed via this port, but no agent has arrived via it.

Clearly, both unexplored and active links are dangerous in that they might lead
to the black hole; however, active links are being explored, so there is no need for
another agent to go there unless it is declared safe. Cautious walk is defined by the
following two rules:

(1) When an agent moves from node u to v via an unexplored port (turning it
into active), if it does not disappears (i.e., v is not the black hole) the agent
immediately returns to u (making the port safe), and only then resumes its
execution;

(2) No agent leaves via an active port.

5.2. The algorithm

The idea of the algorithm, called OPTTEAMSIZE, is as follows. At each point in
time the nodes of the ring are partitioned into an Explored area and an Unexplored
one. The explored area has been already visited by some agent and it is known to be
safe, the unexplored area is still to be visited and contains the black hole. Moreover,
during the algorithm, the unexplored area is partitioned between the two agents.
More precisely, it is always divided into two disjoint areas of different sizes to which
agents are assigned: One part containing a single node and the other containing
all other unexplored nodes. In each step of the algorithm one of the agents (called
small) is given the task to explore the area containing a single node, while the other
(called big) has to explore the other area. The exploration proceeds with cautious
walk. Since the two areas are disjoint, one of the agents will certainly succeed in
its exploration. If the big agent succeeds, the blackhole is obviously located and the
algorithm terminates. On the other hand, if the small agent returns successfully,
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it further divides the remaining unexplored area and notifies the big agent of the
update by leaving a message on the whiteboard of the last node successfully visited
by the other agent. The way the update of the unexplored area is performed is such
that an agent stays small for two consecutive steps before switching role. A stage of
the algorithm consists of these two consecutive steps and the algorithm is a sequence
of stages which terminates when n − 1 nodes are known to be safe.

This division process is preceded by a preprocessing phase where the two agents
divide the ring in two disjoint parts of almost equal size: only when one of the two
returns to the homebase, the asymmetric workload division starts to take place.

In the following, when we say that an agent acts as big we mean that it cautiously
explores all but the last nodes of the unexplored area. When an agent acts as small
it cautiously explores the first node of the unexplored area. The location of the
homebase in the various steps of the algorithms is variable and it is always the
central node of the current explored area. An update message contains the update
information about the current unexplored area and the current location of the
homebase. The details of the rules are given in Algorithm 3.

5.3. Correctness and complexity

We now prove that the algorithm terminates correctly and we study its complexity.

Theorem 5.1. Algorithm OPTTEAMSIZE correctly solves the BHS using 2 agents
and performing O(n2) moves.

Proof. After the end of the preprocessing phase at least one agent, say right ,
survives and returns. Consider now the execution of the rest of the algorithm.
Since the segments of the ring explored by each agent are always disjoint, at least
one agent survives every stage. If the big agent survives, the algorithm terminates
correctly with the black hole being the only node under exploration by agent small.
If instead the small agent survives, the size of the unexplored area decreases by one
and the algorithm correctly moves to the next stage (or it terminates if the new size
is equal to one). In both cases the size of the unexplored area has decreased and
there has been progress towards the solution; hence, one of the agents eventually
discovers the location of the black hole.

To prove that the algorithm has Θ(n) time complexity, we first observe that
when the exploration phase of the algorithm begins the explored area is at least of
size n−1

2 . Since we are considering ideal time, we are assuming that the agents start
simultaneously, the execution is synchronized, and it takes exactly one time unit
for each movement. While the big agent, say r, is exploring all but one nodes on
its side, the other agent (if it did not disappear in the blackhole before) performs
two steps as small making at least 3

2 (n− 1) moves (and spending the same amount
of time). By that time, under the ideal time assumption, agent r would have either
(i) returned safely determining the location of the black hole, or (ii) died in the
black hole. In the first case we obviously have a time complexity of O(n). In the
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Algorithm 3 Algorithm OPTTEAMSIZE
Two co-located agents l and r . E = {vh}. U = V − E.

(1) Preprocessing Phase: Agent l (resp. r) explores cautiously the leftmost (resp.
rightmost) �|U |/2� nodes of the unexplored area and when finished returns to
the homebase vh.

(2) Exploration Phase: One of the agents (say l) arrives at the homebase and
becomes small. Agent l moves to the last explored node on agent r’s side,
it leaves an update message to r indicating to act as big . Agent l then moves
to its side and act as small. Stage 1 of Phase 2 begins.

(3) Stage i of Phase 2:

(a) If the big agent (say r) returns to the homebase (or the small agent returns
and the size of the unexplored area is one) then the blackhole is located and
the algorithm terminates.

(b) Otherwise, the small agent l returns, it moves to the last explored node on
agent r’s side, it leaves an update message for r indicating to maintain the
same role big .

(c) Agent l moves back to its side and it acts as small.
(d) If r returns, then the blackhole is located and the algorithm terminates.
(e) Otherwise agent l returns, it moves to the last explored node on agent r’s

side, it leaves an update message for r instructing to reverse role. Agent l

then moves to the other side and it changes role acting as big.
(f) If l returns the blackhole is located and the algorithm terminates.
(g) Otherwise agent r returns and becomes small ; it moves to agent l’s side, it

leaves an update message for agent l instructing it to act as big. Agent r

then moves back to its side and acts as small.
(h) If l returns then the blackhole is located and the algorithm terminates.
(i) Otherwise agent r returns, it changes role becoming big , it moves to agent

l’s side and it leaves a message to agent l at the last explored node updating
the unexplored area and instructing to reverse roles. Agent l moves to its
side and acts as big.

(j) Stage i + 1 starts.

other case, when agent l switches role becoming big and moves to explore all but
one node, it necessarily completes its task locating the black hole, again with an
overall time complexity of O(n).

To show that the worst-case move complexity is O(n2), it suffices to notice
that in the worst possible asynchronous execution it is always the small agent that
completes a step, while the big agent is slow on a link. Since the small agent manages
to explore a single node in each step, and the size of the unexplored area when this
procedure starts is n

2 , O(n) steps are necessary to locate the black hole. In each
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step, however, O(n) moves are performed by the small agent to explore and report
the update on the other side of the explored area, for a total of O(n2) moves.

We now derive the exact average and worst-case time complexities of the
algorithm.

Theorem 5.2. Algorithm OPTTEAMSIZE solves the BHS in average ideal time
15
2 n + O(1) and worst case 8n + O(1).

Proof. By symmetry of the algorithm we may assume that the black hole is located
on the right half of the ring (w.l.g let n be even). We then calculate the ideal time
delay when the black hole is located at node i ≤ n

2 (i.e., n
2 nodes to the right of the

homebase). We consider different cases.

• Case 1. Node i is the border node of the partition between the right and the left
agents. In this case the left agent returns after 3

2n+ n
2 time units to the homebase.

In the sum, the first addend is for the cautious exploration and the second is for
the time taken to return to the homebase. Now the left agents follows the path of
the right agent. The right agent must have died at the last node of its partition.
So in another n time units the left agent will reach the last safe node explored by
the right agent and return. So, in this case the black hole is located in 3n total
time units.

• Case 2. Node i is the neighbor of the border node of the partition between the
right and the left agents. Similarly to the previous case, the left agent will take
3n−O(1) time units to return to the homebase after exploring all nodes, except
the black hole and its neighbor. Now the left agent in the role of small explores
the last safe node and return in further n+O(1) time units. In this case the black
hole is then located in 4n + O(1) time units.

• Case 3. Node i is the third node from the border of the partition between the
right and the left agents. In this case the left agent discovers the black hole after
the end of the second round as small. The total ideal time delay in this case is
5n + O(1).

• Case 4. Node i is the fourth node or the node further from the border of the
partition between the right and the left agents. In this case the left agent (l)
performs two rounds as small and a round as big. Observe that under ideal con-
ditions the right agent would die in the black hole and would not return, so it
suffices to count the time taken by the left agent. Agent l explores (n− i) +O(1)
nodes in total and this cautious exploration costs in total 3(n − i) + O(1) time
units. Let us now compute the time necessary for the other movements of the
left agent. Agent l takes n

2 + i + O(1) time units for reaching the last safe node
explored by the right agent. Moreover, agent l takes 4(n

2 + i) + O(1) time unit
for the two rounds as small; after becoming big, agent l reaches the last explored
node on its side in n

2 + i time units. At this point it cautiously explores (the
cost of the exploration has been already accounted for earlier). Finally, the agent



December 22, 2011 15:17 WSPC/S1793-8309 257-DMAA 00134

470 B. Balamohan et al.

returns to the homebase in n − i + O(1) time units. Thus the total ideal time
delay is 7n + 2i + O(1) time units.

Hence, the average ideal time delay is

12n +
∑i= n

2
i=1 (7n + 2i)

n
2

= 7n +
(n

2 )(n
2 + 1)
n
2

=
15
2

n + O(1).

The worst case occurs in correspondence of Case 4, when i = n/2 − O(1), which
yields 8n + O(1).

6. Conclusion

In this paper, we have considered the black hole search problem in the ring focussing
our attention on exact time complexity. We have described three different algorithms
each one with different desirable features. Algorithm GROUP improves upon the
existing solution of [12] in average time by slightly increasing the worst-case time
complexity and maintaining the same number of agents; algorithm OPTAVGTIME
achieves both optimal average and worst time at the expense of doubling the number
of agents; finally, algorithm OPTTEAMSIZE allows to solve the problem with the
optimal number of agents, with slight increase in the exact time complexities, which
however remains linear. Finding an algorithm that achieves optimal complexity in
all three parameters or proving that such an algorithm cannot exist is left as an
open problem and is subject of current investigation.
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