
Autonomous Mobile Robots with Lights∗

Shantanu Das† Paola Flocchini‡ Giuseppe Prencipe§ Nicola Santoro¶

Masafumi Yamashita‖

Abstract

We consider the well known distributed setting of computational mobile entities, called
robots, operating in the Euclidean plane in Look-Compute-Move (LCM) cycles. We inves-
tigate the computational impact of expanding the capabilities of the robots by endowing
them with an externally visible memory register, called light, whose values, called colors, are
persistent, that is they are not automatically reset at the end of each cycle. We refer to so
endowed entities as luminous robots.

We study the computational power of luminous robots with respect to the three main
settings of activation and synchronization: fully-synchronous, semi-synchronous, and asyn-
chronous. We establish several results. A main contribution is the constructive proof that
asynchronous robots, illuminated with a constant number of colors, are strictly more powerful
than traditional semi-synchronous robots.

We also constructively prove that, for luminous robots, the difference between asynchrony
and semi-synchrony disappears. This result must be contrasted with the strict dominance
between the models without lights (even if the robots are enhanced with an unbounded
amount of persistent internal memory).

Additionally we show that there are problems that robots cannot solve without lights,
even if they are fully-synchronous, but can be solved by asynchronous luminous robots with
O(1) colors. It is still open whether or not asynchronous luminous robots with O(1) colors
are more powerful than fully-synchronous robots without lights.

We prove that this is indeed the case if the robots have the additional capability of
remembering a single snapshot. This in turn shows that, for asynchronous robots, to have
O(1) colors and a single snapshot renders them more powerful than to have an unlimited
amount of persistent memory (including snapshots) but no lights.
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1 Introduction

1.1 Framework

Consider a distributed system composed of a team of mobile computational entities, called robots,
placed in R2 where they can freely move, each endowed with a personal coordinate system, and
operating in Look-Compute-Move (LCM) cycles. During a cycle, a robot first obtains a snapshot
of the positions of the robots in its own local coordinate system (Look); using the snapshot as
an input, the robot then executes a protocol, the same for all robots, to compute its destination
(Compute); finally, moves towards the computed destination, if different from its current location
(Move). After each cycle, a robot may be inactive for some time. The robots are autonomous
(i.e., without a central control); they are silent (i.e., they have no means of direct communication
of information to other robots); and typically they are oblivious (i.e., at the beginning of a
cycle, a robot has no memory of any observation or computation of its previous cycles). What
is computable in such systems has been the object of extensive research within distributed
computing. The main goal has been to understand the computational limitations and powers of
these robots for performing basic coordination tasks, and the focus has been on basic problems,
such as Pattern Formation (e.g., [18, 20, 27, 29, 31]), Gathering (e.g., [1, 2, 5, 6, 7, 17, 27]),
Flocking (e.g., [4, 21]), Surrounding (e.g., [11, 12, 16]), Election (e.g., [13]), etc. For a recent
review see [15].

As in other areas of distributed computing, major computational differences exist depend-
ing on the level of synchronization of the computational entities. In the literature, three basic
settings have been studied: fully-synchronous (FSYNC), semi-synchronous (SSYNC), and asyn-
chronous (ASYNC). In FSYNC, the activations of all robots can be logically divided into global
rounds; in each round, the robots are all activated, obtain the same snapshot, compute and
perform their move; note that this is computationally equivalent to a fully synchronized sys-
tem in which all robots are activated simultaneously and all operations are instantaneous. The
semi-synchronous model SSYNC is like FSYNC where however not all robots are necessarily ac-
tivated in each round. In ASYNC, there is no common notion of time, the robots are activated
independently, and the duration of each activity and inactivity is finite but unpredictable.

The exploration of the limits of what is computable by such robots is ongoing; the research
results obtained so far have greatly increased our basic knowledge and understanding of the
relationship between the computability of the three synchronization settings. In particular,
there are problems that are solvable in FSYNC but not in SSYNC (e.g. [27]) and, for non-oblivious
robots, there are problems that are solvable in SSYNC but not in ASYNC (e.g. [25]); that is, the
computational hierarchy (formalized later) between the three settings is strict:

FSYNC > SSYNC > ASYNC. (1)

Among the basic questions, researchers have been investigating the impact that additional
robots’ capabilities have on the computational power of the system. In particular, a pressing
question is what additional power would allow the robots to overcome the inherent difficulties
and weaknesses of the ASYNC setting, the weakest one.

In this paper, we analyze the impact of enhancing the computational power of the entities
with a simple mechanism for communication and memory. More precisely, each robot is equipped
with a constant-sized register (called light) whose value (called color) is visible to all robots; the
lights are persistent, that is, they are not automatically reset at the end of each cycle. Thus, in
this new model of luminous robots, initially suggested by Peleg [14, 24], the entities are capable
in each cycle of remembering (because of persistency) and communicating (because of visibility)
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a constant number of bits. We denote this additional capability of the robots using a superscript
representing the number of colors. Thus, ASYNCi denotes the ASYNC model when each robot is
augmented by a light with i colors.

1.2 Main Contributions

In this paper, we study the computational relationship between luminous robots and the tra-
ditional models of robots without lights, focusing in particular on the impact lights have on
asynchrony.

We prove that asynchrony with a constant number of colors is strictly more powerful than
traditional semi-synchrony: ASYNCO(1) > SSYNC. This result is obtained in two steps.

We first prove that, with three bits of externally visible memory, any problem solvable in
SSYNC can be solved also in ASYNC. The proof is constructive: we design a ASYNC5 protocol and
prove that, for any given SSYNC protocol P, our protocol produces a semi-synchronous execution
of P. We then show that there are problems unsolvable in SSYNC that can however be solved by
asynchronous robots augmented with two bits of externally visible memory. Also this proof is
constructive: we present a ASYNC4 protocol that solves the rendezvous of two oblivious robots,
a problem that is not solvable in SSYNC.

We also show that, when enhanced with visible lights, the difference between asynchrony
and semi-synchrony disappears; in fact we prove that ASYNCO(1) ≡ SSYNCO(1). This result must
be contrasted with the strict dominance ASYNC < SSYNC in absence of lights (see Expression 1).
Summarizing, we prove that

ASYNCO(1) ≡ SSYNCO(1) > SSYNC (2)

It should be noted that, as part of the proof, we provide a tool that allows designers of protocols
for luminous robots to concentrate only on the semi-synchronous model rather than having to
face the much greater difficulties of complete asynchrony. The price to pay is the increase by a
constant factor in the number of colors.

As for the computational relationship between asynchrony with lights and full synchrony
without lights, we show that there are problems solvable in ASYNCO(1) that cannot be solved
in FSYNC. In other words, we prove that having a few visible bits allows asynchronous robots
to perform tasks that are impossible even for fully-synchronous robots. It is still open whether
ASYNCO(1) and FSYNC are incomparable, or ASYNCO(1) > FSYNC.

Motivated by the possibility that ASYNCO(1) and FSYNC are incomparable, we also consider
the additional power of remembering snapshots. We constructively prove that, if illuminated
with a constant number of colors, asynchronous robots that can remember only a single snapshot
are strictly more powerful than traditional fully-synchronous robots. This must be contrasted
with the well known fact that, without lights, asynchronous robots are less powerful than semi-
synchronous robots, even if they remember an unlimited number of previous snapshots. This also
implies that, for asynchronous robots, having O(1) colors and a single snapshot renders them
more powerful than having an unlimited amount of persistent memory (including snapshots)
but no lights.

2 The Model

The system is composed of a team of mobile entities, called robots, each modelled as a computa-
tional unit provided with its own local memory and capable of performing local computations.
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The robots are placed in a spatial universe, here assumed to be R2, and they are viewed as
points in R2. We assume that the robots always start from distinct points in the plane, but
during the course of the algorithm multiple robots may occupy the same point in R2. Each
robot has its own local coordinate system. A robot is endowed with sensorial capabilities and
it observes the world by activating its sensors, which return a snapshot of the positions of the
other robots in its local coordinate system.

The robots are identical: they are indistinguishable by their appearance and they execute
the same protocol. The robots are autonomous, without a central control. The robots are silent,
meaning that a robot cannot directly talk to another robot (e.g. using wireless communication).
The robots can however communicate information indirectly e.g. using specific movements or
using lights, as explained later.

Each robot is endowed with motorial capabilities, and can freely move in the plane.
At any point in time, a robot is either active or inactive. When active, a robot r executes a

Look-Compute-Move (LCM) cycle performing the following three operations, each in a different
state:

(i) Look: The robot observes the world by activating its sensor, which returns a snapshot
of the positions of all robots with respect to its own coordinate system (since robots are
viewed as points, their positions in the plane are just the set of their coordinates).

(ii) Compute: The robot executes its algorithm, using the snapshot as input. The result of
the computation is a destination point.

(iii) Move: The robot moves towards the computed destination; if the destination is the
current location, the robot stays still (performs a null movement).

When inactive, a robot is idle. All robots are initially inactive. The amount of time to complete
a cycle is assumed to be finite, and the Look is assumed to be instantaneous.

The robots may or may not have distinct identities; if they are without identifiers that can
be used during the computation they are said to be anonymous. The robots may or may not
have persistent memory of the past, that is memory whose content is preserved from one cycle to
the next; they are said to be oblivious if they do not, in which case they start each cycle without
any information on the past. The local coordinate systems of the robots may or may not be
consistent with each other. In a move, a robot might always reach its destination, in which case
the move is said to be rigid; alternatively, the move might stop before reaching its destination,
e.g., because of limits to its motion energy. In the non-rigid case, the distance traveled in a
move is neither infinite nor infinitesimally small. More precisely, there exists an (arbitrarily
small) constant δ > 0 such that, if the destination point is closer than δ, the robot will reach it;
otherwise, it will move towards it a distance of at least δ; the quantity δ might not be known to
the robots.

We denote by R the set of all teams of robots satisfying the core assumptions (i.e., they
are identical, silent, autonomous, and operate in LCM cycles), and denote by R ∈ R a team of
robots having identical capabilities (e.g., common coordinate system, persistent storage, internal
identity, rigid movements etc.). By Rn ⊂ R we denote the set of all teams of size n.

With respect to the activation schedule of the robots and their Look-Compute-Move cy-
cles, the most common models are the fully-synchronous, the semi-synchronous, and the asyn-
chronous. In the asynchronous (ASYNC) model, the robots do not have a common notion of time;
they are activated independently from each other, and the duration of each Compute, Move and
inactivity is finite but unpredictable. As a consequence, robots perceived in a snapshot might

4



be performing any operation and, in particular, they might be moving; moreover, computa-
tions might be made based on obsolete observations. On the opposite side of the spectrum, in
the fully-synchronous (FSYNC) model, the activations of all robots can be logically divided into
global rounds; in each round, the robots are all activated, obtain the same snapshot, compute
and perform their move. Note that this is computationally equivalent to a fully synchronized
system in which all robots are activated simultaneously and all operations are instantaneous.
The semi-synchronous (SSYNC) model is like the fully-synchronous model where however not all
robots are necessarily activated in each round. Based on the fairness of the activation scheduler,
sub-models can be obviously defined; we assume that every robot is activated infinitely often.

Given a model X ∈ {FSYNC, SSYNC, ASYNC} and a team of robots R ∈ R, let Task(X,R)
denote the set of problems solvable by R in X.

Given two models X and Y , we say that X is computationally not less powerful than Y ,
denoted by X ≥ Y , if ∀R ∈ R we have Task(Y,R) ⊆ Task(X,R).

We say that X is computationally more powerful than Y , denoted by X > Y , if X ≥ Y and
∃R ∈ R such that Task(X,R) \ Task(Y,R) )= ∅.

If X ≥ Y and Y ≥ X, we say that X and Y are computationally equivalent, denoted by
X ≡ Y .

Finally, if ∃R ∈ R such that Task(X,R)\Task(Y,R) )= ∅ and ∃R ∈ R such that Task(Y,R)\
Task(X,R) )= ∅, we say that X and Y are orthogonal (or incomparable), denoted by X ⊥ Y .

For simplicity of notation, letA(R), S (R), andF (R) denote Task(ASYNC, R), Task(SSYNC, R),
and Task(FSYNC, R), respectively.

A luminous robot r is a robot that, in addition to its capabilities, is endowed with a persistent
and externally visible state variable Light[r], called light, whose values are from a finite set C
of states called colors (including the color that represents the state when the light is off). Note
that if |C| = 1, then the light is always off; thus, this case corresponds to the traditional setting
of robots without lights. In this paper, we assume |C| > 1 for (truly) luminous robots. The
value of Light[r] (i.e., its color) can be changed in each cycle by r at the end of its Compute
operation. A light is externally visible in the sense that its color at time t is visible to all robots
that perform a Look operation at that time. A light is persistent from one computational cycle
to the next; while the robot r might be oblivious forgetting all other information from previous
cycles, the color is not automatically reset at the end of a cycle.

We denote the availability of lights using a superscript representing the number of colors. In
particular, we denote by Xi the model X ∈ {ASYNC, SSYNC, FSYNC} when every robot is enhanced
by a light with i > 1 colors. We denote by Ai(R), Si(R), and F i(R) the class of problems in
ASYNCi, SSYNCi, FSYNCi, respectively, solvable by team R when each r ∈ R is enhanced by a light
Light[r] with i > 1 colors.

3 Luminous Asynchrony versus Semi-Synchrony

3.1 ASYNCO(1) is at least as powerful as SSYNC

In this section we show that asynchronous systems equipped with a light with O(1) colors are
at least as powerful as semi-synchronous systems without lights. More precisely, we have:

Theorem 3.1. ∀R ∈ R, S (R) ⊆ A5(R).

The proof is constructive: we present a ASYNC5 protocol Sim that produces a semi-synchronous
execution of any SSYNC protocol P.

5



State Look

• Pos[r], the position on the plane of robot r (according to my coordinate system);

• Light[r], the color of the light of robot r.

(Note: I am robot x)

State Compute

p := Pos[x].
Case Light[x]:

• T
If ∀r )= x, Light[r] ∈ {T, S} Then

Execute P .
p := computed destination.
Light[x] := M.

If (∃r )= x Light[r] ∈ {M}) Then
Light[x] := W.

• M
If ∀r )= x, Light[r] /∈ {T} Then

Light[x] = S.
• S

If ∀r )= x, Light[r] ∈ {S, F} Then
Light[x] = F.

• F
If ∀r )= x, Light[r] ∈ {F, T} Then

Light[x] = T.
• W

If ∀r )= x, Light[r] /∈ {M} Then
Light[x] = T.

State Move

Move(p).

Figure 1: Protocol Sim

3.1.1 Algorithm Description

The rules of the protocol are presented in Figure 1, while Figure 2 shows the transition diagram
as the robots change colors.

The lights used by Sim can have five colors: T(rying), M(oving), S(topped), F(inished),
W(aiting). At the beginning, all lights are set to T.

The protocol is a sequence of Mega-Cycles, each of which starts with all robots trying to
execute protocol P (color T) and ends with all robots finishing the Mega-Cycle having executed
P once (color F). All robots with light F then eventually turn their lights to T; when this process
is completed, a new Mega-Cycle starts.

During each such Mega-Cycle, each robot gets a chance to execute one step of protocol P. A
robot r colored T, tries to execute one LCM cycle of protocol P. However, the robot is allowed
to move only if during its Look operation there were no robots colored M (i.e. robots that are
potentially moving). If that is the case, robot r changes its color to M during the Compute part
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Figure 2: Transition diagram of protocol Sim. The label in the nodes represents the color of the
light of the executing robot. The label of an edge expresses the condition on the lights of all the
other robots that must be satisfied for the transition to occur. The notation “∀A,B” means:
“∀r ∈ R, Light[r] ∈ {A,B}” (similarly for ∃A and ) ∃A).

of this cycle. On the other hand, if robot r sees any robot colored M during its Look, then it
is not allowed to move; it changes its color to W and waits for the next turn (i.e., it waits until
no robots are colored M). The robots colored M, after executing P, will turn their own lights
to S only when they see that no robot is colored T. Thus, after some time, each robot will be
colored either S or W (the former are the robots that executed one step of P and the latter are
those who missed their turn). The robots colored W will now turn their lights to T again and
these robots get another chance to execute P. Thus, a Mega-Cycle of protocol Sim consists of
several stages such that, in each stage, a non-empty set of robots execute P while the other
robots wait. Eventually all robots will be colored S (i.e., each robot has executed P once) and
the Mega-Cycle ends with all robots changing to color F. At this point, all robots with light F
turn their lights to T; when this process is completed, a new Mega-Cycle starts. Essentially, the
transition of lights from T to W and back to T corresponds to a queue where robots that failed
to enter the current stage wait for their turn.

3.1.2 Correctness

We now prove that Protocol Sim provides a fair and correct execution of any semi-synchronous
protocol P. We first define the concepts of Mega-Cycles and Stages, in terms of the global
configuration of the robots. A Mega-Cycle begins at the time instant t when all robots are
colored T, and the Mega-Cycle ends at the earliest time instant t′ > t when all robots are
colored F. We shall show that, after a Mega-Cycle, the robots eventually return to color T so
that the next Mega-Cycle can begin. A Stage of a Mega-Cycle begins at time t0 when all robots
are colored T or S (with at least one robot colored T). During the stage, some robots change
to color M and the stage ends at the earliest subsequent time t2 > t0 when all robots are again
colored T or S.

Lemma 3.1. During each stage, the following holds:
(i) At the beginning of the stage, one or more robots are colored T and all others (if any) are
colored S. (ii) At least one of those robots colored T executes P during this stage. (iii) All robots
that execute P during this stage have the same snapshot. (iv) At the end of this stage, those
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robots that executed P in this stage are colored S. (v) At the end of this stage, all robots are
colored T or S.

Proof. Parts (i) and (v) follow directly from the definition. Let t0 be the earliest time when
all robots were colored T or S (e.g. at the beginning), and let S be the snapshot at that time.
Let t2 > t0 be the first time since t0 when a robot changes from color T to color M (according
to the rules of Sim this is the only possibility when all robots are colored T). Notice that this
robot must have performed the Look operation at time t1 such that t0 ≤ t1 < t2. Since during
the period (t0, t2) the global configuration does not change, every robot that performs Look
between t0 and t2 has the same snapshot S, and in this snapshot all robots are colored T or S.
So, all these robots would eventually turn to M (and execute P). Any robot r that performs
Look at a time ≥ t2, would see some robot colored M and thus robot r would change to color W
(such a robot does not execute P in this stage). This proves parts (ii) and (iii). Every robot
will be eventually activated and will change to either M or W (depending on the time when they
performed Look). At this point in time, no robot would have color T. According to the rules
of the algorithm, those robots that are colored M and have executed one step of P, would now
change to color S. When all these robots have become S, the other robots that were colored W

would now change to T again. This is the end of this stage and conditions (iv) and (v) hold at
this time.

!

Lemma 3.2. For each Mega-Cycle, the following holds:
(i) At the beginning of a Mega-Cycle, all robots are colored T. (ii) During the Mega-Cycle, each
robot executes P exactly once. (iii) Each Mega-Cycle ends within a finite time. (iv) At the end
of the Mega-Cycle all robots are colored F.

Proof. Due to Lemma 3.1 we know that, in each stage, a non-empty subset of the robots
execute P and these robots have the same snapshot. Thus each stage of protocol Sim corresponds
to one activation round of an execution of P in the SSYNCmodel where the set of robots activated
in that round corresponds to the set of robots that changed color from T to M, and eventually
to S, during this stage of Sim. As long as there are more robots colored T, another stage
of the algorithm Sim can begin. With each stage, the number of robots colored T decreases.
Eventually all robots will be colored S and thus, each robot will have executed P exactly once.
Now, according to the rules of algorithm Sim, the robots change color to F. At some time t,
every robot will be colored F. At this time, the Mega-Cycle ends and the conditions of the
Lemma 3.2 are satisfied. !

We can now prove the main result of this section.

Theorem 3.2. Protocol Sim is correct, i.e. any execution of protocol Sim in ASYNC5 corresponds
to a possible execution of P in SSYNC.

Proof. First notice that after each Mega-Cycle, all robots are colored F (Lemma 3.2) and thus,
according to the rules of protocol Sim, every robot would change color to T. Hence, after each
Mega-Cycle ends, the next Mega-Cycle begins automatically. Since each Mega-Cycle terminates
in finite time, the execution of protocol Sim is an infinite sequence of Mega-Cycles.

We have already shown that each stage within a Mega-Cycle of protocol Sim corresponds to
a semi-synchronous activation round in some execution of P in the SSYNC model. We now need
to show that the sequence of such activation rounds satisfies the fairness property. The fairness

8



property requires that in any infinite execution of P, each robot must be activated infinitely
often. We have shown that in each Mega-Cycle, each robot actively executes P once. Thus in
any infinite execution, i.e. an infinite sequence of Mega-Cycles, each robot executes P infinitely
many times. Hence, this execution simulates a possible execution of protocol P. In fact, this
particular execution also satisfies the stronger condition of 1-fairness.

Note that if protocol P is a terminating algorithm (i.e., it terminates for every execution),
then during the simulation, the robots would stop moving in finite time. !

The above result provides the proof of Theorem 3.1.

3.2 ASYNCO(1) is more powerful than SSYNC

In the previous section we have shown that ASYNCO(1) ≥ SSYNC; that is, asynchronous robots, if
illuminated with O(1) colors, are at least as powerful as if they were semi-synchronous.

In this section we show that there are problems that robots cannot solve without visible
bits, even if they are semi-synchronous and have an unbounded amount of persistent internal
memory, but can be solved by asynchronous luminous robots with O(1) colors.

Consider the extensively investigated gathering or rendezvous problem Gathering{k} of
having k robots terminally gather in the same location, not previously known in advance. It is
well known that the gathering of two oblivious anonymous robots cannot be guaranteed in the
SSYNC model without any additional assumption:

Lemma 3.3 ([27]). ∃R ∈ R2, Gathering{2} /∈ S (R).

We now prove that two anonymous robots can gather, when enabled with O(1) visible lights,
even if they have no other capabilities.

Theorem 3.3. ∀R ∈ R2, Gathering{2} ∈ A4(R).

We prove the theorem constructively. Let x and y be the two robots each provided with a
light with four colors and with no additional capabilities (that is, they are anonymous, oblivious,
movements are non rigid, there is no consistency of coordinate systems, ...). Consider protocol
TwoGatherLight shown in Figure 3. The protocol uses four colors: WHITE, RED, GREEN, and
BLUE; initially the lights of both x and y are set to WHITE. The idea behind the protocol is
as follows. If, after the beginning of the execution, both robots observe WHITE as the color of
the other robots’ light, then they both try to reach the point halfway between the two robots.
On the other hand, if one robot begins execution earlier than the other, it will move towards
the midpoint, turning its light RED before moving. If the second robot now performs a Look
operation, it will see the RED light and know that the other robot is potentially moving. In this
case the second robot waits for the first robot to change color from RED to BLUE.

When a robot sees the BLUE light on the other robot, it will try to move directly towards it.
A robot with BLUE light waits until the second robot has also turned its light to BLUE. When
both robots have BLUE lights, they turn their lights to GREEN to signal the end of one round
of the algorithm (i.e., the robots synchronize with each-other at the end of each round). Now
the robots turn their lights to WHITE to start the next round. As before, we will use the term
Mega-Cycle to refer to the time period during which the robot has its light exactly once in each
color starting from WHITE to RED, BLUE, GREEN and just before turning to WHITE again.

Based on the rules of the algorithm TwoGatherLight, the following properties can be
shown:

Lemma 3.4. In the execution of Algorithm TwoGatherLight:
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State Look

Pos[x] :=my current position;
Pos[y] := position of the other robot;
Light[x] := Value of my light;
Light[y] := Value of the light of the other robot.

State Compute

If Gather Then STOP.
p := Pos[x].
Case Light[x]:

• WHITE
If Light[y] = WHITE Then

p := Half point between me and the other robot;
Light[x] := RED.

Else If Light[y] = BLUE Then
p := Position of the other robot;
Light[x] := RED.

• RED
Light[x] := BLUE.

• BLUE
If Light[y] ∈ {BLUE, GREEN} Then

Light[x] := GREEN.
• GREEN

If Light[y] ∈ {GREEN, WHITE} Then
Light[x] := WHITE.

State Move

Move(p).

Figure 3: TwoGatherLight, a protocol for gathering two robots in ASYNC4.

10



GREEN, WHITE

BLU
E

WHITE

Compute

WHITE BLUE
BLUE, GREEN

to other][M
OV

E

[MOVE to half]
RED GREEN

Figure 4: Transition diagram of protocol TwoGatherLight. The label of a node denotes the
color of the executing robot; the label above an arc denotes the color of the other robot and the
label below (if any) denotes the action corresponding to this transition.

(i) Unless the robots are already gathered, each Mega-Cycle completes in finite time (i.e. there
are no deadlocks).

(ii) If the distance between the robots, dist(x, y) > 2δ, then after each complete Mega-Cycle
this distance decreases by at least 2δ and the robots never cross each-other.

(iii) If dist(x, y) ≤ 2δ, then the robots gather during the next Mega-Cycle.

Proof.
(i) An activated robot x stays in its current state if either (1) Light[x] is WHITE and Light[y]

is RED or GREEN, or (2) Light[x] is BLUE and Light[y] is RED or WHITE, or (3) Light[x] is
GREEN and Light[y] is RED or BLUE. Note that none of this three conditions can hold for
more than one activation cycle for each robot. Thus, there will be no deadlock.

(ii) It is easy to see that during a complete Mega-Cycle, each robot is guaranteed to move
(unless the robots have already gathered). Let robot x be the first robot to start moving
during this Mega-Cycle. Let d be the distance between the robots at this time. Robot x
may move only if Light[y] is WHITE or BLUE during the Look operation. If Light[y] is BLUE,
then robot y has already moved during this Mega-Cycle contradicting the assumption.
Thus, Light[y] is WHITE. Thus, robot x moves towards robot y by at least distance δ and
at most distance d/2 during this Mega-Cycle. The distance moved by robot y depends
on what robot y sees during the Look operation performed when its light was WHITE. If
Light[x] was WHITE at that time, robot y moves at most by d/2 towards robot x (so they
do not cross). Otherwise, if Light[x] was BLUE, then robot x has already finished moving
and robot y moves a distance of d′ which is at most the current distance between the
robots. Thus, the robots do not cross each other. In both cases, the distance between the
robots after the Mega-Cycle is at most d− 2δ.

(iii) Let d ≤ 2δ be the distance between the two robots and let p be the midpoint between the
two locations. Without loss of generality, let x be the first robot to perform Look operation
in the next Mega-Cycle. Robot x would decide to move a distance d/2 ≤ δ and thus it
would eventually arrive at location p. If robot y sees robot x when Light[x] is WHITE, then
robot x has not moved yet and the distance between the robots is still d. Thus, robot y
will also decide to move a distance d/2 and will eventually reach p.

The only other case is when robot y sees robot x when Light[x] is BLUE. In this case,
robot x has already arrived at p. During the Compute operation, robot y will decide to
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move directly to the other robot and it will also reach location p. Hence in all cases, the
robots will gather at p during this Mega-Cycle.

!

We have shown that algorithm TwoGatherLight correctly solves the problem of gathering
two robots when provided with a light of 4 colors. This completes the proof of Theorem 3.3.

By Theorem 3.1, Lemma 3.3, and Theorem 3.3 it follows that ASYNCO(1) ≥ SSYNC and
∃R ∈ R, AO(1)(R) \ S (R) )= ∅; that is,

Theorem 3.4. ASYNCO(1) > SSYNC.

3.3 ASYNCO(1) is as powerful as SSYNCO(1)

To complete this section we now prove that, when enhanced with a constant number of visible
bits, luminous semi-synchronous robots are not more powerful than luminous asynchronous ones.
We first show that SO(1)(R) ⊆ AO(1)(R); more precisely.

Theorem 3.5. ∀R ∈ R,∀k > 1, Sk(R) ⊆ A5k(R)

The proof is constructive. Let P be a protocol designed for the SSYNCk model. We show
how to extend the simulation algorithm Sim to obtain an execution of P in ASYNC5k.

Recall that algorithm Sim already simulates any semi-synchronous protocol without light,
so we need only to consider the fact that P uses a light with k colors in its execution. Assume
for the moment that we equip each robot r with a secondary light L[r] of k colors, and that
this light is clearly identified as such by all robots. We can then use the primary light Light[r]
to store the five colors used by Sim, and the secondary light L[r] to record the color of the
single light in P. More precisely, the second light would initially be set to the same color as the
robots executing P in SSYNCk. During the Compute step of the simulation, whenever a robot
computes a new destination, it also computes the new color according to P, and sets the color
of its secondary light to that color. All other steps of the algorithm are the same as in Sim.

From the correctness of Sim protocol it follows that the above algorithm correctly simulates
any protocol for semi-synchronous robots with k lights. Notice that we can replace the two
lights in the above simulation with a single light having 5k colors, proving Theorem 3.5.

Theorem 3.6. ∀R ∈ R, SO(1)(R) ≡ AO(1)(R).

Proof. The claim follows from Theorem 3.5 and the obvious relationship SSYNCO(1) ≥
ASYNCO(1). !

Thus, we have shown that: ASYNCO(1) ≡ SSYNCO(1). In other words, when enhanced with
lights, the difference between asynchrony and semi-synchrony disappears. This result must be
contrasted with the strict dominance between the models without lights.

4 Luminous Asynchrony versus Full-Synchrony

In this section we investigate the relationship between asynchronous luminous robots and fully
synchronous robots without lights.
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Figure 5: Transition diagram of protocol Oscillate. The label of a node denotes the color of
the executing robot; the label above an arc denotes the color of the other robot and the label
below (if any) denotes the action corresponding to this transition.

4.1 FSYNC is not more powerful than ASYNCO(1)

We prove that there are problems that robots cannot solve without lights, even if they are
fully-synchronous, but can be solved by asynchronous luminous robots with O(1) colors.

Consider the problem Oscillating Points (osp) requiring two robots, x and y, initially in
distinct locations, to alternately come closer and move further from each other. More precisely,
let d(t) denote the distance of the two robots at time t. The osp problem requires the two
robots, starting from an arbitrary distance d(0) > 0 at time t0, to move so that there exists a
monotonically increasing infinite sequence of time instants t0, t1, t2, t3, . . . such that:
(1) d(t2i+1) < d(t2i), and ∀h′, h′′ ∈ [t2i, t2i+1], h′ < h′′, d(h′′) ≤ d(h′); and
(2) d(t2i) > d(t2i−1) and ∀h′, h′′ ∈ [t2i−1, t2i], h′ < h′′, d(h′′) ≥ d(h′).

Theorem 4.1. ∃R ∈ R2, osp /∈ F (R).

Proof. Consider a set R composed of two oblivious fully synchronous robots with no additional
capabilities, a priori knowledge or agreement (e.g., common unit distance, unique ids, chirality,
etc). The impossibility then follows from the fact that, regardless of full synchrony, the robots,
upon become active, have no capability that allows them to remember whether in this cycle
they must get closer or move further away. !

Theorem 4.2. ∀R ∈ R2, osp ∈ A4(R).

The proof of this theorem is constructive. Consider the simple protocol Oscillate shown
in Figure 6 (refer also to the diagram reported in Figure 5); let x and y be the two robots. The
protocol uses four colors: WHITE, RED, GREEN, and BLUE; initially both robots are inactive and
their lights are set to WHITE.

Lemma 4.1. Let both robots be WHITE and still at time t′. Then there exists a time t′′ > t′ such
that both robots are BLUE and still, 0 < d(t′′) < d(t′), and ∀t, h ∈ (t′, t′′), t < h, d(h) ≤ d(t).

Proof. Let tx and ty denote the first time x and y become active and perform a Look operation
after time t′; without loss of generality, let tx ≤ ty. Then, according to the algorithm, x will
change its color to RED, choose as its destination a point closer to y, and move towards that
destination. Let t′x > tx be the next time x becomes active again; if at that time y is still WHITE,
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State Look

Pos[x] :=my current position;
Pos[y] := position of the other robot;
Light[x] := Value of my light;
Light[y] := Value of the light of the other robot.

State Compute

p := Pos[x].
Case Light[x]:

• WHITE
If Light[y] ∈ {WHITE, RED} Then

p := point at distance < |Pos[x]− Pos[y]|/2 from me towards the other robot;
Light[x] := RED.

• RED
If Light[y] ∈ {RED, BLUE} Then

Light[x] := BLUE.
• BLUE

If Light[y] ∈ {BLUE, GREEN} Then
p := point at distance < |Pos[x]− Pos[y]|/2 from me away from the other robot;
Light[x] := GREEN.

• GREEN
If Light[y] ∈ {GREEN, WHITE} Then

Light[x] := WHITE.

State Move

Move(p).

Figure 6: Oscillate, a two robots solution for osp in ASYNC4.
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x will not perform any action (change of color or move) and wait for the next activation. In
other words, x will stay still with color RED until y has changed its color. At time ty, robot y is
still WHITE; regardless of whether x has changed its color to RED or it is still WHITE, y will change
its color to RED, choose as its destination a point closer to x, and move towards that destination.
Let t′y > ty be the next time y becomes active again; if at that time x is still WHITE, y will not
perform any action (change of color or move) and wait for the next activation. In other words,
y will stay still with color RED until x is no longer WHITE. It follows that, within finite time,
both robots are still and have changed their color to RED; let t̂ be the time when this happens.

Let t̂x ≥ t̂ and t̂y ≥ t̂ be the first time x and y become active since (and including) t̂; without
loss of generality, let t̂x ≤ t̂y. Then, according to the algorithm, x will change its color to BLUE

without moving, and it will stay still as long as it sees y RED. At time t̂y, robot y is still RED;
regardless of whether x has changed its color to BLUE or it is still RED, y will change its color
to BLUE, without moving, and it will stay still as long as it sees y RED. In other words, within
finite time both robots become BLUE and are still; let t′ be the time when this happens.

Since to become BLUE a robot must have performed the move towards the destination com-
puted when it became RED, and the destination was less than the halfway point towards the
other robot, then 0 < d(t′′) < d(t′); furthermore, since from time t′ to time t′′ the two robots
were either still or moving towards each other, we have ∀t, h ∈ [t′, t′′], t < h, d(h) ≤ d(t). !

With a proof argument similar to that of the above lemma, we have:

Lemma 4.2. Let both robots be BLUE and still at time t′. Then there exists a time t′′ > t′ such
that both robots are WHITE and still, d(t′′) > d(t′), and ∀t, h ∈ [t′, t′′], t < h, d(h) ≥ d(t).

Hence, since initially at time t0 both robots are still and WHITE, by repeated applications of
Lemmas 4.1 and 4.2, the claim of Theorem 4.2 follows.

Theorem 4.2 indicates that the availability of lights allows solving asynchronously at least one
problem that is unsolvable even by fully-synchronous robots. This would suggest that luminous
asynchrony with a constant number of colors is computationally stronger than full-synchrony
without lights. However, at this time, there is no proof either supporting or dismissing such a
suggestion.

Note that, to dismiss such a suggestion would require to prove the existence of problems
that robots can solve without lights when operating in full synchrony, but that the same robots
cannot solve asynchronously even when illuminated with a constant number of colors. (As shown
by Theorem 3.3, the rendezvous of two robots, which might seem a natural candidate, is not
such a problem.) Such a result, in view of Theorem 4.2, would imply that ASYNCO(1) and FSYNC

are computationally orthogonal (i.e., incomparable).

4.2 Enhancing ASYNCO(1) to be more powerful than FSYNC

The possibility that ASYNCO(1) and FSYNC are computationally incomparable immediately opens
the question of which additional property P would render ASYNCO(1) stronger than FSYNC.

We show that one such a property is the ability to remember a single snapshot, denoted by
Snapshot{1}:

Theorem 4.3. ASYNC4 +Snapshot{1} > FSYNC

We first prove that, if a set of robots can solve a problem in full-synchrony, then the same set
of luminous robots with three colors and capable of storing one snapshot, possibly different at
each cycle, can solve the same problem asynchronously. In other words, in ASYNC3 +Snapshot{1}
it is possible to solve any problem solvable in FSYNC.
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State Look

Take the snapshot of the positions of the robots, that returns for all robots r ∈ R:

– Pos[r], the position on the plane of robot r (according to my coordinate system);

– Light[r], the color of the light of robot r.

(Note: I am robot x)

State Compute

p := Pos[x].
Case Light[x]

• WHITE
If ∀r )= x, Light[r] = WHITE∨ Light[r] = GREEN, Then

Store the current snapshot into the non-volatile array Perm[].
Light[x] := GREEN.

• GREEN
If ∀r )= x, Light[r] = GREEN∨ Light[r] = RED Then

Execute P using the snapshot in Perm[].
p := computed destination.
Light[x] := RED.

• RED
If ∀r )= x, Light[r] = RED ∨ Light[r] = WHITE Then

Light[x] := WHITE.

State Move

Move(p).

Figure 7: Protocol SyncSim, that simulates FSYNC protocols in ASYNC3 +Snapshot{1}.

Also in this case the proof is constructive. Consider Protocol SyncSim, whose rules are shown
in Figure 7 (refer also to Figure 8 for its transition diagram), which uses three colors: WHITE,
GREEN, and RED; initially, all lights are WHITE. Similarly to Protocol Sim, protocol SyncSim
enforces a sequence of Mega-Cycles mc0,mc1, . . .: the difference here is that all robots execute
P in each Mega-Cycle based on the same snapshot (we are simulating FSYNC). Each Mega-Cycle
mci starts with all robots being WHITE; within finite time, all WHITE robots become GREEN; when
a robot becomes GREEN in a Mega-Cycle, it has stored in a local array Perm[] a snapshot of the
configuration it just observed: this is necessary to ensure that all robots will compute on the
same configuration in this Mega-Cycle. After all robots become GREEN, the destination point
is computed (using as configuration the one locally stored in Perm[]), and the robot starts to
perform the Move operation, turning its light to RED. After a robot has completed the Move,
it changes its light to WHITE. When the lights of all robots are WHITE, the current Mega-Cycle
ends and the next one begins.

We now show that, for each Mega-Cycle mci, all robots execute P (exactly once) on the
basis of the same snapshot.

Lemma 4.3. For each Mega-Cycle, the following holds:
(i) At the beginning of a Mega-Cycle, all robots are colored WHITE. (ii) During the Mega-Cycle,
every robot executes P exactly once on the basis of the same snapshot. (iii) Each Mega-Cycle
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∀RED, WHITE

REDGREENWHITE STORE

∀WHITE, GREEN ∀GREEN, RED

Compute

Figure 8: Transition diagram of protocol SyncSim. The label in the nodes represents the color
of the light of the executing robot. The label of an edge expresses the condition on the lights
of all the other robots that must be satisfied for the transition to occur. The notation “∀A,B”
means: “∀r ∈ R, Light[r] ∈ {A,B}”.

ends within a finite time. (iv) At the end of the Mega-Cycle all robots are colored WHITE.

Proof. Let all robots start the Mega-Cycle with color WHITE at time t. The first time a robot
is activated, it takes a snapshot S, becomes GREEN, and from this moment on it waits until it
no longer sees any WHITE robot. Hence, within finite time, at time t′ > t, every robot becomes
GREEN. Observe that, since in the interval of time from t to t′ no robot moves, every robot has
taken the same snapshot S upon becoming GREEN. Whenever a GREEN robot is activated after
time t′, according to protocol SyncSim, it will execute protocol P using snapshot S as input,
computing a destination, changing color to RED, and then move towards the destination; after
that, it does not move nor change color as long as it sees GREEN robots. Hence, within finite
time, at time t′′′ > t′′, every robot will have executed protocol P using snapshot S and become
RED. Whenever a RED robot is activated after time t′′′, it becomes WHITE and it does not move
nor change color as long as it sees RED robots. Hence, within finite time all robots are colored
WHITE, and the Mega-Cycle ends. !

Since at the end of each Mega-Cycle, all robots are colored WHITE, according to the rules
of protocol SyncSim, the next Mega-Cycle begins automatically. Since each Mega-Cycle corre-
sponds to an execution of P by all robots using the same snapshot, it follows that

Theorem 4.4. Protocol SyncSim is correct, i.e., any execution of protocol SyncSim in ASYNC3

+Snapshot{1} corresponds to a possible execution of P in FSYNC.

In other words, ASYNC3 +Snapshot{1} ≥ FSYNC; hence, from Theorems 4.1 and 4.2, the
correctness of Theorem 4.3 follows.

As we have seen, the capability of using external lights and remembering a single snapshot
allows ASYNC robots to become more powerful than FSYNC robots. This should be contrasted with
the fact that, without the use of external lights, SSYNC (and thus ASYNC) robots are incapable
to achieve the power of the FSYNC model even if they can remember any number of snapshots
[27]. The combination of these results thus yields the following:

ASYNC + Snapshot{∞} < FSYNC < ASYNCO(1) + Snapshot{1}. (3)

5 Concluding Remarks and Open Problems

In this paper we started the examination of externally visible persistent memory in distributed
computations by autonomous mobile robots.
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We have shown that, using only a few bits of external memory, asynchronous robots can
perform tasks which cannot be performed by semi-synchronous robots even with unbounded
amount of internal memory. Moreover, a team of asynchronous robots empowered with lights is
more powerful than an otherwise similar team of semi-synchronous robots. We have also shown
that there are tasks that a team of asynchronous robots having the power of lights can perform
while fully-synchronous robots cannot.

As part of the proof, we have provided a mechanism that allows designers of protocols for
luminous robots to concentrate only on the semi-synchronous model rather than having to face
the much greater difficulties of complete asynchrony. The price to pay is an increase by a
constant factor in the number of colors.

Most of our algorithms can be made to work even if the robots start from an arbitrary
state where the light on the robot has an arbitrary initial color. Thus, it is possible to have
self-stabilizing algorithms for robots with lights. Indeed protocol TwoGatherLight is self-
stabilizing. Protocols Sim,Oscillate, and SyncSim, which are not self-stabilizing as described,
can be easily modified to have this property. In fact, it is easy to characterize the “illegal”
configurations; we can then add to those protocols the rule that, if the result of a robot Look
is an illegal configuration, then the robot turns its light to a default color, and waits until all
lights have that color. From that moment on, the protocol behaves correctly.

The results presented here constitute only the start of the investigation into the newly
introduced model of robots with lights. They open many problems and poses many questions.

First and foremost, it is still unknown whether or not there are problems solvable by fully-
synchronous robots but not by asynchronous robots with lights; a positive answer implies
ASYNCO(1) ⊥ FSYNC while a negative one implies ASYNCO(1) > FSYNC.

We have shown that the availability of a snapshot would render asynchronous luminous robots
more powerful than regular fully-synchronous one; should ASYNCO(1) ⊥ FSYNC, an immediate
research question is whether a property weaker than Snapshot{1} would suffice to achieve the
same result.

A large open research direction is the algorithmic re-examination of the classical problems
(e.g., pattern formation, gathering, scattering, flocking, etc.) when the robots are luminous.
Since the preliminary announcement of the model [9], some investigations in this direction have
already started, and protocols for luminous robots have been designed: to solve the problem of
forming a sequence of patterns [8] and to reach an obstruction-free configuration, in the setting
where collinear robots can obstruct visibility [23].

Our main concern has been computational and our focus on feasibility; we did not attempt
to minimize the number of colors used by the robots. Indeed, it is an interesting problem to
determine the minimum number of lights sufficient to establish our results. In this direction,
some attention has been given to the Gathering{2} problem. It has been shown that the
gathering of two robots can be solved using three colors but cannot be solved with only two
colors [28]. A related result [19] indicated that gathering of two robots can be solved using O(1)
colors, even in more restricted models where each robot is allowed to see the lights of only the
other robots and not its own light or, where the robot can see only its own light but not that of
the others.

Finally, we have assumed a fault-free environment in this paper, i.e. the robots are not
subject to failures. An important direction for future research is to consider the effect of failures
(e.g. as in [1, 3, 10, 22, 26]), and also taking into account those failures that are peculiar to
luminous robots. One type of failures is when the light of some of the robots are not persistent
and turn off in the middle of computations. Such faults if they are temporary and non recurrent,
may be tolerated using self-stabilizing algorithms as mentioned above. More severe types of
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failures include stuck-at faults, where the light of a robot is permanently stuck at a particular
color, or when there could be errors in detecting the color of the light of a distant robot. Another
possible research direction is to consider the effect of adding lights to robots moving in three-
dimensional space as in the recent paper [30].
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