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Abstract

The use of mobile agents is becoming increasingly popular when computing in

networked environments, ranging from Internet to the Data Grid, both as a theo-

retical computational paradigm and as a system-supported programming platform.

In spite of this, mobile agents systems have been largely ignored by the mainstream

distributed computing community. It is only recently that several researchers have

started to systematically explore this new and exciting distributed computational

universe. In this paper we describe some of interesting problems and solution tech-

niques developed in this investigations in the context of security. In fact, at a

practical level, in systems supporting mobile agents, security is the most pressing

concern, and possibly the most difficult to address. In particular, specific severe

security threats are those posed to the network site by harmful agents, and those

posed to the mobile agents by harmful hosts. In this chapter we consider security

problems of both types; and concentrate on two security problems, one for each

type: locating a black hole, and capturing an intruder. For each we discuss the com-

putational issues and the algorithmic techniques and solutions. Although the main

focus of this chapter is on security, the topics and the techniques have a much wider

theoretical scope and range. The problems themselves are related to long investi-

gated and well established problems in automata theory, computational complexity,

and graph theory.

1 Introduction

Mobile agents have been extensively studied for several years by researchers in Artificial
Intelligence and in Software Engineering. They offer a simple and natural way to describe
distributed settings where mobility is inherent, and an explicit and direct way to describe
the entities of those settings, such as mobile code, software agents, viruses, robots, web
crawlers, etc. Further, they allow to express immediately notions such as selfish behaviour,
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negotiation, cooperation, etc arising in the new computing environments. As a program-
ming paradigm, they allow a new philosophy of protocol and software design, bound to
have an impact as strong as that caused by that of object-oriented programming. As a
computational paradigm, mobile agents systems are an immediate and natural extension
of the traditional message-passing settings studied in distributed computing.

For these reasons, the use of mobile agents is becoming increasingly popular when
computing in networked environments, ranging from Internet to the Data Grid, both as
a theoretical computational paradigm and as a system-supported programming platform.

In networked systems that support autonomous mobile agents, a main concern is
how to develop efficient agent-based system protocols; that is, to design protocols that
will allow a team of identical simple agents to cooperatively perform (possibly complex)
system tasks. Example of basic tasks are wakeup, traversal, rendez-vous, election. The
coordination of the agents necessary to perform these tasks is not necessarily simple or
easy to achieve. In fact, the computational problems related to these operations are
definitely non trivial, and a great deal of theoretical research is devoted to the study of
conditions for the solvability of these problems and to the discovery of efficient algorithmic
solutions; e.g., see [1, 2, 4, 5, 6, 7, 25, 27, 29, 63].

At an abstract level, these environments can be described as a collection of autonomous
mobile agents (or robots) located in a graph G. The agents have limited computing ca-
pabilities and private storage, can move from node to neighboring node, and perform
computations at each node, according to a predefined set of behavioral rules called pro-
tocol, the same for all agents. They are asynchronous, in the sense that every action they
perform (computing, moving, etc.) takes a finite but otherwise unpredictable amount
of time. Each node of the network, also called host, may provide a storage area called
whiteboard for incoming agents to communicate and compute, and its access is held in fair
mutual exclusion. The research concern is on determining what tasks can be performed by
such entities, under what conditions, and at what cost. In particular, a central question
is to determine what minimal hypotheses allow a given problem to be solved.

At a practical level, in these environments, security is the most pressing concern,
and possibly the most difficult to address. Actually, even the most basic security issues,
in spite of their practical urgency and of the amount of effort, must still be effectively
addressed (e.g., see [16, 19, 53, 56, 71, 80]).

Among the severe security threats faced in distributed mobile computing environ-
ments, two are particularly troublesome: harmful agent (that is, the presence of malicious
mobile processes), and harmful host (that is, the presence at a network site of harmful
stationary processes).

The former problem is particularly acute in unregulated non-cooperative settings such
as Internet (e.g., e-mail transmitted viruses). The latter not only exists in those settings,
but also in environments with regulated access and where agents cooperate towards com-
mon goals (e.g., sharing of resources or distribution of a computation on the Grid. In
fact, a local (hardware or software) failure might render a host harmful. In this chapter
we consider security problems of both types; and concentrate on two security problems,
one for each type: locating a black hole, and capturing an intruder. For each we discuss
the computational issues and the algorithmic techniques and solutions.
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We first focus (in Section 2) on the issue of host attacks; that is, the presence in a site of
processes that harm incoming agents. A first step in solving such a problem should be to
identify, if possible, the harmful host; i.e., to determine and report its location; following
this phase, a “rescue” activity would conceivably be initiated to deal with the destructive
process resident there. The task to identify the harmful host is clearly dangerous for
the searching agents and, depending on the nature of the harm, might be impossible to
perform. We consider a highly harmful process that disposes of visiting agents upon their
arrival, leaving no observable trace of such a destruction. Due to its nature, the site where
such a process is located is called a black hole. The task is to unambiguously determine
and report the location of the black hole. The research concern is to determine under
what conditions and at what cost mobile agents can successfully accomplish this task.
The searching agents start from the same safe site and follow the same set of rules; the
task is successfully completed if, within finite time, at least one agent survives and knows
the location of the black hole.

We then consider (in Section 3) the problem of agent attacks, that is the presence of
a harmful mobile agent in the system. In particular we consider the presence of a mobile
virus that infects any visited network site. A crucial task is clearly to decontaminate the
infected network; this task is to be carried out by a team of anti-viral system agents (the
cleaners), able to decontaminate visited sites, avoiding any recontamination of decontam-
inated areas. This problem is equivalent to the one of capturing an intruder moving in
the network.

Although the main focus of this chapter is on security, the topics and the techniques
have a much wider theoretical scope and range. The problems themselves are related
to long investigated and well established problems in automata theory, computational
complexity, and graph theory. In particular, the black hole search problem is related to the
classical problems of graph exploration and map construction (e.g., see [1, 9, 25, 28, 29, 48,
49, 50, 72, 73]). With whiteboards, in the case of dispersed agents (i.e., when each starts
from a different node), these problems are in turn computationally related (and sometimes
equivalent) to the problems of rendezvous and election (e.g. see [2, 6, 7, 23, 24, 64]). The
network decontamination problem is instead related to the classical problem known as
graph search (e.g., see [39, 59, 65, 69, 75]), which is in turn closely related to standard
graph parameters and concepts, including tree-width, cut-width, path-width, and, last
but not least, graph minors (e.g., see [13, 58, 68, 78]).

The chapter is organized as follows. In the next section we will discuss the black hole
search problem, while the network decontamination and intruder capture problems will be
the subject of Section 3.

2 Black Hole Search

2.1 The Problem and its Setting

The problem posed by the presence of a harmful host has been intensively studied from a
programming point of view (e.g., see [55, 77, 87]). Obviously, the first step in any solution
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to such a problem must be to identify, if possible, the harmful host; i.e., to determine
and report its location; following this phase, a “rescue” activity would conceivably be
initiated to deal with the destructive process resident there. Depending on the nature of
the danger, the task to identify the harmful host might be difficult, if not impossible, to
perform.

Consider the presence in the network of a black hole (shortly Bh): a host where
resides a stationary process that disposes of visiting agents upon their arrival, leaving
no observable trace of such a destruction. Note that this type of highly harmful host is
not rare; for example, the undetectable crash failure of a site in a asynchronous network
turns such a site into a black hole. The task is to unambiguously determine and report
the location of the black hole by a team of mobile agents. More precisely, the black hole
search (shortly Bhs) problem is solved if at least one agent survives, and all surviving
agents know the location of the black hole.

The research concern is to determine under what conditions and at what cost mobile
agents can successfully accomplish this task. The main complexity measures for this
problem are: the size of the solution (i.e., the number of agents employed), the cost (i.e.,
the number of moves performed by the agents executing a size-optimal solution protocol).
Sometimes also bounded time complexity is considered.

The searching agents usually start from the same safe site (the homebase). In general
no assumptions are made on the time for an agent to move on a link, except that it is
finite; i.e., the system is asynchronous. Moreover, it is usually assumed that each node of
the network provides a storage area called whiteboard for incoming agents to communicate
and compute, and its access is held in fair mutual exclusion.

One can easily see that the black hole search problem can also be formulated as an
exploration problem; in fact, the black hole can be located only after all the nodes of the
network but one has been visited and are found to be safe. Clearly, in this exploration
process some agents may disappeared in the black hole). In other words, the black hole
search problem is the problem of exploring an unsafe graph. Before proceeding we will
first (briefly) discuss the problem of safe exploration, that is of exploring a graph without
any black hole.

2.2 A Background Problem: Safe Exploration

The problem of exploring and mapping an unknown but safe environment has been exten-
sively studied due to its various applications in different areas (navigating a robot through
a terrain containing obstacles, finding a path through a maze, or searching a network).

Most of the previous work on exploration of unknown graphs has been limited to
single agent exploration. Studies on exploration of labelled graphs typically emphasize
minimizing the number of moves or the amount of memory used by the agent (e.g., see
[1, 25, 28, 72, 73]). Exploration of anonymous graphs is possible only if the agents are
allowed to mark the nodes in some way; except when the graph has no cycles (i.e. the
graph is a tree [29, 48]). For exploring arbitrary anonymous graphs, various methods
of marking nodes have been used by different authors. Pebbles that can be dropped
on nodes have been proposed first in [9] where it is shown that any strongly connected
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directed graph can be explored using just one pebble (if the size of the graph is known)
and using O(log log n) pebbles, otherwise. Distinct markers have been used, for example,
in [38] to explore unlabeled undirected graphs. Yet another approach, used by Bender
and Slonim [10] was to employ two cooperating agents, one of which would stand on a
node, while the other explores new edges. Whiteboards have been used by Fraigniaud
and Ilcinkas [49] for exploring directed graphs and by Fraigniaud et al. [48] for exploring
trees. In [29, 49, 50] the authors focus on minimizing the amount of memory used by the
agents for exploration (they however do not require the agents to construct a map of the
graph).

There have been few results on exploration by more than one agent. A two agent
exploration algorithm for directed graphs was given in [10], whereas Fraigniaud et al. [48]
showed how k agents can explore a tree. In both these cases, the agents start from same
node and they have distinct identities. In [7] a team of dispersed agents explores a graph
and constructs a map. The graph is anonymous but the links are labeled with sense of
direction; moreover the protocol works if the size n of the network or the number of agents
k are co-prime and it achieves a move complexity of O(km) (where m is the number of
edges). Another algorithm with the same complexity has been described in [23], where
the requirement of sense of direction is dropped. In this case the agents need to know
either n or k, which must be coprime. The solution has been made “effective” in [24],
where effective means that it will always terminate, regardless of the relationship between
n and k reporting a solution whenever the solution can be computed, and reporting a
failure message when the solution cannot be computed.

The map construction problem is actually equivalent to some others basic problems,
like Agent Election, Labelling and Rendezvous. Among them rendezvous is probably the
most investigated; for a recent account see [2, 64].

2.3 Basic Properties and Tools for Black Hole Search

We return now to the black hole search problem, and discuss first some basic properties
and techniques.

2.3.1 Cautious Walk

We now describe a basic tool (from [30]) that is heavily employed when searching for a
black hole. In order to minimize the number of agents that can be lost in the black hole,
the agents have to move cautiously. More precisely we define as cautious walk a particular
way of moving on the network that prevents two different agents to traverse the same
link, when this link potentially leads to the black hole.

At any time during the search for the black hole, the ports (corresponding to the
incident links) of a node can be classified as unexplored – no agent has been sent/received
via this port, explored – an agent has been received via this port, or dangerous – an agent
has been sent through this port, but no agent has been received from it. Clearly, an
explored port does not lead to a black hole; on the other hand, both unexplored and
dangerous ports might lead to it.
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The main idea of Cautious Walk is to avoid sending an agent over a dangerous link,
while still achieving progress. This is accomplished using the following two rules:

1. No agent enters a dangerous link.

2. Whenever an agent a leaves a node u through an unexplored port p (transforming it
into dangerous), upon its arrival to node v, and before proceeding somewhere else,
a returns to u (transforming that port into explored).

Similarly to the classification adopted for the ports, we classify nodes as follows: at the
beginning, all nodes except the homebase are unexplored; the first time a node is visited
by an agent, it becomes explored. Note that, by definition, the black hole never becomes
explored. Explored nodes and edges are considered safe.

2.3.2 Basic Limitations

When considering the black hole search problem, some constraints follow from the asyn-
chrony of the agents (arising from the asynchrony of the system, i.e. the impossibility to
distinguish the Bh from a slow node). For example [30]:

• If G has a cut vertex different from the homebase, then it is impossible for asyn-
chronous agents to determine the location of the Bh.

• It is impossible for asynchronous agents to determine the location of the black hole
if the size of G is not known.

• For asynchronous agents it is impossible to verify if there is a back hole.

As a consequence, the network must be 2-connected; furthermore, the existence of the
black hole and the size of G must be common knowledge to the agents.

As for the number of searching agents needed, since one agent may immediately wander
into the black hole, we trivially have:

• At least two agents are needed to locate the black hole.

How realistic is this bound? How many agents suffice? The answers vary depending
on the a priori knowledge the agents have about the network, and on the consistency of
the local labelings.

2.4 Impact of Knowledge

2.4.1 Black Hole Search Without A Map

Consider first the situation of topological ignorance; that is when the agents have no a
priori knowledge of the topological structure of G (e.g., do not have a map of the network).
Then any generic solution needs at least ∆ + 1 agents, where ∆ is the maximal degree of
G, even if the agents know ∆ and the number n of nodes of G.

6



The goal of a black hole search algorithm P is to identify the location of Bh; that is,
within finite time, at least one agent must terminate with a map of the entire graph where
the home-base, the current position of the agent, and the location of the black hole, are
indicated. Note that termination with an exact map in finite time is actually impossible.
In fact, since an agent is destroyed upon arriving to the Bh, no surviving agent can
discover the port numbers of the black hole. Hence, the map will have to miss such an
information. More importantly, the agents are asynchronous and do not know the actual
degree d(Bh) of the black hole (just that it is at most ∆). Hence, if an agent has a local
map that contains N − 1 vertices and at most ∆ unexplored edges, it cannot distinguish
between the case when all unexplored ports lead to the black hole, and the case when
some of them are connected to each other; this ambiguity can not be resolved in finite
time nor without the agents being destroyed. In other words, if we require termination
within finite time, an agent might incorrectly label some links as incident to the Bh;
however the agent need to be wrong only on at most ∆− d(Bh) links. Hence, we require
from a solution algorithm P termination by the surviving agents within finite time and
creation of a map with just that level of accuracy.

Interestingly, in any minimal generic solution (i.e., using the minimum number of
agents), the agents must perform Ω(n2) moves in the worst case [32]. Both these bounds
are tight. In fact, there is a protocol that correctly locates the black hole in O(n2) moves
using ∆ + 1 agents that know ∆ and n [32].

The algorithm essentially performs a collective “cautious” exploration of the graph
until all nodes but one are considered to be safe. More precisely, the agents cooperatively
visit the graph by “expanding” all nodes until the black hole is localized, where the
expansion of a node consists of visiting all its neighbours. During this process, the home
base is used as the cooperation center; the agents must pass by it after finishing the
expansion of a node, and before starting a new expansion. Since the graph is simple, two
agents exploring the links incident to a node are sufficient to eventually make that node
“expanded”. Thus, in the algorithm, at most two agents cooperatively expand a node;
when an agent discovers that the node is expanded, it goes back to the home base before
starting to look for a new node to expand. The whiteboard on the homebase is used to
store information about the nodes that have been already explored and the ones that are
under exploration. If the black hole is a node with maximum degree, there is nothing to
prevent ∆ agents disappearing in it.

2.4.2 Black Hole Search With Sense of Direction

Consider next the case of topological ignorance in systems where there is sense of direction
(SD); informally, sense of direction is a labeling of the ports that allows the nodes to
determine whether two paths starting from a node lead to the same node, using only the
labels of the ports along these paths (for a survey on Sense of Direction see [44]). In this
case, two agents suffice to locate the black hole, regardless of the (unknown) topological
structure of G. The proof of [32] is constructive, and the algorithm has a O(n2) cost. This
cost is optimal; in fact, it is shown that there are types of sense of direction that, if present,
impose an Ω(n2) worst-case cost on any generic two-agent algorithm for locating a black
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Figure 1: Splitting the unexplored subgraph Guex into Ga and Gb.

hole using SD. As for the topological ignorance case, the agents perform an exploration.
The algorithm is similar to the one with topological ignorance (in fact it leads to the same
cost); sense of direction is however very useful to decrease the number of casualties. The
exploring agents can be only two: a node that is being explored by an agent is considered
“dangerous” and by the properties of sense of direction, the other agent will be able to
avoid it in its exploration, thus insuring that one of the two will eventually succeed.

2.4.3 Black Hole Search With A Map

Consider the case of complete topological knowledge of the network; that is, the agents
have a complete knowledge of the edge-labeled graph G, the correspondence between
port labels and the link labels of G, and the location of the source node (from where the
agents start the search). This information is stronger then the more common topological
awareness (i.e., knowledge of the class of the network, but not of its size nor of the source
location – e.g. being in a mesh, starting from an unknown position).

Also in this case, two agents suffice [32]; furthermore the cost of a minimal protocol can
be reduced in this case to O(n logn), and this cost is worst-case optimal. The technique
here is quite different and it is based on a partitioning of the graph in two portions, which
are given to the two agents to perform the exploration. One will succeed in finishing its
portion and will carefully move to help the other agent finishing its own.

Informally, the protocol works as follows. Let Gex be the explored part of the network
(i.e., the set of safe nodes); initially it consists only of the homebase h. Agents a and b
partition the unexplored area into disjoint subgraphs Ga (the working set for a) and Gb

(the working set for b), such that for each connected component of Ga and Gb there is a
link connecting it to Gex (this partitioning can always be done). Let Ta and Tb be trees
spanning Ga and Gb, respectively, such that Ta ∩Gb = Tb ∩Ga = ∅. (The graphs Ga and
Gb are not necessarily connected – the trees Ta and Tb are obtained from the spanning
forests of Ga and Gb by adding edges from Gex as necessary, but avoiding the vertices of
the opposite working set.)

Each agent then traverses its working set using cautious walk on the corresponding
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spanning tree. In this process, it transforms unexplored nodes into safe.
Let a be the first agent to terminate the exploration of its working set; when this

happens, a goes to find b. It does so by: first going to the node w where the working sets
were last computed, using an optimal path and avoiding Gb; then following the trace of
b; finally reaching the last safe node w′ reached by b.

Agent a then computes the new subgraph Guex containing all non-safe nodes. If Guex

contains a single node, that node is the black hole. Otherwise a computes the new working
sets for itself and b; it leaves a note for b at the current node w′ indicating the new working
set Gb for b, and goes to explore its new assigned area avoiding the (new) working set of
b. When (if) b returns to w′, it finds the note and starts exploring its new working set.
Note that, at any time, an agent is either exploring its working set, or looking for the
other agent to update the workload, or destroyed by the black hole.

2.4.4 Topology-Sensitive Universal Protocols

Interestingly, it is possible to considerably improve the bound on the number of moves
without increasing the team size. In fact, there is a recent universal protocol, Explore and
Bypass, that allows a team of two agents with a map of the network to locate a black hole
with cost O(n + d log d), where d denotes the diameter of the network [34]. This means
that, without losing its universality and without violating the worst-case Ω(n log n) lower
bound, this algorithm allows two agents to locate a black hole with Θ(n) cost in a very
large class of (possibly unstructured) networks: those where d = O(n/ log n).

The algorithm is quite involved. The main idea is to have the agents explore the
network using cooperative depth-first search of a spanning tree T . When further progress
using only links of T is blocked, the blocking node is appropriately bypassed and the
process is repeated. For efficiency reasons, the bypass is performed in different ways
depending on the structure of the unexplored set U and on the size of its connected
components. The overall exploration is done in such a way that (1) the cost of the
cooperative depth-first search is linear in the number of explored vertices (2) bypassing a
node incurs an additional overhead of O(d) which can be charged to the newly explored
vertices, if there are enough of them and (3) If there are not enough unexplored vertices
remaining for bypassing to be viable, the remaining unexplored graph is so small (O(d))
that applying the general O(n log n) algorithm would incur in an O(d log d) additional
cost (which is essentially optimal, due to the lower bound of Θ(n log n) for rings).

Importantly, there are many networks with O(n/logn) diameter in which the previous
protocols [32, 33] fail to achieve the O(n) bound. A simple example of such a network is
the wheel, a ring with a central node connected to all ring nodes, where the central node
is very slow: those protocols will require O(n logn) moves.

2.4.5 Variations with a Map

A very simple algorithm that works on any topology (a-priori known by the agents) is
shown in [36].

Let C be a set of simple cycles such that each vertex of G is covered by a cycle from
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Figure 2: Example of Cycle-DFT Sequence for graph G and = {C1, C2, C3, C4, C5, C6}.
The cycle directions are shown, as well as the resulting entry nodes for each cycle. The
resulting Cycle-DFT Sequence: L = {1, 2, 5, 3, 6, 3, 4}.

C. Such a set of cycle, with some connectivity constraint is called Open Vertex Cover by
cycles. The algorithm is based on the pre-computation of such an open vertex cover by
cycles of a graph. The idea is to explore the graph G by exploring the cycles C.

The algorithm uses the optimal number of agents (two). If an agent is blocked on an
edge e (because either the transmission delay on e is very high, or it leads to the Bh),
the other agent will be able to bypass it, using the cycle containing e, and continue the
exploration. The number of moves depends on the choice of the cover and it is optimal for
several classes of networks. These classes include all Abelian Cayley graphs of degree three
and more (e.g., hypercubes, multi-dimensional tori, etc,), as well as many non-Abelian
cube graphs (e.g., CCC, butterfly, wrapped-butterfly networks, etc.). For some of these
networks, this is the only algorithm achieving such a bound.

2.5 Special Topologies

A natural question to ask is whether the bounds for arbitrary networks with full topologi-
cal knowledge can be improved for networks with special topologies by topology-dependent
proptocols.

2.5.1 Rings

The problem has been investigated and its solutions characterized for ring networks [30].
A Omega(n log n) lower bound holds since Ω(n log n) moves are needed by any two-agents
solution [30].

An agent and move optimal solution exists, based on a partitioning of the ring and on
a non-overlapping exploration by the agent. The solution is similar (and simpler) than
the one for the known arbitrary topology case). Initially the agents use the whiteboard to
differentiate their tasks: each taking charge of exploring (cautiously) roughly half of the
ring. One of the two agents will necessarily succeed (say agent A), while the other (agent
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B) might be moving slowly or be trapped into the black hole. The successful agent follows
the safe trace of the other one; at the last safe node reached by following the traces, A
writes a message on the whiteboard for B indicating that it will now take charge of half
of the area already to be explored. In this way, if B comes back during its cautious walk,
it will find the message and will act accordingly.a Notice that the size of the ring must
be known for the algorithm to work, but notice also that without knowing the size the
problem is unsolvable. The key point of the algorithm’s correctness is that the agents are
always exploring disjoint areas and that there is a single black hole. The time complexity
of this solution is O(n log n).

Interestingly, increasing the number of agents the number of moves cannot decrease,
but the time to finish the exploration does [30]. For example, suppose n agents x1, x2, . . . , xn

are available. By accessing the whiteboard they can assign to themselves different tasks:
for example, agent xi could take care of exploring node at distance i (clockwise: if there
is no orientation, a similar trick would work). To explore node u at distance i, agent xi

moves to visit the nodes that precede u clockwise and the one that precede u counter-
clockwise. Only one node will be successful because all the others will terminate in the
black hole either when moving clockwise, or when moving counterclockwise. Notice that,
in their exploration, the agent do not need to move with cautious walk. Clearly the agents
can perform their tasks concurrently and the time complexity is Ω(n) Indeed, there exists
an optimal trade-off between time complexity and number of agents.

Notice that the lower bound for rings implies an Ω(n log n) lower bound on the worst
case cost complexity of any universal protocol.

The ring has been investigated also to perform another task: rendezvous of k anony-
mous agents, in spite of the presence of a black hole. The problem is studied in [31] and
a complete characterization of the conditions under which the problem can be solved is
established. The characterization depends on whether k or n is unknown (at least one
must be known for any non-trivial rendezvous). Interestingly, it is shown that, if k is
unknown, the rendezvous algorithm also solves the black hole location problem, and it
does so with a bounded time complexity of Θ(n); this is a significant improvement over
the O(n log n) bounded time complexity of [30] .

2.5.2 Interconnection Networks

The negative result for rings does not generalizes. Sometimes the network has special
properties that can be exploited to obtain a lower cost network-specific protocol. For
example, two agents can locate a black hole with only O(n) moves in a variety of highly
structured interconnection networks such as hypercubes, square tori and meshes, wrapped
butterflies, star graphs [33].

The protocol achieving such a bound is based on the novel notion of traversal pairs
of a network which describes how the graph will be explored by each agent, and will be
used by an agent to avoid “dangerous” parts of the network. The algorithm proceeds
in logical rounds. In each round the agents follow a usual cooperative approach of dy-
namically dividing the work between them: the unexplored area is partitioned into two
parts of (almost) equal size. Each agent explores one part without entering the other one;

11



exploration and avoidance are directed by the traversal pair. Since the parts are disjoint,
one of them does not contain the black hole and the corresponding agent will complete
its exploration. When this happens, the agent (reaches the last safe node visited by the
other agent and there) partitions whatever is still left to be explored leaving a note for
the other agent (should it be still alive). This process is repeated until the unexplored
area consists of a single node: the black hole. In addition to the protocol and its analysis,
in [33] there is also the algorithm for constructing a traversal pair of a biconnected graph.

2.6 Using Tokens

As we have seen, the problem of asynchronous agents exploring a dangerous graph has
been investigated assuming the availability of a whiteboard at each node: upon gaining
access, the agent can write messages on the whiteboard and can read all previously written
messages, and this mechanism has been used by the agents to communicate and mark
nodes or/and edges. The whiteboard is indeed a powerful mechanism of inter-agent
communication and coordination.

Recently the problem of locating a black hole has been investigated also in a different,
weaker model where there are no whiteboards at the nodes. Each agent has instead a
bounded number of tokens that can be carried, placed on a node or on a port or removed
from it; all tokens are identical (i.e., indistinguishable) and no other form of marking or
communication is available. [35, 37]. Some natural questions immediately arise: is the
Bhs problem is still solvable with this weaker mechanism, and if so under what conditions
and at what cost. Notice that the use of tokens introduces another complexity measure:
the number of tokens. Indeed, if the number of tokens is unbounded, it is possible to
simulate a whiteboard environment; hence the question immediately arises of how many
tokens are really needed.

Surprisingly, the black hole search problem in an unknown graph can be solved using
only this weaker tool for marking nodes and communicating information. In fact, it has
been shown [35] that ∆+1 agents with a single token each can successfully solve the black
hole search problem; recall that this team size is optimal when the network is unknown.
The number of moves performed by the agents when executing the protocol is actually
polynomial. Not surprisingly, the protocol is quite complex. The absence of whiteboard,
in fact, poses serious limitations to the agents, which have available only a few movable
bits to communicate with each other.

Special topologies have been studied as well, and in particular, the case of the ring has
been investigated in details in [37]. There it has been shown that the 2-agents Θ(n log n)-
moves strategies for black hole search in rings with whiteboards can be successfully em-
ployed also without whiteboards, by carefully using a bounded number of tokens. Observe
that these optimal token-based solutions use only use 0(1) tokens in total, whereas the
protocols using whiteboards assumed at least O(logn) dedicated bits of storage at each
node. Further observe that any protocol that uses only a constant number of tokens im-
plies the existence of a protocol (with same size and cost) that uses only whiteboards of
constant size; the converse is not true.

These results indicate that, although tokens are a weaker means of communication
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and coordination, their use does not negatively affect solvability and it does not even lead
to a degradation of performance.

An open problem, in the case of unknown topologies, is whether the problem is solvable
when the tokens can be placed only on nodes (like in classical exploration algorithms with
pebbles).

2.7 Synchronous Networks

The Black Hole search problem has been studied also in synchronous settings, where the
time for an agent to traverse a link is assumed to be unitary.

When the system is synchronous the goals and strategies are quite different from
the ones reviewed in the previous sections. In fact, one of the major problem when
designing an algorithm for the asynchronous case is that an agent cannot wait at a node
for another agent to come back; as a consequence, agents must always move, and have
to do it carefully. When the system is synchronous, on the other hand, the strategies
are mostly based on waiting the right amount of time before performing a move. The
algorithm becomes the determination of the shortest traversal schedule for the agents,
where a traversal schedule is a sequence of actions (move to a neighbouring node or stay
at the current node). Furthermore, for the black hole search to be solvable, it is no
longer necessary that the network is 2-node connected; thus, the black hole search can be
performed by synchronous agents also in trees.

In synchronous networks tight bounds have been established for some classes of trees
[21]. In the case of general networks the problem of finding the optimal strategy is shown
to be NP-hard [22, 61] and approximation algorithms are given in [21] and subsequently
improved in [60, 61]. The case of multiple black holes have been very recently investigated
in [20] where a lower bound on the cost and close upper bounds are given.

3 Intruder Capture and Network Decontamination

A particularly important security concern is to protect a network from unwanted, and
possibly dangerous intrusions. At an abstract level, an intruder is an alien process that
moves on the network to sites unoccupied by the system’s agents “contaminating” the
nodes it passes by. The concern for the severe damage intruders can cause has motivated
a large amount of research, especially on detection (e.g., see [3, 47, 81]).

Assume the nodes of the network are initially contaminated and we want to deploy a
team of agents to clean (or decontaminate) the whole network. The cleaning of a node
occurs when an agent transits on the node; however, when a node is left without protection
(no agents on it) it might become re-contaminated according to a recontamination rule.
The most common recontamination rule is that as soon as a node without an agent on it
has a contaminated neighbour, it will become contaminated again.
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3.1 A Background Problem: Graph Search

A variation of the decontamination problem described above has been extensively studied
in the literature under the name of graph search (e.g., see [39, 59, 65, 69, 75]).

The graph search problem has been first discussed by Breisch [14], and by Parson [74,
75]. In the graph-searching problem, we are given a “contaminated” network, i.e., whose
links are all contaminated. Via a sequence of operations using “searchers”, we would like
to obtain a state of the network in which all links are simultaneously clear. A search
step is one of the following operations: (1) place a searcher on a node, (2) remove a
searcher from a node, (3) move a searcher along a link. There are two ways in which a
contaminated link can become clear. In both cases, a searcher traverses the link from one
extremity u to the other extremity v. The two cases are depending on the way the link is
preserved from recontamination: either another searcher remains in u, or all other links
incident to u are clear. The goal is to use as few searchers as possible to decontaminate
the network. A search strategy is a sequence of search steps that results in all links being
simultaneously clear. The search number s(G) of a network G is the smallest number of
searchers for which a search strategy exists. A search strategy using s(G) searchers in G
is called minimal.

Megiddo, Hakimi, Garey, Johnson and Papadimitriou [69] proved that determining
whether s(G) ≤ k is NP-complete. They gave an O(n)-time algorithm to determine the
search number of n-node trees, and an O(n logn)-time algorithm to determine a minimal
search strategy in n-node trees. Ellis, Sudborough and Turner [39] linked s(G) with the
vertex separation vs(G) of G (known to be equal to the pathwidth of G [57]). Given an
n-node network G = (V, E), vs(G) is defined as the minimum, taken over all (one-to-one)
linear layouts L : V → {1, . . . , n}, of vsL(G), the latter being defined as the maximum,
for i = 1, . . . , n, of the number of vertices x ∈ V such that L(x) ≤ i and there exists a
neighbor y of x such that L(y) > i. Ellis et al. showed that vs(G) ≤ s(G) ≤ vs(G) + 2,
and that s(G) = vs(G′) where G′ is the 2-augmentation of G, i.e., the network obtained
from G by replacing every link {x, y} by a path {x, a, b, y} of length 3 between x and y.
They also showed that the vertex separation of trees can be computed in linear time, and
they gave an O(n log n)-time algorithm for computing the corresponding layout. It yields
another O(n)-time algorithm returning the search number of trees, and an O(n logn)-time
algorithm returning a minimal search strategy in trees.

Beside network security [54], the graph-searching problem has many other applications,
including pursuit-evasion problems in a labyrinth [74], decontamination problems in a
system of tunnels, and mobile computing problems in which agents or robots [40] are
looking for an hostile intruder [83]. Moreover, the graph-searching problem also arises
in VLSI design through its equivalence with the gate matrix layout problem [57]. It is
hence not surprising that it gave rise to numerous papers. Another reason for this success
is that the problem and its several variants (node-search, mixed-search, t-search, etc.),
is closely related to standard graph parameters and concepts, including tree-width, cut-
width, path-width, and, last but not least, graph minors [13]. For instance, Makedon
and Sudborough [68] showed that s(G) is equal to the cutwidth of G for all networks of
maximum degree 3. Similarly, Kiroussis and Papadimitriou showed that the node-search
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number of a network is equal to its interval-width [58], and to its vertex separator plus
one [59]. Seymour and Thomas [78] showed that the t-search number is equal to the
tree-width plus one. Takahashi, Ueno and Kajitani [85] showed that the mixed-search
number is equal to the proper path-width. In [12], Bienstock and Seymour simplified the
proof of Lapaugh’s result [65] stating that there is a minimal search strategy that does not
recontaminate any link (see also [11]). Thilikos [86] used graph minors to derive a linear-
time algorithm that checks whether a network has a search number at most 2. For other
results on graph-searching, the reader is referred to [18, 26, 46, 79, 82]. Contributions
to related search problems can be found in [17, 66, 70, 83, 84, 88, 89] and the references
therein.

Let us stress that in the classical graph search problem the agents can be arbitrarily
moved from a node “jumping” to any other node in the graph.

The main difference in the setting described in this Chapter is that the agents, which
are pieces of software, cannot be removed from the network; they can only move from
a node to a neighboring one. This additional constraint has been introduced and first
studied in [5] resulting in a contiguous, monotone, node search or intruder capture prob-
lem. With the contiguous assumption the nature of the problem changes considerably
and the classical results on node and edge search do not generally apply. The problem
of finding the optimal number of agents is still NP -complete for arbitrary graphs. As we
will survey below, the problem has been studied mostly in specific topologies. Also the
arbitrary topology has been considered; in this case, some heuristics have been proposed
[45] and a move-exponential optimal solution has been given in [15]. Investigations on the
relationship between the contiguous model and the classical one for graph search (where
the agents can “jump”) have been studied, for example, in [8, 51, 52].

In this Chapter we use the term decontamination to refer to contiguous monotone
node search as defined in [5].

3.2 The Models for Decontamination

Initially, all agents are located at the same node, the homebase, and all the other nodes
are contaminated; a decontamination strategy consists of a sequence of movements of the
agents along the edges of the network. The agents can communicate when they reside on
the same node.

Starting from the classical model employed in [5] (called Local Model), additional
assumptions have sometimes been added to study the impact that more powerful agents’
or system’s capabilities have on the solutions of our problem.

1. In the Local Model an agent located at a node can “see” only local information, like
the state of the node, the labels of the incident links, the other agents present at
the node.

2. Visibility is the capability of the agent to “see” the state of its neighbors; i.e.,
an agent can see whether a neighboring node is guarded, whether it is clean, or
contaminated. Notice that, in some mobile agent systems, the visibility power
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could be easily achieved by “probing” the state of neighboring nodes before making
a decision.

3. Cloning is the capability, for an agent, to clone copies of itself.

4. Synchronicity implies that local computations are instantaneous, and it takes one
unit of time (one step) for an agent to move from a node to a neighboring one.

The efficiency of a strategy is usually measured in terms of number of agents, number
of moves performed by the agents, and ideal time.

We say that a cleaning strategy is monotone if once a node is clean, it will never be
contaminated again. All the results reported here apply for monotone strategies.
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Figure 3: The number of needed agents depends on the starting node.

3.3 Results in Specific Topologies

3.3.1 Trees

The tree has been the first topology to be investigated in the Local Model [5]. First of
all notice that, for a give tree T , the minimum number of agents needed depends on the
node from which the team of agents start. Consider for example the tree shown in Figure
3. If the team starts from node A then two agents suffice. However, the reader can verify
that at least three agent are needed if they start from node B.

In [5], the authors describe a simple and efficient strategy to determine the minimum
number of agents necessary to decontaminate an arbitrary given tree from any initial
starting node. The strategy is based on the following two observations.

Consider a node A; if A is not the starting node, the agents will arrive at A for the first
time from some link e (see Figure 4). Let T1(A), . . . , Ti(A), . . . , Td(A)−1 be the subtrees
of A from the other incident links, where d(A) denotes the degree of A; let mi denote
the number of agents needed to decontaminate Ti(A) once the agents are at A, and let
mi ≤ mi+1, 1 ≤ i ≤ d(A) − 2. The first observation is that to decontaminate A and all
its other subtrees without recontamination, the number m(A, e) of agents needed is

m(A, e) = m1 if m1 > m2 and
m(A, e) = m1 + 1 if m1 = m2
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Figure 4: Determining the minimum number of cleaners.

Consider now a node B and let mj(B) be the minimum number of agents needed to
decontaminate the subtree Tj(B) once the agents are at B, and let let mj ≤ mj+1,
1 ≤ j ≤ d(B). The second observation is that to decontaminate the entire tree starting
from B the number m(B) of agents needed is

m(B) = m1 if m1 > m2 and
m(B) = m1 + 1 if m1 = m2

Based on these two properties, the authors show in [5] how the determination of the
optimal number of agents can be done through a saturation where appropriate information
about the structure of the tree are collected from the leaves and propagated along the tree,
until the optimal is known for each possible starting point. The most interesting aspects
of this strategy is that it yields immediately a a decontamination protocol for trees that
uses exactly that minimum number of agents. In other words, the technique of [5] allows
to determine the minimum number of agents and the corresponding decontamination
strategy for every starting network, and this is done exchanging only O(n) short messages
(or, serially, in O(n) time).

The trees requiring the largest number of agents are complete binary trees, where the
number of agent is O(log n); by contrast, in the line two agents are always sufficient.

3.3.2 Hypercubes

It has been shown in [42] that to decontaminate a hypercube of size n, Θ( n√
log n

) agents are
necessary and sufficient. The employ of an optimal number of agents in the Local Model
has an interesting consequence; in fact, it implies that Θ( n√

log n
) is the search number for

the hypercube in the classical model, i.e., where agents may “jump”.
In the algorithm for the Local Model one of the agents acts as a coordinator for the

entire cleaning process. The cleaning strategy is carried out on the broadcast tree of the
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Figure 5: The broadcast tree T of the hypercube H6. Normal lines represent edges in T ,
dotted lines (only partially shown) the remaining edges of H6.

hypercube. The main idea is to place enough agents on the homebase and to have them
move, level by level, on the edges of the broadcast tree, leaded by the coordinator in
such a way that no recontamination may occur. The number of moves and the ideal time
complexity of this strategy are indicated in Table 1.

The visibility assumption allows the agents to make their own decision regarding the
action to take solely on the basis of their local knowledge. In fact, the agents are still
moving on the broadcast tree, but they do not have to follow the order imposed by the
coordinator. The agents on node x can proceed to clean the children of x in the broadcast
tree when they “see” that the other neighbors of x are either clean or guarded. With this
strategy the time complexity is drastically reduced (since agents move concurrently and
independently), but the number of agents increases. Other variations of those two models
have been studied and summarized in Table 1.

A characterization of the impact that these additional assumptions have on the prob-
lem is still open. For example: an optimal move complexity in the Local Model with
Cloning has not been found, and it is not clear whether it exists; when the agents have
Visibility, synchronicity has not been of any help although it has not been proved that
it is indeed useless; the use of an optimal number of agents in the weaker Local Model
is obtained at the expenses of employing more agents and it is not clear whether this
increment is necessary.
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Agents Time Moves

Local Local (⋆) O( n√
log n

) O(n log n) O(n logn)

Local, Cloning, Synchronicity n/2 (⋆) log n (⋆) n − 1

Visibility Visibility n/2 (⋆) log n O(n logn)

Visibility and Cloning n/2 (⋆) log n (⋆) n − 1

Table 1: Decontamination of the Hypercube. The star indicates an optimal bound.

3.3.3 Chordal Rings

The Local and the Visibility Models have been subject of investigation also in the Chordal
Ring topology in [43].

Let C(〈d1 = 1, d2, ..., dk〉) be a chordal ring network with n nodes and link structure
〈d1 = 1, d2, ..., dk〉, where di < di+1 and dk ≤ ⌊n

2
⌋. In [43] it is first shown that the

smallest number of agents needed for the decontamination does not depend on the size
of the chordal ring, but solely on the length of the longest chord. In fact, any solution
of the contiguous decontamination problem in a chordal ring C(〈d1 = 1, d2, ..., dk〉) with
4 ≤ dk ≤ √

n, requires at least 2 · dk searchers (2 · dk + 1 in the Visibility Model).
In both models, the cleaning is preceded by a deployment stage after which the agents

have to occupy 2dk consecutive nodes. After the deployment, the decontamination stage
can start. In the Local Model, nodes x0 to xdk−1 are constantly guarded by one agent
each, forming a window of dk agents. This window of agents will shield the clean nodes
from recontamination from one direction of the ring while the agents of the other window
are moved by the coordinator (one at a time starting from the one occupying node xdk

)
along their longest chord to clean the next window in the ring. Also in the case of the
chordal ring, the visibility assumption allows the agents to make their own decision solely
on the basis of their local knowledge: an agent move to clean a neighbour only when this
is the only contaminated neighbour.

Figure 6 shows a possible execution of the algorithm in a portion of a chordal ring
C(〈1, 2, 4〉). Figure 6 a) shows the guarded nodes (in black) after the deployment phase.
At this point, the nodes indicated in the figure can independently and concurrently start
the cleaning phase moving to occupy their only contaminated neighbour. Figure 6 b)
shows the new state of the network if they all move (the arrows indicate the nodes where
the agents could move to clean their neighbour).

The complexity results in the two Models are summarized in Table 2.
Consistently to the observations for the Hypercube, also in the case of the chordal

ring the visibility assumption allows to drastically decrease the time complexity (and in
this case also the move complexity). In particular, the strategies for the visibility model
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a)

b)

Figure 6: A chordal ring C(〈1, 2, 4〉). a) The agents are deployed and four of them (the
ones pointed by an arrow) could move to clean the neighbour. b) Four agents have moved
to clean their only contaminated neighbour and four more (the ones pointed by an arrow)
could now move.

Chordal Ring Agents Time Moves

Local 2dk + 1 3n − 4dk − 1 4n − 6dk − 1
(⋆)

Visibility 2dk

⌈

n−2dk

2(dk−dk−1)

⌉

n − 2dk

(⋆) (⋆)

Table 2: Results for the Chordal Ring. The star indicates an optimal bound.

are optimal both in terms of number of agents and in terms of number of moves; as for
the time complexity, visibility allows some concurrency (although it does not bring this
measure to optimal as was the case for the hypercube).

3.3.4 Tori

A lower bound for the torus has beed derived in [43]. Any solution of the decontamination
problem in a torus T (h, k) with h, k ≥ 4 requires at least 2 ·min{h, k} agents; in the Local
model it requires at least 2 · min{h, k} + 1 agents. The strategy that matches the lower
bound is very simple. The idea is to deploy the agents to cover two consecutive columns
and then keep one column of agents to guard from decontamination and have the other
column move along the torus. The complexity results are summarized in Table 3. As for
the other topologies, Visibility decreases time and slightly increases the number of agents.
In the case of the torus it is interesting to notice that in the Visibility model all three
complexity measures are optimal.
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Torus Agents Time Moves

Local 2h + 1 hk − 2h 2hk − 4h − 1
(⋆)

Visibility 2h (⋆) ⌈k−2
2
⌉ hk − 2h (⋆)

(⋆) (⋆) (⋆)

Table 3: Results for the 2-dimensional Torus with dimensions h, k, h ≤ k. The star
indicates an optimal bound.

Finally, these simple decontamination strategies can be generalized to d-dimensional
tori (although the lower bounds have not been generalized). Let T (h1, . . . , hd) be a d-
dimensional torus and let h1 ≤ h2 ≤ . . . ≤ hd. Let N be the number of nodes in the torus
and let H = N

hd

. The resulting complexities are reported below.

d-dim Torus Agents Time Moves

Local 2 N
hd

+ 1 N − 2 N
hd

2N − 4 N
hd

− 1

Visibility 2 N
hd

(⌈hd − 2⌉)/2 N − 2 N
hd

Table 4: Results for a d-dimensional Torus T (h1, h2, . . . , hd).

3.4 Different Contamination Rules

In [67] the network decontamination problem has been considered under a new model of
immunity to recontamination: a clean node, after the cleaning agent has gone, becomes re-
contaminated only if a weak majority of its neighbours are infected. This recontamination
rule is called local immunization. The paper studies the effects of this level of immunity
on the nature of the problem in tori and trees. More precisely, it establishes lower-bounds
on the number of agents necessary for decontamination, and on the number of moves
performed by an optimal-size team of cleaners, and it proposes cleaning strategies. The
bounds are tight for trees and for synchronous tori; they are within a constant factor of
each other in the case of asynchronous tori. It is shown that with local immunization only
O(1) agents are needed to decontaminate meshes and tori, regardless of their size; this
must be contrasted with e.g. the 2 min{n, m} agents required to decontaminate a n × m
torus without local immunization [43]. Interestingly, among tree networks, binary trees
were the worst to decontaminate without local immunization, requiring Ω(log n) agents
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in the worst case [5]. Instead, with local immunization, they can be decontaminated by a
single agent.

4 Conclusions

Mobile agents represent a novel powerful paradigm for algorithmic solutions to distributed
problems; unlike the message-passing paradigm, mobile agents solutions are naturally
suited for dynamic environments. Thus they provide a unique opportunity for developing
simple solutions to complex control and security problems arising in ever-changing systems
such as dynamic networks. While mobile agents per se have been extensively investigated
in the software engineering and the specification and verification communities, the algo-
rithmic aspects (problem solving, complexity analysis, experimental evaluation) are very
limited. It is only recently that researchers have started to systematically explore this
new and exciting distributed computational universe. In this chapter we have describe
some of interesting problems and solution techniques developed in this investigations in
the context of security. Our focus has been on two security problems: locating a black
hole, and capturing an intruder. For each we have described the computational issues and
the algorithmic techniques and solutions. These topics and techniques have a much wider
theoretical scope and range. In particular, the problems themselves are related to long
investigated and well established problems in automata theory, computational complexity,
and graph theory.

Many problems are still open. Among them:

• The design of solutions when the harmful host represents a transient danger. In other
words, when the harmful behavior is not consistent and continuous but changes over
time.

• The study of mobile harm, i.e., of pieces of software that are wandering around the
network possibly damaging the mobile agents encountered in their path.

• The study of multiple attacks. In other words, the general harmful host location
problem when dealing with an arbitrary, possibly unknown, number of harmful hosts
present in the system.
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