
Rendezvous and Election of Mobile Agents:
Impact of Sense of Direction∗

Lali Barrière † Paola Flocchini‡ Pierre Fraigniaud§

Nicola Santoro¶

Abstract

Consider a collection of r identical asynchronous mobile agents dispersed on an
arbitrary anonymous network of size n. The agents all execute the same protocol
and move from node to neighbouring node. At each node there is a whiteboard
where the agents can write and read from. The topology of the network is unknown
to the agents. We examine the problems of rendezvous (i.e., having the agents
gather in the same node) and election (i.e., selecting a leader among those agents).
These two problems are computationally equivalent in the context examined here.
We study conditions for the existence of deterministic generic solutions, i.e., algo-
rithms that solve the two problems regardless of the network topology and the initial
placement of the agents. In particular, we study the impact of edge-labeling on the
existence of such solutions. Rendezvous and election are unsolvable (i.e., there are
no deterministic generic solutions) if gcd(r, n) > 1, regardless of whether or not the
edge-labeling has sense of direction. On the other hand, if gcd(r, n) = 1 then the
initial placement of the robots in the network creates topological asymmetries that
could be exploited to solve the problems. We prove that these asymmetries can be
exploited if the edge labeling has sense of direction, but can not if the edge-labeling
is arbitrary. The possibility proof is constructive: we present a solution protocol and
prove its correctness. The protocol, among other features, uses a dynamic naming
mechanism based on sense of direction to overcome the complete anonymity of the
system.

Keywords: Mobile Agents, Distributed Computing, Rendezvous, Election, Anony-
mous Networks, Sense of Direction.

∗A preliminary version of this paper has been presented at the 10th Colloquium on Structural Infor-
mation and Communication Complexity (SIROCCO) [7].

†Universitat Politècnica de Catalunya, Spain. lali@mat.upc.es
‡Corresponding author. SITE, University of Ottawa, 800 King Edward Avenue, Ottawa, ON, K1N

6N5 Canada. flocchin@site.uottawa.ca
§CNRS, Université Paris-Sud, France. pierre@lri.fr
¶Carleton University, Canada. santoro@scs.carleton.ca

1

1 Introduction

We are interested in the computational issues arising in environments that support au-
tonomous mobile entities. At an abstract level, these environments, which we shall call
distributed mobile systems, can be described as a collection of autonomous mobile enti-
ties located in a spatial universe U . The entities have bounded storage and processing
capabilities, exhibit the same behavior (i.e., execute the same protocol), can move in U
(their movement is constrained by the nature of U), and are asynchronous in all their
actions (e.g., computation, movement, etc). Depending on the context, the entities are
sometimes called agents, other times robots; in the following, we use the former.

The research concern is on determining what tasks can be performed by such entities,
under what conditions, and at what cost. In particular, a central question is to determine
what minimal hypotheses allow a given problem to be solved. In this paper, we focus on
two basic problems: rendezvous and election. Rendezvous (also called gathering, point
formation, or homing), is the process by which the autonomous mobile entities meet in
the same spatial location in U . There is no a priori restriction on which location should be
the meeting point. The election (or symmetry breaking) problem consists in having the
entities unanimously select one of them as the leader. There is no a priori restriction on
which entity should be elected leader. We are interested in both election and rendezvous
problems when the universe U is a simple graph G. This setting describes environments
such as that of software mobile agents in a network. In those environments, an agent
can move from node to neighbouring node. Each node of the network is provided with a
whiteboard (i.e., a local storage where agents can write and read and erase information),
and access to a whiteboard is done in mutual exclusion (e.g., see [10, 16]). Note that,
in this setting, the two problems are computationally equivalent. That is, any solution
protocol for one can be easily modified to solve the other. In fact, if a leader is elected,
the leader can easily make all the other agents gather in a node of its choice. This can be
achieved, for example, if the leader traverses the network and breaks the anonymity by
assigning unique labels to the nodes; at this point, all the other agents can traverse the
network as well, selecting as rendez-vous point the home base of the leader. Conversely,
if the agents gather in a node, a leader can easily be elected by exploiting the mutual-
exclusion access to the whiteboard of that node; e.g., the first agent to access it becomes
the leader. Hence, the answer to any computational question for either problem is valid
for both.

In this paper, we examine rendezvous and election in the least powerful settings for
distributed mobile computing, that is when the network is anonymous, and the agents are
identical and their operations and movements asynchronous. The network is unknown to
the agents, i.e., we assume that the network, its size n, as well as the number r of agents
are not known a priori. In anonymous networks, edges are locally labeled, i.e., every edge
receives two labels, one for each extremity, and all edges incident to a node receive pairwise
distinct labels at this node. Our interest is in generic solutions, that is, solutions that work
independently of the structure of G and of the number of agents, and do not rely on such
knowledge. The question we ask is under what conditions, if any, can the two problems

2

be solved by such weak agents in such a difficult environment. We provide some definite
answers. A key role will be played not only by the relationship between the size n of the
network and the number r of robots (two quantities unknown to the agents), but also and
especially by the presence or lack of sense of direction in the network. Sense of direction is
a property of edge-labeled graphs (e.g., see [9, 17, 22]). Roughly speaking, it provides to
graphs similar properties as the usual notion of North, South, East, West in a mesh. Let
us remark that any graph can be endowed with a sense of direction, thus sense of direction
restricts the class of edge-labelings, not the class of graphs. In the context of distributed
computing, where the network is a graph and the port numbers are the edge labels, the
existence of such a property can be usefully employed to reduce the complexity of solution
protocols in a variety of situations (for a recent account, see [18]). The computational
power of sense of direction in anonymous networks has been thoroughly investigated and
characterized [21]. In the context of mobile agents, the impact (if any) of sense of direction
on computability and complexity is an unexplored subject. The only known results are
for the problem of black hole search, where indeed the presence of sense of direction allows
the problem to be solved by fewer agents [14].

1.1 Our Contributions

Our results on the solvability of election and rendezvous are summarized in Table 1.
It is rather obvious that if gcd(r, n) > 1 these two problems are unsolvable: there is

no generic solution protocol that always correctly terminates in finite time. This nega-
tive result holds even if the network has sense of direction known to the agents. This
impossibility derives from the fact that, if gcd(r, n) > 1, then the agents can be placed
equidistant on a ring, so that they will never be able to break the symmetry (e.g., meet
or elect a leader) under a synchronous scheduler.

If however r and n are co-prime, the argument above is no longer possible. So one might
reasonably expect that gcd(r, n) = 1 suffices for solvability. Surprisingly, this is not the
case. In fact, we show that, with arbitrary edge labelings, no generic solution exists which
allows the agents to always correctly terminate in finite time for every input such that
gcd(r, n) = 1 (cf. Theorem 2). On the other hand, we prove that, if the system has a sense
of direction, then the election problem is solvable when gcd(r, n) = 1 (cf. Theorem 3). In
other words, we show that sense of direction overcomes anonymity if gcd(r, n) = 1. The
proof of this latter result is constructive, i.e., we present an election protocol for fully
anonymous system with sense of direction where gcd(r, n) = 1, and prove its correctness.
The protocol uses a novel mechanism, called dynamic name mutation, based on sense
of direction, that allows the anonymous agents in the anonymous network to distinguish
agents and nodes in spite of anonymity. The protocol is also shown to be efficient both in
terms of total number of movements by the agents and in terms of total amount of time
to termination.

This is the first evidence that sense of direction has a positive computational impact
also in distributed mobile computing.

3

gcd(n, r) > 1 gcd(n, r) = 1
Without sense of direction unsolvable unsolvable

(Theo. 1) (Theo. 2)
With sense of direction unsolvable solvable

(Theo. 1) (Theo. 3)

Table 1: Summary of our results: solvability of the election and the rendezvous problems.

1.2 Previous Work

The rendezvous problem is a fundamental one in distributed mobile computing both with
robots in the plane and with agents in a graph. In particular, the gathering problem
has been extensively studied (both experimentally and analytically) by investigators in
AI, robotics, and more recently algorithmics: the setting is a set of points in the plane
and the entities are identical (i.e., anonymous) robots capable of moving in the plane.
Results have been established both in the synchronous and asynchronous settings (e.g.,
see [1, 11, 20, 27]). The problem has also been extensively studied, mostly by investigators
in operations research, assuming a geometrical space, such as the line, a circle, or polygonal
region (e.g., [4, 23, 26]). In common, these investigations have that the universe where
the robot’s movement is continuous. See [3] for a detailed review.

In graphs, the rendezvous problem consists of devising a distributed protocol allowing
mobile agents scattered in a network to meet at a single node. Hence the setting differs
drastically from the previous ones, since the setting here is discrete. The rendezvous
problem has been and continues to be investigated extensively in this universe (e.g.,
see [2, 3, 12, 19, 24, 30]). The investigations differ widely in their assumptions on the
capabilities of the agents. For example, in some (e.g., [12, 30]), the robots have distinct
identifiers (and thus are not anonymous) but can not leave messages on the whiteboards.
In others (e.g., [19, 24]), the agents are anonymous but each has available a single marker
that can be left on a single whiteboard. In most investigations, the protocols are topology-
dependent. In some, the network is considered unknown but it is assumed that the
same spanning-tree is somehow available to the agents [30]. For yet other models and
assumptions, see, e.g., [2, 3, 15]. Despite their differences, these investigations in graphs all
assume the agents to be fully synchronous: there is a global clock, and at each clock tick,
all agents perform their computations and movements (if any) simultaneously. Very little
is known about deterministic asynchronous rendezvous of anonymous agents in graphs.
Although some solutions for specific network topologies do work also if the agents are
asynchronous (e.g., [19]), the only explicit investigation is limited to ring networks [15].

The election problem is, as rendezvous, a fundamental one. In the context of dis-
tributed mobile computing, the existing results for election are only for non-anonymous
systems, where the agents have distinct names; the only difference is whether these names
are comparable values [13], or incomparable labels [6]. In distributed computing it has
been extensively investigated in asynchronous anonymous networks (e.g., see [5, 8, 21, 25]).

4

In particular, Yamashita and Kameda [28, 29] have thoroughly investigated the election
problem in anonymous networks. As part of this investigation, they established that, in
bicolored anonymous networks the election problem is always solvable if gcd(n, r) = 1,
where r is the number of nodes with one of the two colours, provided that n is known, but
it is sometimes impossible if gcd(n, r) 6= 1. Since sense of direction has the same computa-
tional power as complete topological knowledge [21], the same results as the one in Table
1 hold in the standard distributed model for anonymous bicolored networks with sense of
direction. Obviously, bicolored graphs can describe which nodes are the homebases in the
mobile agents setting. Therefore, there is equivalence in terms of computability between
the mobile agents setting and the standard distributed setting, then our results could be
derived from [28, 29] via [21]. The reduction has been proved in one direction [6]: the
mobile agents model can be simulated by the standard model. To establish a reduction in
the other direction (the one needed to give a reduction-based proof to our results) appears
to be considerably more difficult and, to date, this task has not yet been accomplished.

1.3 Organization of the paper

The paper is organized as follows. In the next Section we introduce terminology and
definitions. Then we prove in Section 3 the simple impossibility of election and rendezvous
when gcd(r, n) > 1. The unsolvability, without sense of direction, of those problems even
when gcd(r, n) = 1 is proven in Section 4. The election algorithm for gcd(r, n) = 1 when
there is sense of direction is presented in Section 5, where also its correctness is proven
and its efficiency analyzed.

2 Definitions

2.1 The Network and the Agents

Let G = (V, E) be a simple undirected n-node graph. Let E(u) denote the set of edges
incident to node u ∈ V , and let λu : E(u) → L be an injective function that associates
to each incident edge a distinct label, sometimes called port number, from a set of labels
L. Note that for each edge e = {u, v} there are two associated labels, λu(e) and λv(e),
which are possibly different. The set λ = {λu : u ∈ V } constitutes the labeling of G, and
by (G, λ) we shall denote the corresponding edge-labeled graph.

Scattered in (G, λ) are r autonomous mobile entities called agents. The graph G as
well as r and n are not known to the agents. Let p : E → V (G) be the injection describing
the initial placement of the agents in G. The node p(a) will be called the homebase of
agent a ∈ E . The agents have computing capabilities and limited storage, execute the
same protocol, and can move from node to neighbouring node in G. After moving from
u to v, an agent has available the label λu(u, v) of the edge from which it departed, as
well as the label λv(v, u) of the edge from which it arrived. The agents are anonymous
in the sense that they do not have distinct names or labels; they are asynchronous, in
the sense that every action they perform (computing, moving, etc.) takes a finite but

5

otherwise unpredictable amount of time. The network is anonymous, that is, the nodes
do not have distinguished names or labels. Each node of the network is provided with a
whiteboard, i.e., a local storage where agents can write and read (and erase) information.
Access to a whiteboard is done in mutual exclusion. Initially, the homebases of the agents
are marked. (Note that since both nodes and agents are anonymous this marker denotes
that the node is the homebase of some agent, but cannot be used to break symmetry).

The agents execute a deterministic protocol (the same for all agents) that specifies the
computational and navigational steps. In each step, an agent will compute based on (1)
its current state, (2) the content read on the whiteboard of the node currently visited,
(3) the label of the edge from which it arrived, and (4) the current node degree. The
computation is indivisible and, upon completion, the agent will change its state and then
depart through an exit port determined during the computation. (A null port can be
added to describe a decision by the agent not to move).

Initially, each agent has a predefined state variable set to available. The rendezvous
problem consists in having all the agents gather at the same node; upon arriving there,
each agent terminally sets its variable to arrived; when all the agents have arrived, within
a finite time, they all enter a final state gathered; there is no a priori restriction on which
node will become the rendezvous point. The election problem consists in having the
agents unanimously select one of them that will terminally set its state variable to leader,
while all the others will terminally set theirs to follower; there is no a priori restriction
on which agent will be elected.

We are interested in generic solution protocols for these two problems, that is, solutions
that work independently of the structure of G and of the number of agents. In our setting,
election and rendezvous are computationally equivalent. That is, any solution protocol
for one can be easily modified to solve the other. In fact, if a leader is elected, the leader
can easily make all the other agents gather in a node of its choice. Conversely, if the
agents gather in a node, a leader can easily be elected by exploiting the mutual-exclusion
access to the whiteboard of that node; e.g., the first agent to access it becomes the leader.
Hence, the answer to any computational question for either problem is valid for both.

2.2 Sense of Direction

Sense of direction is a property of edge-labeled graphs [17]. Roughly speaking, having
sense of direction is the simple ability

1. to tell, by looking at sequences of labels corresponding to different paths starting
from the same node, whether they end up in the same node or not; and

2. to translate from neighbor to neighbor the encoded information about paths in the
system.

For some graphs, a sense of direction can be given by very natural labelings. This is
the case, for example, of the mesh consistently labeled with North, South, East, West.
(This labeling is called compass labeling.) Formally, sense of direction is based on the

6

notions of coding and decoding functions. Given an edge-labeled graph (G, λ), let P [u]
denote the set of all the non empty walks starting from u ∈ V . Similarly, let P [u, v]
denote the set of walks starting from u ∈ V , and ending in v ∈ V . Let Λu : P [u] → L+

and Λ = {Λu : u ∈ V } denote the extension of λu and λ, respectively, from edges to walks
(L+ is the set of strings with alphabet L not including the empty string).

A coding function for λ is any function

c : L+ → N

where N is a finite set, such that walks originating from the same node are mapped to
the same element of N if and only if they end in the same node. More precisely,

∀u, v, w ∈ V, ∀π1 ∈ P [u, v],∀π2 ∈ P [u,w],
(
c(Λu(π1)) = c(Λu(π2)) ⇔ v = w

)
.

In the example of the mesh with compass labeling, the set of labels L is {N, S, E, W}
(for North, South, East, West), and the coding function c : L+ → L∗ is defined by: given
a sequence of labels, c returns the sequence obtained by: (1) simplifying every occurrence
of N (resp., E) with an occurrence of S (resp., W), and (2) lexicographically sorting the
resulting sequence. For example c(NESSWNNE) = EN . This simplification process
allows one to check if different sequences, starting from the same node, actually lead to
the same end node.

A decoding function for c is any function

d : L ×N → N

which, given the label λu(u, v) of an edge {u, v} and the coding of a walk π from v to
another node w, returns the coding of the walk from u to w obtained by traversing {u, v},
and then following π. More precisely,

∀{u, v} ∈ E, ∀π ∈ P [v],
(
d(λu({u, v}), c(Λv(π))) = c(λu({u, v}) ◦ Λv(π))

)

where ◦ denotes concatenation of strings of labels. In other words, while in general to
know the coding of the labels of a walk we need to know all the labels, with the decoding
function it is sufficient to know only the first label and just the coding of the rest.

In the example of the mesh with compass labeling, the decoding function d : L ×
L∗ → L∗ is defined by d(l, β) = c(l ◦ β). Consider a walk π starting from x, and let
Λx(π) = (WEWSENNES). Knowing the first label of Λx(π) and the coding (EE) of
the rest of the sequence (EWSENNES) obtained by application of c, allows to know the
coding of the entire sequence. In fact d(W,EE) = E = c(WEWSENNES) = c(Λx(π)).

Definition 1 (cf. [17]) An edge-labeled graph (G, λ) has sense of direction if and only if
there exist a coding function c for (G, λ), and a decoding function d for c. (We will also
say that the pair (c,d) is a sense of direction for (G, λ).)

7

Notice that sense of direction could be very powerful when performing rendezvous (or
election). In the case of a mesh with compass labeling, a natural asymmetry created by
the labels could be exploited. In fact, the rendezvous point could be agreed in advance
to be the Northmost-Eastmost node of the mesh and the rendezvous algorithm would
simply require the agents to move there. The election would be accomplished by choosing
as a leader the first agent that writes on the whiteboard of the meeting point. Both tasks
can be easily accomplished by the agents without any additional information (size of the
mesh, number of the agents, etc.). However, without the compass sense of direction, i.e.,
if edges are labeled inconsistently, then this simple protocol would not work.

Remark. Any graph can be endowed with a sense of direction. Indeed, consider an
arbitrary graph G = (V,E), V = {v0, . . . , vn−1}, where the edge {vi, vj} is labeled at vi

by the label j − i. With this labeling there is a simple coding function: two paths from
the same node terminate in the same node iff the sum of the corresponding labels is the
same, that is

∀u ∈ V, ∀π ∈ P [u], if Λu(π) = [l0, . . . , lk] then c(Λu(π)) =
k∑

i=0

li.

The decoding function is defined as follows:

∀{u, v} ∈ E, ∀π ∈ P [v],d(λu({u, v}), c(Λv(π))) = λu({u, v}) + c(Λv(π)).

It is easy to verify that λu({u, v}) + c(Λv(π)) = c(λu({u, v}) ◦ Λv(π)). This sense of
direction is one of many that can be constructed in an arbitrary graph.
A feature that makes this sense of direction particularly appealing is that both c and d
are very simple and require constant memory to be stored.

Terminology: In the following, when we say that “a network (G, λ) has sense of di-
rection (c,d)”, we mean that both c and d are known to the agents. Notice that, as
mentioned above, in any graph there always exists a sense of direction where the coding
and the decoding functions require O(1) bits to be represented.

3 A Basic Impossibility Result

If gcd(n, r) > 1, then there are networks where any election (resp. rendezvous) protocol
will be unable to elect a leader (resp. gather the agents) in every execution, and this fact
is true even if the system is endowed with sense of direction. Indeed, we have:

Theorem 1 Assume gcd(r, n) > 1. Then, the election and the rendezvous problems are
deterministically unsolvable in anonymous systems, even if there is sense of direction.

8

Proof. Consider a ring network R = (x0, x1, . . . , xn−1) with the classical “left/right”
sense of direction. Let the set of labels be L = {L,R}. Let Li, (resp., Ri) denote i
consecutive occurrences of label L (resp., R). A coding function c in this case simplifies
occurrences of L with occurrences of R and maps Ri and Ln−i into the same value.

1. ∀α, β ∈ L∗, c(α ◦Ri ◦ β) = c(α ◦ Ln−i ◦ β)

2. c(Li) = Li mod n

where L0 = ε is the empty string.
In an equidistant initial placement of the agents along the ring, the views of all agents

are identical at any distance. (Recall that, informally, the view of an edge-labeled graph
G from a node v is the infinite labeled rooted tree defined as the union of the edge-labeled
paths originated at v in G, cf. [28]). A synchronous scheduler will maintain the symmetry
at every step: at each time unit, the agents will be in the same state, react to the same
event, and perform the same action, reading and writing the same information on the
whiteboard, and selecting the same port label for the next move. If an agent becomes
leader, they all simultaneously will. In other words, election (and thus rendezvous) is
impossible.

4 Unsolvability with arbitrary labelings

We have just seen that, if r divides n, there are some networks in which some initial
placements of the agents create an unbreakable symmetry, making the rendezvous and
election problems unsolvable. On the other hand, if r and n are coprime, any initial
placement of the robots in any network creates a topological asymmetry, that could be
exploited to solve the problems. In this section we will prove the perhaps surprising fact
that, with arbitrary labelings, these asymmetries can not be exploited and, in fact, the
rendezvous and the election problems are unsolvable even if r and n are coprime.

Theorem 2 Assume gcd(n, r) = 1. Then, the election and the rendezvous problems are
deterministically unsolvable in an anonymous system with arbitrary labeling.

Proof. Assume, by contradiction, that there exists a generic election protocol P for all
inputs G where gcd(n, r) = 1. We will focus on the executions of P by a synchronous
scheduler, i.e., where all computations are instantaneous, movements require a unit of
time, and all agents start simultaneously. We will consider oriented rings, i.e., consistently
labeled with “left” (L) and “right” (R). (Note that orientation alone does not imply sense
of direction, cf. [17]).

Consider the system A composed of an oriented ring of three nodes (y0, y1, y2), with a
single agent located in y0 (see Figure 1). Consider the execution of P under a synchronous
scheduler. After a finite number of moves, the execution must terminate with the agent
becoming the leader. Let T (A) be the time elapsed in this execution and let d = dT (A)

3
e.

9

y0

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

yy2 1
R L

R

L

L

R

Figure 1: System A.

x 0

x 1

x 2

x 3

x4

x
5

���
���
���
���

���
���
���

���
���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

	�	
	�	
	�	
	�	

�

�

�

�

���
���
���
���

���
���
���
���

�
�
�
�

���
���
���
���

x

x

x
m−3

m−2

m−1

Figure 2: System B (the orientation of the edge labeling is not shown).

Consider now a system B composed of an oriented ring (x0, x1, . . . , x4k+8) of m =
4k + 9 nodes, where k = 3d. For convenience, we shall denote node xm−i simply by x−i,
1 ≤ i ≤ 2k + 4. An agent is placed in each of locations x3j and x−3j, 0 ≤ j ≤ 2d + 1
(see Figure 2). Since the number of agents is r = 4d + 3 and the number of nodes is
m = 4k+9 = 3(4d+3) = 3r, we have gcd(m, r) > 1. Clearly the initial system symmetry
in B implies that the views of all agents are identical at any distance. Furthermore this
view is undistinguishable from that of the only agent in A. It is not difficult to see that
the relationship between the two systems is time-invariant under a synchronous scheduler.
That is, at time T (A), all agents will terminate entering state leader. The fact that P
fails in B is not surprising since, in B, gcd(m, r) > 1.

Consider now a system C of n = m + 1 = 4k + 10 nodes, obtained from B by adding
a node z, initially without an agent, between x2k+4 and x−(2k+4) (see Figure 3). Thus
the number of agents is still r = 4d + 3, but gcd(n, r) = 1. Denote by bj the agent with
homebase xj. Initially all witheboards of nodes which are not homebase are identical, and
so are the witheboards of the homebases. Similarly, all agents are in the same initial state.
In particular, there is no possibility, initially, for the agents to distinguish between system
B and system C. Start a synchronous simultaneous execution of P by all agents in C. Let
us now compare the first k steps of this execution in C with the one in B. The agents

10

���
���
���
���

���
���
���
���

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

���
���
���
���

���
���
���
���

���
���
���

	�	
	�	
	�	
	�	

�

�

�

�

�����
�����
�����
�����

�����
�����
�����
�����

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���

���
���
���
���

���
���
���
���

x
0

x
1

x
2

x
3

x
−1

x
−2

x
−3

x
−(k+1)

x
k

x
k+1

x
−k

z

x
2k+4

x
−(2k+4)

Figure 3: System C (the orientation of the edge labeling is not shown).

b2k+4 and b−(2k+4) have a different 3-neighbourhood from all other agents. One of these
two agents, say b2k+4, will be the first to have a different state from all others agents.
To do so, it must pass by node z. This implies that, at time k, at most the segment
(xk+5, . . . , x2k+4, z, x−(2k+4), . . . , x−(k+5)) will be affected by the change. Thus, for the first
k steps, the segment Z = (xk+4, . . . , x0, . . . , x−(k+4)) in system C will be undistinguishable
from the same segment in system B. Thus, all the agents in C that, during this time,
do not leave Z will all have the same state at each time step, which will be equal to
that of the single agent in A at that time. Since, for t ≤ k, the three agents b0, b3 and
b−3 are always within Z and, since k < T (A), they will enter state leader at time T (A),
contradicting the correctness of P when gcd(n, r) = 1.

Note that Theorem 2 holds even if the agents are allowed unbounded amount of local
processing and of memory, and the whiteboards have unbounded capacity.

5 Solvability with sense of direction

When r and n are coprime, any initial placement of the agents in any network creates
asymmetries in the system. However, in general, without sense of direction, the anonymity
of the system does not allow these asymmetries to be exploited: Theorem 2 says that the
rendezvous and election problems are unsolvable with arbitrary edge-labeling, even when
restricted to those instances where n and r are coprime. We will now show in this section,
that sense of direction empowers the agents to effectively exploit the asymmetry created
by having gcd(r, n) = 1, and to overcome anonymity in those instances. Indeed, we have

Theorem 3 Assume gcd(n, r) = 1. Then the election and the rendezvous problems are
deterministically solvable in anonymous systems with sense of direction.

11

1. To determine its initial name, agent a, with homebase
u, chooses an arbitrary neighboring node v and deter-
mines the label λv({u, v}) (e.g., by moving to v and
coming back). Then it sets Myname := c(λu({u, v})◦
λv({u, v})).

2. When agent a with name Myname at node x moves
to the neighboring node y, it modifies its name as
follows: Myname := d(λy({y, x}),Myname).

Figure 4: Dynamic name mutation of agent a

The proof is constructive, i.e., we will describe and analyze an election protocol that
works for every instance with gcd(n, r) = 1. The description requires some preliminaries.

5.1 Dynamic Name Mutation

Even in a totally anonymous system, an agent can locally (i.e., privately) assign a unique
“name” to itself and to the other agents, as well as to the nodes of the graph. However,
since all agents are behaviorally identical and start with the same initial values, there
is no guarantee that such a name would be unique. In fact it is possible that they all
choose the same name for themselves, creating an homonymous universe. We now present
a mechanism, called dynamic name mutation (DNM), which, exploiting the presence of
sense of direction, allows us to operate in spite of these limitations, including homonimity.
This mechanism is described Figure 4. In our mechanism, initially every agent chooses
its private name based on the labels of the edges incident to its homebase. The private
name is then modified whenever the agent moves on the graph. The name will be always
relative to the current position of the agent. The main difficulty is to modify the names
in such a way that, at any location v, two names will be different if and only if they refer
to different agents. This will ensure that messages written on v’s whiteboard by different
agents will have different signatures. Another related difficulty is to ensure that an agent
is capable of recognizing, as its own, any message it has written in previous visits. These
difficulties are overcome by the use of the existing sense of direction (c,d) by the mobile
agents.

Let a be an agent. We will denote by name(a, v) its name at node v. In the following
lemma we show that the name of an agent at a node solely depend on its starting point
and not on the path followed to reach the node.

Lemma 1 The name of an agent a at some node v is independent of the path followed
to reach v from its homebase u.

Proof. To prove the lemma we will prove first that name(a, v) = c(α) where α is a
sequence of labels corresponding to any path from v to the homebase u of agent a. Since,

12

by definition, the coding is the same for different paths provided they start from the same
node (in this case v) and they terminate in the same node (in this case u), this claim
proves the lemma. Consider thus the path π = (v0, v1, v2 . . . , vk) traversed by a from
u = v0 to v = vk. We will prove our claim by induction on i (1 ≤ i ≤ k).

Basis. The property is true at node u. In fact, by definition of Dynamic Name Mutation,
name(a, u) = c(α◦β) where α is the label λu({u, v}) of any edge {u, v} and β = λv({u, v}).
By definition of coding function, any other path from u to itself would have given the
same coding.

Induction. Assume the property holds at vi, and consider now vi+1. The name of a at
vi+1 is

name(a, vi+1) = d(λvi+1
({vi+1, vi}), name(a, vi)) = d(λvi+1

({vi+1, vi}), c(α)),

where α is a sequence of labels corresponding to a path from vi to u. In particular such
a path could be (vi, . . . , v1, u). Then it follows that

name(a, vi+1) = d(λvi+1
({vi+1, vi}), c(Λvi

(α))) = c(λvi+1
({vi+1, vi}) ◦ Λvi

(α)))

which, by definition of coding function, is equal to c(β), where β is a sequence of labels
corresponding to any path from vi+1 to u. This completes the proof.

We now show that, if two names are different at a node, then they belong to different
agents, while, if they are identical, then they necessarily belong to the same agent.

Lemma 2 Let a and b be any two agents, and let v be any node. We have:

name(a, v) = name(b, v) ⇔ a = b.

Proof. We have to prove that if an agent a arriving at a node v “sees” two names, it
can tell whether they refer to the same agent or not (and whether they refer to itself). In
other words, we have to prove that (i) an agent at v always has the same name regardless
the walk it traversed to arrive there, (ii) different agents arriving at node v have different
names. Point (i) is proven in lemma 1. Let us consider point (ii). Let a and b be two
different agents with respective homebases u and u′, u 6= u′. At node v, name(a, v) = c(α)
and name(b, v) = c(β) where α corresponds to any path from v to u, and β corresponds
to any path from v to u′. By definition of coding function c(α) 6= c(β) because u 6= u′.

Because of Lemma 2, we are guaranteed that whenever an agent leaves a signed in-
formation on a whiteboard (i.e., writes some information on the whiteboard and signs it
with its local name), it will be able in subsequent visits to the same node to identify that
information as its own. Moreover, it will correctly recognize signatures written by other
agents as not its own. There is an additional extremely useful consequence. Let an agent
a find a signature of another agent b in the whiteboard of a visited site. If the agent
carries with itself that signature and applies to it the dynamic name mutation, a will be
able to detect if any of the information written on the whiteboard of another node has
been written by b. In our election protocol we will heavily make use of this properties. In
fact, whenever an agent writes an information on the whiteboard of a node, it will sign it
with its own name at that node.

13

5.2 The Election Protocol

We now present a protocol which will elect one of the agents as the leader, provided
gcd(r, n) = 1. The high level description of the algorithm is given in Figure 5. The
proposed protocol operates in a sequence of phases. Each phase starts with two operations
that the active agents must perform: (1) territory acquisition, and (2) set-up, followed
by (3) a sequence of pairing and partitioning rounds. At the end of a phase, as we will
show, at least half of the active agents which entered the phase become passive, and the
number of those that will start the next phase is still co-prime with n. The algorithm will
terminate when there is only one active agent left, the leader.

while (number of active agents > 1) do /* new phase */
Territory Acquisition;
Set-up; /* S and W are created */
while (|S| 6= 0) do /* new round */

Pairing; /* S is paired with a subset of W */
Partition; /* S and W are updated */

endwhile
endwhile

Figure 5: Overall View of Algorithm Elect.

Notation. In the following we will denote by ri the number of active agents in Phase
i ≥ 1.

We describe now the actions of the ri agents entering Phase i, for i ≥ 1. Initially
r1 = r.

5.2.1 Territory Acquisition and Set-up

The first operation an active agent performs is to “acquire” as many nodes as possible.
Assume that, at the beginning of the phase, all nodes, except the homebases of the agents
active in this phase, are available. Every active agent starts a depth-first traversal of
G marking as taken any available node it visits. The marking is done by writing an
appropriate signed information on the whiteboard. During the traversal, an agent will
keep track of how many nodes are taken and by what other agents. The names of this list
of occurrences will be decoded at each move, so they are always consistent (Lemma 2).
A detailed description of Territory Acquisition is given in Figure 6. Notice that an agent
a performing territory acquisition in phase i might end up in the homebase of an agent
b that is still finishing the previous phase i − 1. To decide whether to acquire this node
or not, a has to wait for the return of b and verify whether b has become passive or not.
Agent a will acquire this node only if b is passive in phase i. As we will prove later, it
will never happen that a in phase i waits for another agent in a phase previous to i− 1.

14

1. Active agent a in Phase i records in its homebase the current phase number and
starts a (depth-first) traversal of the nodes of G carrying a list L of names, and a
list C of counters (one for each entry in L). Initially, L contains only a’s name, and
its counter in C is set to 1.

2. During the traversal, when a visits a node v from link {u, v} carrying the lists
L = {m1, . . . ,ms} and C = {n1, . . . ns}, it does the following:

(a) It updates its name by Myname := d(λv({v, u}),Myname), and all the names
in its list L, i.e., for all m ∈ L, m := d(λv({v, u}),m);

(b) It checks whether or not v has been marked in this phase i.

• If v has been marked, say by agent b, then a updates L and C, i.e., a
creates an entry for b in L (if not already there) and a corresponding
counter in C (initially set to 0), and increases the counter.

• If v has not been marked but it is the homebase of an active agent b (with
phase number i− 1), then a waits until b returns.

– If upon its return b becomes passive, then a marks v with Myname
and i, and increases its counter in C;

– Otherwise (i.e., when it returns, b is still active), a updates L and C,
i.e., a creates an entry for b in L (if not already there) and a corre-
sponding counter in C (initially set to 0), and increases the counter.

• Otherwise, a marks v with Myname and i, and increases its counter in
C.

(c) It proceeds with the traversal.

Figure 6: Territory Acquisition (phase i).

After the territory acquisition, the active agents have acquired enough information to
proceed with the set-up operation. During the set-up, the active agents locally partition
themselves into two sets, W (for waiting) and S (for searching) as described in Figure 7.
All other agents (if any) are passive.

5.2.2 Pairing and Partition Rounds

After Territory Acquisition and setup, a sequence of rounds starts with the objective of
reducing the number of active agents. The agents execute different rules depending on
the set S or W they are in, and they perform a pairing between the two sets. At the end
of the pairing some active agents become passive. Depending on the result of the pairing,
either a new round is started with new sets of waiting and searching agents (partition),
or the current round terminates. In the latter case, if there is only one active agent left,
that agent becomes the leader and starts the termination of the protocol, otherwise a new
phase is started.

15

When an agent has completed its territory acquisition, and returned to its homebase, it
knows a sequence of integers n1, . . . , nk, and a partition A1, . . . , Ak of the set of agents,
such that, for every `, A` is the set of agents which have a territory of size n`. These two
sequences satisfy:

• |A`| 6= 0 and 1 ≤ n` < n, for all `,
• n` 6= n`′ for all ` 6= `′, and
• ∑k

`=1 |A`| · n` = n.

Based on this knowledge, every agent determines the two following sets:

• A: the set of the agents whose territory is of size greater than n/ri, and
• B: the set of the agents whose territory is of size less than n/ri. /* since
gcd(ri, n) = 1, n/ri is not integral */

Let W be the largest of these two sets, and S be the smallest of these two sets. In case of
a tie, the agents set W = A.

Figure 7: Set up

Basically, during the pairing operation, the agents executes Euclid’s algorithm based
on the recursion gcd(a, b) = gcd(a, b − a) for b ≥ a. The searching agents (i.e., those
in S) aim at pairing with waiting agents (i.e., those in W) so as to make |S| waiting
agents becoming passive. Every round of a phase is the analogue of gcd(|S|, |W |) =
gcd(|S|, |W | − |S|). The pairing operation is described in Figures 8. At the end of the
pairing all searching agents and some of waiting agents will still be active. All these agents
locally perform the partition operation, described in Figure 9 from the point of view of
an active agent a.

A new round starts when S 6= ∅. If S = ∅, then two cases are considered. If |W | = 1
then the only active agent (i.e., the one in W) becomes the leader. Otherwise, a new phase
starts, involving active agents (i.e., those currently in W). That is, territory acquisition
and setup are performed so as to start a new phase of Euclid’s algorithm.

5.3 Correctness

In this section we prove the correctness of Algorithm elect. We first show that, although
searching agents can wait at homebases of other agents, no deadlocks occur.

Lemma 3 A searcher executing pairing in round j can only wait for an agent that is
executing pairing (as a searcher) in round j − 1, and it will complete round j in finite
time.

Proof. By induction on j. It is clearly true in round j = 1. Let it be true for round
j− 1 ≥ 1 and consider round j. Let a be a searcher starting round j. We first show that,

16

Let W (1) := W and S(1) := S. Round j involves two sets of agents, S(j) and W (j), constructed
during Round j − 1. We consider separately waiting and searching agents at round j.

Waiting agent a
(1) Agent a ∈ W (j) is initially single, writes the current round number in its homebase u,
and waits for the arrival of all the agents ∈ S(j).
(2) When a searching agent s arrives to the homebase u of a:

• a stores name(s, u);
• If s pairs with a according to the rule below, then a becomes paired.

(3) When a has been visited by all the searching agents, if it is paired it becomes passive,
otherwise it starts the partition operation.

Searching agent s.
(1) Agent s ∈ S(j) performs a traversal of the nodes of G looking for the agents in W (j).
(2) During the traversal, when s enters the homebase u of agent a ∈ W (j)

• If a is not in its homebase (and its round number is j− 1), then s waits for its return.
• If a is in its homebase (or when it arrives at its homebase),

- s notifies a of its visit;
- if both s and a are single then s pairs with a — if several single searching agents were
waiting for a, only one of them will pair with it; /* since pairing is done by writing
on the whiteboard, and access to whiteboard is in mutual exclusion */
- s continues its traversal.

(3) The traversal is completed when s is back to its homebase. At this point s starts the
partition operation.

Passive agents. A passive agent, i.e., a paired waiting agent, remains at its homebase, waiting
to be notified of termination.

Figure 8: Pairing (round j)

when a searcher waits for another agent, there are no agents still executing round j − 2.
Indeed, to start round j, a must have finished (in round j − 1) the traversal of the graph
of the last pairing. During that traversal, by inductive hypothesis, it might have waited
only for agents still in round j − 2. But all these agents must have returned (otherwise a
would have not finished that round), thus entering round j − 1. In other words, when a
starts round j, there are no agents still executing round j− 2. Therefore, a can only wait
in round j for agents that are still in round j − 1. These agents, by inductive hypothesis,
will enter round j in finite time returning to their homebases. Hence, a will also complete
its pairing traversal of round j within finite time.

Similarly,

Lemma 4 An agent executing territory acquisition in phase i can only wait at the home-
base of an agent that is executing pairing in phase i − 1 and it will complete territory
acquisition in finite time.

Then we show:

17

The set of agents which became passive during Round j is denoted by P (j).
(1) Agent a computes the cardinalities of S(j) and W (j), as well as which of these two sets
it belongs to, as follows:

• If |W (j)| − |S(j)| ≥ |S(j)| then S(j+1) = S(j) and W (j+1) = W (j) \ P (j).
• If |W (j)| − |S(j)| < |S(j)| then W (j+1) = S(j) and S(j+1) = W (j) \ P (j).

(2) If |S(j+1)| 6= 0, a enters Round j + 1.
(3) Otherwise, let ri+1 = |W (j+1)| be the number of still active agents.

• If ri+1 = 1, then a becomes leader and starts the termination of the protocol;
• Otherwise (i.e., if ri+1 > 1), a enters Phase i + 1.

Figure 9: Partition (round j)

Lemma 5 At the beginning of Phase i, gcd(ri, n) = 1 and, if i > 1, then ri ≤ ri−1

2
.

Proof. By induction on i. It is clearly true at the beginning because, by definition we
have that gcd(r, n) = 1. Let it be true at Phase i (i.e., gcd(ri, n) = 1). After the set up of
phase i, and, thus, at the beginning of partition and pairing, |S(1)|+ |W (1)| = ri. During
partition and pairing, by construction of the sets S(j) and W (j), the sequence of pairs
{|S(j)|, |W (j)|}, of rounds j ≥ 1, is the sequence of pairs of integers obtained by computing
gcd(|S(1)|, |W (1)|) using Euclid’s algorithm. Then, by the properties of Euclid’s Algorithm,
the next set of searching agents for phase i+1 will contain ri+1 = gcd(|S(1)|, |W (1)|) agents
and ri+1 ≤ ri

2
. Since |S(1)|+ |W (1)| = ri and gcd(ri, n) = 1, we have that gcd(ri+1, n) = 1.

Proof of Theorem 3. By simple application of Lemmas 3, 4, and 5.

5.4 Observations on Costs

Although not the primary objective of our study, we observe that our protocol is quite
efficient with respect to the traditional cost measures for mobile agents: the number
of agent moves and the amount of time. An agent executing the proposed protocol
performs several traversals of the network. To traverse the network, an agent can use as
a guideline any standard message-optimal distributed depth-first traversal algorithm: the
agent will simulate and follow the behavior of the traversing token. This would result in
O(|E|) moves per traversal. However, since the system has sense of direction, distributed
depth-first traversal can be actually performed using only 2n messages [18], resulting in
a traversal by an agent in only 2n moves.

Property 1 Assume gcd(n, r) = 1. Then, in an n-node anonymous network with sense
of direction, r anonymous asynchronous agents that do not know n nor r nor the network

18

topology can rendezvous and elect a leader with O(nr) moves in time O(n log r) in the
worst case.

Proof. During the Territory Acquisition of Phase i, each of the ri agents performs a
traversal of the network to acquire territories. Each traversal can be performed by an agent
in only 2n moves. Thus, the Territory Acquisition of Phase i will cost a total of 2rin moves.
During the remaining rounds of Phase i, traversals are executed by the agents to perform
pairings. Starting from ri, active agents split into two sets S(1) and W (1), the total number
of pairings performed to decrease the number of active agents to ri+1 = gcd(S(1),W (1))
is ri − ri+1. Therefore, assuming that there are k phases, the total number of moves
performed by the agents for traversals is

∑k
i=1 2(rin+(ri− ri+1)n) = 2n

∑k
i=1(2ri− ri+1).

Since, by Lemma 5, ri+1 ≤ ri/2, k is equal to log r, thus, the total number of moves is at
most O(rn).

As for the time costs, the total number of phases is at most log r and in each phase an
active agent performs a constant number of traversals. As observed above, using sense of
direction each traversal can be done with 2n moves and, thus, the same amount of time.

Finally, let us observe that the amount of memory required by an agent is related to
the size of the names used by the coding function. In fact, the traversal protocol exploiting
sense of direction [18] requires the token (and thus the agent) to carry the list of names
of the nodes traversed so far. Therefore, in the specific case when names can be coded by
O(log n) bits, this implies an O(n log n) bits memory requirement for the agents. Observe
that O(n log n) bits suffice to store the map of the DFS-tree (necessary for traversal), as
well as the names of the currently active agents and the size of their territory required by
the algorithm.

6 Concluding Remarks

It is well known that the presence of sense of direction has a positive impact both on
the complexity and the computability of distributed problems (for detailed account, see
[18]). Recently, it has been shown that sense of direction can have a positive impact on
the efficiency of solutions also in the mobile agents setting [14]. The results presented
here provide the first evidence that, in systems of mobile agents, sense of direction has a
positive influence also on computability.

An interesting open problem is to determine how to exploit, in addition to sense of
direction, any existing asymmetry of the network or of the placement of the agents, so to
sidestep the unsolvability result established here, extending the work of [28] to the mobile
setting.

Another open problem would be when the initial placement of the agents is not injec-
tive; i.e., more than one agent can be initially located in the same node. Note that our
results would still hold when gcd(n, r) = 1, where r is the number of distinct homebases.

19

Acknowledgments. This research was carried out in part when the first and third au-
thors were visiting Carleton University and the University of Ottawa. This work has been
partially supported by: the Natural Sciences and Engineering Research Council (NSERC),
NATO, the Research Grant from the Ministry of Science and Technology (Spain), and
the European Regional Development Fund (Project TIC2002-00155).

References

[1] Agmon, N., and Peleg, D. Fault tolerant gathering algorithms for autonomous
mobile robots. In Proc. Symposium on Discrete Algorithms (SODA 2004), 2004.

[2] Alpern, S., Baston, V., and Essegaier, S. Rendezvous search on a graph.
Journal of Applied Probability 36, 1 1999, 223–231.

[3] Alpern, S., and Gal, S. The Theory of Search Games and Rendezvous. Kluwer
Academic Publishers, Norwell, Massachusetts, 2003.

[4] Anderson, E.J., and Essegaier S. Rendezvous search on the line with in-
distinguishable players. SIAM Journal of Control and Optimization 33, 1995, pp.
1637-1642.

[5] Angluin, D. Local and global properties in networks of processors. In Proc. of 12th
A.C.M. Symposium on Theory of Computing, 1980, pp. 82-93.

[6] Barrière, L., Flocchini, P., Fraigniaud, P., and Santoro, N. Can we
elect if we cannot compare ? In Proc. 15th ACM Symp. on Parallel Algorithms and
Architectures (SPAA ’03), 2003, pp. 324-332.

[7] Barrière, L., Flocchini, P., Fraigniaud, P., and Santoro, N. Election and
rendezvous in fully anonymous systems with sense of direction. In Proc. 10th Collo-
quium on Structural Information and Communication Complexity (SIROCCO ’03),
2003, pp. 17-32.

[8] Boldi, P., Codenotti, B., Gemmell, P., Shammah, S., Simon, J., Vigna,
S. Symmetry breaking in anonymous networks: characterizations. In Proc. of 4th
Israeli Symposium on Theory of Computing and Systems, 1996, pp. 16–26.

[9] Boldi, P., and Vigna, S. On the complexity of deciding sense of direction. SIAM
Journal on Computing 29, 3, 2000, pp 779-78.

[10] Cardelli, L., and Gordon, A. Mobile ambients.. Foundations of Software
Science and Computational Structures, LNCS 1478, Springer Verlag, 1998.

[11] Cieliebak, M., Flocchini, P., Prencipe, G., and Santoro, N. Solving the
gathering problem. In 30th International Colloquium on Automata, Languages and
Programming (ICALP ’03), 2003.

20

[12] Dessmark A., Fraigniaud P., and Pelc. A. Deterministic rendezvous in
graphs. In 11th Annual European Symposium on Algorithms (ESA’03) 2003, pp.
184-195.

[13] Deugo, D. Mobile agents for electing a leader. In 4th Int. Symposium on Au-
tonomous Decentralized System 1999, pp. 324–324.

[14] Dobrev, S., Flocchini, P., Prencipe, G., and Santoro, N. Searching for
a black hole in arbitrary networks. In 21st ACM Symposium on Principles of Dis-
tributed Computing (PODC ’02) 2002, pp. 153–162.

[15] Dobrev, S., Flocchini, P., Prencipe, G., and Santoro, N. Multiple agents
rendezvous in a ring in spite of a black hole In 7th Symposium on Principles of
Distributed Systems (OPODIS ’03), LNCS, 2003.

[16] Domel P., Ligniau A., and Drobnik., O. Mobile agent interaction in hetero-
geneous environments. In Mobile Agents ‘97, LNCS 1219, Springer Verlag, 1997, pp.
136-148.

[17] Flocchini, P., Mans, B., and Santoro, N. Sense of direction: definition,
properties and classes. Networks 32 1998, 165–180.

[18] Flocchini, P., Mans, B., and Santoro, N. Sense of direction in distributed
computing. Theoretical Computer Science 291 , 2003, 29–53.

[19] Flocchini P., Kranakis E., Krizanc D., Santoro N., and Sawchuk C..
Multiple mobile agent rendezvous in a ring. In Proc. of Int. Conference on Latin
American Theoretical Informatics , (LATIN ’04), 2004.

[20] Flocchini, P., Prencipe, G., Santoro, N., and Widmayer, P. Gathering
of asynchronous mobile robots with limited visibility. Theoretical Computer Science,
2005.

[21] Flocchini, P., Roncato, A., and Santoro, N. Computing on anonymous
networks with sense of direction. Theoretical Computer Science, 301, 2003, 355-379.

[22] Flocchini, P., Roncato, A., and Santoro, N. Backward consistency and
sense of direction in advanced distributed systems SIAM Journal on Computing,
32:2, 2003, pp.281-306.

[23] Howard, J. Rendezvous search on the interval and circle. Operations Research 47,
No.4, 1999, pp. 550-558.

[24] Kranakis, E., Krizanc, D., Santoro, N., and Sawchuk, C. Mobile agent
rendezvous in a ring. In 23rd Int. Conference on Distributed Computing Systems
(ICDCS’03) 2003, pp. 592-599

21

[25] Itai, A., and Rodeh, M. Symmetry breaking in distributed networks. Information
and Computation 88, 1, 1990, pp. 60-87.

[26] Lim, W.S., Beck, A., and Alpern, A. Rendezvous search on the line with more
than two players. Operations Research 45, pp. 357-364, 1997.

[27] Suzuki, I., and Yamashita, M. Distributed anonymous mobile robots: formation
of geometric patterns. Siam Journal on Computing 28, 4, 1999, pp 1347–1363.

[28] Yamashita, M., and Kameda, T. Computing on anonymous networks, part I:
Characterizing the solvable cases. IEEE Transaction on Parallel and Distributed
Computing 7, 1 (1996), 69–89.

[29] Yamashita, M., and Kameda, T. Leader election problem on networks in which
processor identity numbers are not distinct. IEEE Transaction on Parallel and Dis-
tributed Systems 10, 9 (1999), 878–887.

[30] Yu, X., and Yung, M. Agent rendezvous: A dynamic symmetry-breaking
problem. In International Colloquium on Automata, Languages, and Programming
(ICALP ’96), LNCS 1099, , 1996, pp. 610-621.

22

