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Abstract The research areas of mobile robotic sensors lie in the intersection
of two major fields of investigations carried out by quite distinct communi-
ties of researchers: autonomous robots and mobile sensor networks. Robotic
sensors are micro-robots capable of locomotion and sensing. Like the sensors
in wireless sensor networks, they are myopic: their sensing range is limited.
Unlike the sensors in wireless sensor networks, robotic sensors are silent: they
have no direct communication capabilities. This means that synchronization,
interaction, and communication of information among the robotic sensors
can be achieved solely by means of their sensing capability, usually called
vision. In this Chapter, we review the results of the investigations on the
computability and complexity aspects of systems formed by these myopic
and silent mobile sensors.

1 Introduction

1.1 Distributed Computing and Mobile Entities

In distributed computing the research focus is on the computational and
complexity issues of systems composed of autonomous computational enti-
ties interacting with each other (e.g. to solve a problem, to perform a task).
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While traditionally the entities have been assumed to be static, recent ad-
vances in a variety of fields, ranging from robotics to artificial intelligence to
software engineering to networking, have motivated the distributed comput-
ing community to address the situation of mobile entities. Indeed recently
an increasing number of investigations are being carried out on the computa-
tional and complexity issues arising in systems of autonomous mobile entities
located in a spatial universe U . The entities have storage and processing ca-
pabilities, exhibit the same behavior (i.e., execute the same protocol), and
can move in U (their movement is constrained by the nature of U).

Depending on the nature of U , there are two basic settings in which au-
tonomous mobile entities are being investigated. The first setting, sometimes
called graph world or discrete universe, is when the universe is a simple graph;
this is for example the case of mobile agents in communication networks (e.g.,
[15, 26, 36]). The second setting, called sometimes continuous universe, is
when U is a region of the 2D (or 3D) space. This is for example the case
of robotic swarms, mobile sensor networks, mobile robotic sensors, etc. (e.g.,
[1, 13, 16, 21, 31, 34, 35, 38, 45, 47, 48, 56, 66, 75, 79, 81, 82, 83]). In both set-
tings, the research concern is on determining what tasks can be performed by
such entities, under what conditions, and at what cost. In particular, a cen-
tral question is to determine what minimal hypotheses allow a given problem
to be solved.

In the continuous setting two major research areas can be distinguished,
their difference resting on the types of assumptions made, carried out by
quite distinct communities of investigators:

• autonomous robots, an established and mature research field (which in-
cludes swarm robotics and robotic networks), investigated mainly by re-
searchers in robotics, control, artificial intelligence, and more recently by
algorithmic researchers;

• mobile sensor networks, a new and emerging research field whose inves-
tigations are carried out mostly as an extension of the more traditional
(static) sensor networks.

These two areas have overlapping boundaries, and their intersection is a re-
gion of surprising and interesting convergence of research interests. An im-
portant such region is the area of mobile robotic sensors, the topic of this
Chapter.

1.2 Robots, Sensors, and Mobility

The addition of motorial capabilities to a computational entity not only em-
powers the entity in non trivial ways, but it also, and more importantly, em-
powers the system employing such entities. This empowerment takes many
forms and displays different aspects. This is particularly evident in the case of
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wireless sensor networks. Indeed empowering the sensors with mobility allows
the network to perform tasks and solve problems which would be impossible
to do with static sensors. Indeed, mobile sensors have gained attention lately
as important tools for a wide range of applications and tasks, such as search
and rescue, exploration and mapping, evaluation of civil infrastructure, mil-
itary operations.

The first proposals for the use of mobility in sensor networks have been
for exogenous solutions: mobile robots are introduced into the network of
static sensors to augment the capacities of the system or to simplify the
management of the network (e.g., to repair failed sensors, to redeploy sensors
so to improve overall coverage, to gather information from the robots, etc.),
and this research still continues (e.g., see [5, 6, 27, 54, 67, 84, 86]).

At the same time, a large number of investigators have suggested and
studied the use of endogenous mobility in sensor networks: mobile sen-
sor networks, in which the sensors have processing power, wireless com-
munication, and motion capabilities. The sensors operate in a totally dis-
tributed way, moving under their own control, and reacting to the inputs
received from the environment where they operate, thus creating computa-
tional systems capable of interacting with the physical environment (e.g., see
[11, 14, 44, 45, 46, 50, 57, 58, 61, 71, 82, 88]).

At this point, the research results start to merge with the rich existing
literature on autonomous robots, in particular with that of systems of micro-
robots and of robotic sensors, studied also from the control and the computing
point of view (e.g., [1, 7, 13, 18, 21, 28, 31, 34, 38, 56, 66, 76, 82, 83]). These
investigations differ greatly from each other depending on the assumptions
they make. Major differences exist depending on whether: the entities’ actions
are synchronized (e.g., [13, 47, 81, 83]) or no timing assumptions exist (e.g.,
[31, 35, 53]); the sensors have persistent memory (e.g., [13, 43, 83]) or are
oblivious (e.g., [35, 46, 79]); the sensors have the computational power of
Turing machines (e.g., [81, 83]) or are simple Finite State machines (e.g.,
[4, 16, 30, 47]); the visibility/communication range is limited (e.g., [31, 43,
38, 47, 79]) or extends to the entire region (e.g., [1, 10, 12, 35, 83]).

1.3 Mobile Robotic Sensors

The crucial difference between systems of robotic sensors and wireless sensor
networks is the following. In sensor networks, regardless of whether mobile or
static, the entities are endowed with both sensing and (wireless) communica-
tion capabilities. However, of these two capabilities, only the latter - wireless
communication - is used for synchronization, interaction, and communication
of information among the sensors and within the network.

On the contrary, robotic sensors are generally endowed solely with sensing
capability. In other words, they are silent: they have no direct communication
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capabilities. This means that synchronization, interaction, and communica-
tion of information among the sensors and within the network can be achieved
solely by means of their sensing capability, usually called vision. This char-
acteristic is indeed the same one assumed in most of the traditional research
on autonomous robots1.

The lack of direct means of communication has many computational draw-
backs; indeed, the fact that robotic sensors must rely solely on their sensing
capabilities for all their interactions is a severe limitations. It does how-
ever have one advantage, in the determination of an entity’s neighbours. In
fact, in systems of robotic sensors, the determination of one’s neighbours is
done by sensing capabilities (e.g., vision): any sensor in the sensing radius
is detected even if inactive, and thus no other mechanisms are needed. On
the other hand, in traditional wireless sensor networks, determination of the
neighbours is achieved by radio communication; since an inactive sensor does
not participate in any communication, the simple activity of determining
one’s neighbours, to be completed, requires the use of randomization or the
presence of sophisticated synchronization and scheduling mechanisms (e.g.,
[63, 69, 74]).

Another important difference with mobile sensor networks is that robotic
sensors, like most autonomous robots, are often equipped with a much larger
energy reserve, or have self-charging capability (e.g., on board PV or ability
to plug into the power grid to recharge their batteries). Hence energy is a
concern but not as crucial as in mobile sensor networks.

s

s′

Fig. 1 Limited visibility: a sensor can only see sensors that are within its radius of visi-
bility.

The key feature that robotic sensors share with mobile sensor networks is
that they are myopic: their sensing range is limited (see Figure 1). Precisely
this feature constitutes the key difference between robotic sensors and tra-

1 The notable exceptions are the robotic networks studied in the control community that
assume and use direct communication, e.g. [7, 65].



Computing by Mobile Robotic Sensors 5

ditional models of autonomous robots and micro-robots. In fact, algorithmic
robotic research usually assume unlimited visibility: the entities are capable
of determining the location of all other regardless of their position in the
region, e.g. [1, 9, 12, 19, 35, 52, 53, 70, 77, 81, 83, 91]. Additional differences
between robotic sensors and traditional models of autonomous robots and
micro-robots robotic sensors are that usually the robots are more powerful
(both memory-wise and computationally) than sensors, and typically there
is no requirement for the robots to reach a state of static equilibrium (e.g., in
most cases the swarm just converges towards a desired formation or pattern).

Summarizing, robotic sensors are

1. mobile, like mobile sensor networks and autonomous robots;
2. silent, like traditional autonomous robots;
3. myopic, like sensor networks.

The purpose of this Chapter is to present and discuss the research efforts
on systems of robotic sensors. It is organized as follows. In Section 2 we will
present in details the computational model and introduce the formalism and
terminology. We will then review the research results on computing by mobile
robotic sensors. The investigations have been focusing on three fundamental
problems: Self Deployment, Pattern Formation, and Gathering; they will be
discussed in Sections 3, 4 and 5, respectively.

2 Modeling Mobile Robotic Sensors

2.1 Capabilities

The system is composed of a set S = {s1, . . . , sn} of n mobile robotic sensors
operating in a spatial universe U ⊆ R2.

A mobile robotic sensor (or simply sensor) s ∈ S is modeled as a computa-
tional unit: it has its own local memory and it is capable of performing local
computations.

A sensor is endowed with sensorial capabilities and it can perceive the
spatial environment U and the sensors in it, within a fixed distance v > 0,
called visibility radius. Each sensor has its own local coordinate system: a
unit of length, an origin, and a Cartesian coordinate system defined by the
directions of two coordinate axes, identified as the x and y axis, together with
their orientations, identified as the positive and negative sides of the axes.
However, the local coordinate systems of the sensors might not be consistent
with each other.

Each sensor is endowed with motorial capabilities; it can turn and move
in any direction. A move may stop before the sensor reaches its destination,
e.g. because of limits to its motion energy; however, it is assumed that the
distance traveled in a move by s is not infinitesimally small (unless it brings
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the sensor to its destination): there exists a constant δs > 0, such that, if the
destination is closer than δs, s will reach it; otherwise, s will move towards
it by at least δs. Note that, without this assumption, it would be impossible
for s to ever reach its destination, following a classical Zenonian argument.
In the following, we shall use δ = mins δs.

The sensors are silent: they have no means of direct communication of
information to other sensors. Thus, any communication occurs in a totally
implicit manner, by observing the other sensors’ positions. Let s(t) denote
the position of sensor s at time t; when no ambiguity arises, we shall omit
the temporal indication.

The sensors are autonomous (i.e., without a central control) and identical
(i.e., they execute the same protocol). They might be anonymous (i.e., a
priori indistinguishable by their appearance and without identifiers that can
be used during the computation).

2.2 Behavior

At any point in time, a sensor is either active or inactive. When active, a
sensor s performs the following three operations, each in a different state:

1. (State Locate) It observes the spatial environment U and the sensors in
it, within its visibility radius v > 0. As a result, it determines, in its
own coordinate system, a snaphshot of the positions of the sensors in its
circle of visibility at that time. The circle of visibility of s at time t is the
surrounding circle of s in its most recent Locate. The Locate state can be
assumed, without loss of generality, to be istantaneous.2

2. (State Compute) It performs a local computation, according to an algo-
rithm (the same for all sensors) that takes in input the result of its previous
Locate, and returns a destination point. Hence, the algorithm, the same for
all sensors, will specify which operations a sensor must perform whenever
it is active.

3. (State Move) It moves towards the computed destination point; if the
destination point is the current location, the sensor stays still. A move
may stop before the sensor reaches its destination, e.g. because of limits
to the sensor’s motion energy.

When inactive a sensor is in Sleep state:

4. (State Sleep) It is idle and does not perform any operation.

Summarizing, the sensors operate in a continuous Locate-Compute-Move-
Sleep life cycle.

2 Any time spent to activate its sensors (before the snapshot is taken) and to process the
information retrieved with the snapshot, will be charged to the Sleep and to the Compute

state, respectively.
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2.3 Synchronization

Depending on the degree of synchronization among the life cycles of differ-
ent sensors, three sub-models are traditionally identified: synchronous, semi-
synchronous, and asynchronous.

In the synchronous model (Sync), the cycles of all sensors are fully syn-
chronized: the sensors become active all at the same time and each operation
of the life cycle is performed by all sensors simultaneously. Alternatively,
there is a global clock tick reaching all sensors simultaneously, and a sensor’s
cycle is an instantaneous event that starts at a clock tick and ends by the
next. As a consequence, no sensor will ever be observed while moving. This
model is used e.g. in [38, 21, 83].

In the semi-synchronous model (Ssync), there is a global clock tick reach-
ing all sensors simultaneously, and a sensor’s activities are an instantaneous
event that starts at a clock tick and ends by the next. Hence, also in this
model, no sensor will ever be observed while moving. However, at each clock
tick, some sensors might not become active. The unpredictability of which
sensors become active at a clock tick is restricted by the fact that at ev-
ery clock tick at least one sensor is active, and every sensor becomes ac-
tive infinitely often. This model, sometimes called Atom, is used e.g. in
[1, 9, 12, 13, 19, 21, 83].

In the asynchronous model (Async), there is no global clock and the sen-
sors do not have a common notion of time. Furthermore, the duration of
each activity (or inactivity) is finite but unpredictable. As a result, sensors
can be seen while moving, and computations can be made based on obso-
lete observations. For example (see Figure 2), sensor s in transit towards its
destination, is seen by r; however, s is not aware of r’s existence and, if it
starts the next cycle before r starts moving, s will continue to be unaware of
r. This (realistic but more difficult) model, sometimes called Corda, is used
e.g. in [9, 35, 33, 34, 52, 53, 70].

r

s

Fig. 2 When s starts moving (the left end of the arrow), r and s do not see each other.
While s is moving, r enter state Locate and sees s; however, s is still unaware of r. After
s passes the visibility circle of r, it is still unaware of r.
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2.4 Memory

In addition to its programs, each sensor has a local working memory, or
workspace, used for computations and to store different amount of infor-
mation (e.g., regarding the location of its neighbours) obtained during the
cycles. Two submodels have been identified, depending on whether or not
this workspace is persistent.

In the oblivious model, all the information contained in the workspace is
cleared at the end of each cycle. In other words, the sensors have no memory
of past actions and computations, and the computation is based solely on
what determined in the current cycle. The importance of obliviousness comes
from its link to self-stabilization and fault-tolerance. This model, sometimes
improperly called memoryless, is used e.g. in [9, 12, 13, 19, 35, 34, 53].

In the persistent memory model, all the information contained in the
workspace is legacy: unless explicitly erased by the sensor, it will persist
thoughout the sensor’s cycles. This model is commonly used for both wire-
less sensor networks and micro-robots.

An additional important parameter is the size of the persistent workspace.
Noticeable are the two extreme cases. One extreme is the unbounded memory
case, where no information is ever erased; hence sensors can remember all
past computations and actions (e.g., see [81, 83]). The other extreme is when
the size of the workspace is constant; in this case, the sensors are just Finite-
State Machines (e.g., [4, 16, 47]) .

3 Self Deployment

3.1 Introduction

The first important problem faced with sensor systems is the effective deploy-
ment of the sensors within the spatial universe U, assumed to be finite. The
deployment must usually satisfy some optimization criteria with respect to
the space U (e.g., uniformity, maximum coverage). In case of static sensors,
they are usually deployed by external means, either carefully (e.g., manually
installed) or randomly (e.g., dropped by an airplane); in the latter case, the
distribution of the sensors may not satisfy the desired optimization criteria.

If the sensing entities are mobile, as in the case of mobile sensor networks,
vehicular networks, and robotic sensor networks, they are potentially capable
to position themselves in appropriate locations without the help of any central
coordination or external control, a task called Self Deployment.

In this section we consider some of the problems and issues we must face
to achieve such a rather complex task; indeed, designing localized algorithms
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for efficient and effective deployment of the mobile entities is a challenging
research issue.

Some of the initial proposals on the deployment of mobile sensors were
still based on centralized approaches, e.g. employing a powerful cluster head
to collect the initial location of the mobile sensors and determine their target
location [92]. The current research efforts are on the development of local
protocols that allow the sensors to move from an initial random configuration
to a uniform one acting in a purely local, decentralized, distributed fashion.
An essential requirement is clearly that the sensors will reach a state of static
equilibrium, that is the self-deployment will be completed within finite time.
How this task can be efficiently accomplished continues to be the subject of
extensive research in the mobile sensor networks community (e.g., see [43,
44, 45, 46, 58, 62, 72, 87, 88]). Similar questions have been posed in terms
of scattering or coverage in cooperative mobile robotics and swarm robotics
(e.g., [8, 47]), as well as in terms of the formation problem for those entities
(e.g. [9, 13, 19, 35, 33, 53, 81, 83, 85]).

The existing self-deployment protocols differ greatly from each other de-
pending on the assumptions they make; for example some require the sensors
to be deployed one at a time [16, 45, 47], while others require prespecified
destinations for the sensors [62]. However, sensors are usually dispersed in
the environment all together, more or less at the same time, with no a-priori
knowledge of where their final location should be. Actually, unlike the case
of ad-hoc networks, for small sensors localization is very hard, so it can not
be generally assumed that the sensors know where they are.

The self-deployment problem has been investigated with the goal to cover
the area so to satisfy some optimization criteria, typically to maximize the
coverage (e.g., see [43, 44, 45, 46, 58, 62, 72, 87, 88]). For example, in [88]
the problem is to maximize the sensor coverage of the target area minimizing
the time needed to cover the area, while in [72] the additional constraint is a
minimum requirement on the degree of all nodes. Typically, distributed self-
deployment protocols first discover the existence of coverage holes (the area
not covered by any sensor) in the target area based on the sensing service
required by the application. After discovering a coverage hole, the protocols
calculate the target positions of these sensors, that is the positions where
they should move.

All of these solutions to the self-deployment problem require direct com-
munication between sensors, hence can not be employed by robotic sensors.
It is also interesting to observe that, even with communication, none of the
existing self-deployment proposals is capable of providing a complete uni-
form coverage. This impossibility is hardly surprising since those protocols
are generic, that is they must work in any environment regardles of its topol-
ogy or structure. This fact opens a series of interesting questions, first of all
whether it is possible for the sensors to self-deploy achieving uniform cover-
age in specific environments (e.g., corridors, grids, rims). The next important
question is on the capabilities and a priori knowledge needed by the sensors
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to achieve this goal; in other words, how “weak” the sensors can be and still
be able to uniformly self-deploy. In particular, the focus of this section is on
conditions for self-deployment of mobile robotic sensors so to obtain uniform
coverage of specific spaces U.

3.2 Uniform Deployment On Linear Borders

The first spatial universe U considered is possibly the simplest: a linear border
or corridor, along which the sensors are required to place themselves evenly.

A corridor can be viewed as a line L, on which the sensors are initially
located at random distinct points. From an external point of view, the sensors
can be ordered based on their position on the line from left to right; without
loss of generality, let s1 be the leftmost sensor and let si be to the right of
si−1, 2 ≤ i ≤ n. This order is clearly unknown to the sensors.

The goal is for the sensors to self deploy evenly in the segment of the
line delimited by the positions of the leftmost and rightmost sensors s1 and
sn (that, alternatively, could represent some perimeter marks rather than
sensors).

Assuming that each sensor si is capable of viewing its neighbours si−1 and
si+1 if they exist, the self deployment algorithm, by Cohen and Peleg [13], is
remarkably simple:

Protocol Corridor Spread (for sensor si)

• If no other sensor is seen on the left or on the right, then
do nothing;

• Otherwise, move to point x = 1
2 (si+1 + si−1).

With sensors that are anonymous, oblivious, and with no common coor-
dinate system, the above protocol converges to a uniform deployment in the
Ssync (and thus also in the Sync) model.

Let us show the idea of the convergence proof in the Sync model. Note
that, since the sensors operate in one-dimension, any coordinate system will
give the same resulting destination. Therefore, in order to analyze the proto-
col, an external global coordinate system is used, of which the sensors have
clearly no knowledge. In the following, the coordinate system where s0(t) = 0
and sn−1(t) = 1 is chosen as the global coordinate system. The goal is to
spread the sensors uniformly; that is, at the end, sensor si should occupy
position i

n−1 . Let µi[t] be the shift of the si’s location at time t from its final
position. According to the protocol, the position of sensor si changes from
si(t) to

si(t+ 1) = 1
2 (si−1(t) + si+1(t))
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for 2 ≤ i ≤ n− 1, while sensors s1 and sn never move. Therefore, the shifts
changes with time as

µi[t+ 1] = 1
2 (µi+1[t] + µi−1[t])

Consider the following progress measure

ψ[t] = Σi=n
i=1 µ2[t]

Then

Lemma 1. ψ[t] is a decreasing function of t unless the robots are already
equally spread.

Finally,

Theorem 1. In the Sync model, every O(n2) cycles, ψ[t] is at least halved;
furthermore, the sensors converge to equidistant positions.

The idea of the convergence prove in Ssync is similar; in fact, first a non-
decreasing quantity is defined, and its monotonicity proven. Then, by relating
this quantity to the non-constant terms of the cosine series, it is proven that
it decreases by a constant factor on every round, proving convergence.

Theorem 2. In the Ssync model, anonymous, oblivious sensors on a line L
with no common coordinate system converge to uniform deployment.

3.3 Uniform Deployment Along Circular Borders

Consider next an important class of spatial regions, that of circular borders
or circular rims. Deployment in these spaces occurs for example when the
sensors have to surround a dangerous area and can only move along its outer
perimeter. This situation is modeled by describing the space U as a ring
C. Starting from an initial arbitrary placement on the ring, the sensors must
within finite time position themselves along the ring at (approximately) equal
distance; see Figure 3.

The self-deployment problem along a ring is related to the well studied
problem in the field of swarm robotics of uniform circle formation [9, 19, 22,
23, 53, 77, 85]. In this problem (discussed in more details in Section 4.2), the
robots are required to uniformly place themselves on the circumference of a
circle not determined in advance (i.e., the entities do not know the location of
the circle to form). The main difference between the uniform circle formation
and the self-deployment problem in the ring is that in uniform circle formation
the entities can freely move on the two dimensional plane in which they have
to form a ring; in contrast, our sensors can move only on the ring, which is
the entire environment.
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Fig. 3 Starting from an initial arbitrary placement (a), the sensors must move to a uniform
cover of the ring (b).

Let S = {s1, . . . , sn} be the n sensors initially arbitrarily placed on the
ring C (see Figure 3). Initially no two sensors are placed at the same location;
the algorithms should avoid collisions, i.e. having two sensors simultaneously
occupying the same point; without loss of generality, let si be the sensor
immediately before si+1 in the clockwise direction, with sn preceding s1. Let
di(t) be the distance between sensor si and sensor si+1 at time t; when no
ambiguity arises, we will omit the time and simply indicate the distance as
di. Let d = L/n, where L denotes the length of the ring C. The sensors have
reached an exact self-deployment at time t if di(t) = d for all 1 ≤ i ≤ n.
Given ǫ > 0, the sensors have reached an ǫ-approximate self-deployment at
time t if d− ǫ ≤ di(t) ≤ d+ ǫ for all 1 ≤ i ≤ n.

An algorithm A correctly solves the exact (resp. ǫ-approximate) self-
deployment problem if, in any execution of A by the sensors in C, regardless
of their initial position in C, there exists a time t′ such that the sensors have
reached an exact (resp. ǫ-approximate) self-deployment at time t′ and are in
a quiescent state.

3.3.1 Impossibility Without Orientation

There is a strong negative result for the Ssync (and thus for the Async)
model. In fact, exact self-deployment is actually impossible if the sensors do
not share a common orientation of the ring; notice that this is much less a
requirement than having global coordinates or sharing a common coordinate
system. This impossibility result, by Focchini, Prencipe and Santoro [31],
holds even if the sensors have unlimited memory of the past computations
and actions (i.e., unlimited persistent memory, see Section 2.4), and their
visibility radius is unlimited.

Theorem 3. Let the sensors be on a ring C. In absence of common orien-
tation of C, there is no deterministic exact self-deployment algorithm even
if the sensors have unbounded persistent memory, their visibility radius in
unlimited. and the scheduling is Ssync.
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Fig. 4 (a) An example of starting configuration for the proof of Theorem 3. The black
sensors are in S1, while the white ones in S2. (b) Theorem 3: the adversary moves only
sensors in S1.

To see why this is the case, consider the following setting. Let n be even;
partition the sensors in two sets, S1 = {s1, . . . , sn/2} and S2 = S\ S1, and
place the sensors of S1 and S2 on the vertices of two regular (n/2)-gons on
Circle, rotated of an angle α < 360◦/n. Furthermore, all sensors have their
local coordinate axes rotated so that they all have the same view of the world
(refer to Figure 4.a for an example). In other words, the sensors in S1 share
the same orientation, while those in S2 share the opposite orientation of C.
Denote a configuration with such properties by Y (α). A key property of Y (α)
is the following.

Property 1. Let the system be in a configuration Y (α) at time step ti.

1. If activating only the sensors in S1, no exact self-deployment on C is
reached at time step ti+1, then also activating only the ones in S2 no
exact self-deployment on C would be reached at time step ti+1; further-
more, in either case the system would be in a configuration Y (α′) for some
α′ < 360◦/n

2. If activating only the sensors in S1 an exact self-deployment on C is reached
at time step ti+1, then also activating only the sensors in S2 an exact self-
deployment on C would be reached at time step ti+1.

3. If activating only the sensors in S1 an exact self-deployment on C is reached
at time step ti+1, then activating both sets no exact self-deployment on C
would be reached at time step ti+1, and the system would be in a config-
uration Y (α′) for some α′ < 360◦/n.

Using this property is easy to design an Adversary that will force any self-
deployment A to never succeed in solving the problem: the Adversary will
choose Y (α) as the initial configuration, and behave as follows:

(Step a) If activating only the sensors in S1 no exact self-deployment on C is
reached: then activate all sensors in S1, while all sensors in S2 are inactive;
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Fig. 5 Theorem 3. (a) If only the sensors in S1 are activated at t, all sensors would be
uniformly placed at time t+1, with β +γ = 45◦. (b) If only the sensors in S2 are activated
at t, all sensors would be uniformly placed at time t + 1, with β + γ = 45◦. (c) Therefore,
if all sensors would be activated at t, they would not be in an exact self-deployment on C,
having γ + β + δ 6= 2π/n = 45◦. In all figures, the squares represent the destination of the
active sensors.

otherwise, activate all sensors. Go to (b).

(Step b) If activating only the sensors in S2 no exact self-deployment on C is
reached: then activate all sensors in S2, while all sensors in S1 are inactive;
otherwise, activate all sensors. Goto (a).

By Property 1, if the configuration at time ti ≥ t0 is Y (α) for some
α < 360◦/n, then regardless of whether the Adversary executes step (a)
or (b), the resulting configuration is Y (α′) for some α′ < 360◦/n, and hence
no exact self-deployment on C is reached at time step ti+1. Hence, there
exists an infinite execution of A in which no exact self-deployment will ever
be reached. The alternating between steps (a) and (b) by the Adversary
ensures the feasibility of this execution: every sensor will in fact become
active infinitely often.

Recently, the impossibility without orientation has been announced to hold
also for the stronger Sync model [29].
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Since the impossibility result of Theorem 3 holds in absence of common
orientation of the ring, the focus will now be on oriented rings; two cases will
be considered, depending on whether or not the desired final distance d is
known to the sensors.

3.3.2 Exact Deployment

Faced with this strong negative result of Theorem 3, the interesting question
becomes under what restrictions the self-deployment problem can be solved
with an exact algorithm. Since the impossibility result holds in absence of
common orientation of the ring, consider the problem in oriented rings.

In an oriented ring, if the desired final distance d is known or computable
(e.g., both the number or sensors and the length of the ring are known),
exact self-deployment is indeed possible. This positive result holds even if the
sensors are oblivious and asynchronous, provided their visibility radius is at
least 2d.

The algorithm by Focchini, Prencipe and Santoro [31] proving this result
is very simple:

Protocol Ring - Known Interdistance (for sensor si)

• Locate clockwise at distance 2d. Let di be the distance
to si+1 (if visible, else di = 2d).

• If di ≤ d do not move.
• If di > d move clockwise and place yourself at distance
d from si+1 (if visible, else at distance d from current
location).

Like in other cases (e.g., [12, 13]), the difficulty is not in the protocol but
in the proof of its correctness. Using this protocol, and observing that the
algorithm operates in Async, we have

Theorem 4. Let the sensors share a common orientation of the ring C, and
be able to locate to distance 2d. If they know d, then exact self-deployment is
possible even if the sensors are oblivious and the scheduling is Async.

3.3.3 ǫ-Approximate Deployment

In an oriented ring, if the sensors do not know the desired final distance
d, then ǫ-approximate self-deployment is still possible for any ǫ > 0; also
in this case, the protocol works even for the weakest sensors: oblivious and
asynchronous, provided their visibility radius is greater than 2d.

Also in this case the proof is provided by a simple protocol [31]: sensors
asynchronously and independently locate in both directions at distance v,
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then they position themselves in the middle between the closest observed
sensor (if any).

Protocol Ring - Unknown Interdistance (for sensor si)

• Locate around at distance v. Let di be the distance to next sensor,
di−1 the distance to the previous (if no sensor is visible clockwise,
di = v, analogously for counterclockwise).

• If di ≤ di−1 do not move.

• If di > di−1 move to di+di−1

2 − di−1 clockwise.

This algorithm converges to a uniform deployment. The crucial property
is that

Property 2. For any ǫ > 0 there exists a time t, such that ∀t′ > t, ∀i: |di(t
′)−

d| ≤ ǫ.

Hence, by adding to the protocol a test on whether both di and di−1 are
within ǫ from d (in which case no move is performed by si), it follows that
ǫ-approximate self-deployment is possible even if the scheduling is Async, if
the sensors share a common orientation of the ring C and are able to locate
to distance v > 2d.

The strategy used by the protocol described here is go-to-half. Interestingly
it was shown by Dijkstra ([25] pp. 34–35) that in an unoriented ring go-
to-half does not converge, and hence can not be used for approximate self-
deployment in an unoriented ring. However, a different strategy, go-to-quater,
does converge in an unoriented ring [19, 77], and can thus be used for ǫ-
approximate self-deployment in an unoriented ring with unknown d, yielding
the following more powerful result:

Theorem 5. Let the sensors in the ring C be able to locate to distance v >
2d. Then ǫ-approximate self-deployment is possible even if the sensors are
oblivious, the scheduling is Async, and the ring is not oriented.

3.4 Uniform Deployment in Rectangular Spaces

3.4.1 Problem Definition and Notation

The next class of spaces U considered is that of rectangular spaces, that
is spaces delimited by a rectangular border B. The sensors are capable of
detecting any part of B within their visibility radius. Assume there is a local
sense of orientation: each sensor has a consistent notion of “up-down” and
“left-right” (e.g., as provided by a compass), where the “up-down” axis is
parallel to the longest side of the border.

A rectangular space of size L ×W can be logically subdivided into equal
sized square of size d2 by considering a (l + 1) × (w + 1) rectangular grid G,
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Fig. 6 A random initial configuration, and a uniform deployment.

where l = L/d and w = W/d and the distance between neighbouring nodes
is d, and the visibility radius is v ≥ 2d. The uniform self-deployment problem
in rectangular spaces thus consists of reaching an equilibrium configuration
where the sensors are evenly placed among the grid points (see Fig 6).

Let us indicate by (0, 0) the left-most lower corner of G and by (i, j) the
node belonging to column i and row j. For simplicity, assume n = (k +
1)2, that G is a square grid with l = w = k · d, and that the sensors are
initially arbitrarilly located at distinct grid points. In this case, an equilibrium
configuration consists of nodes (i · d, j · d), with i, j ∈ [0, k] hosting exactly
one sensor each (see Fig 6). The goal is to design a collision-free protocol for
positioning the sensors at those grid points. Note that the (i, j) coordinates
of the grid nodes are global and thus not known to the sensors, which use only
relative coordinates. The common orientation will be modeled by assuming
that the edges of the grid are consistently labeled Up, Down, Left and Right,
and edge labels are visible to the sensors.

3.4.2 Uniform Deployment Protocol

The uniform deployment algorithm scatter is a set of local rules for the
robots designed by Barriére et al. [4]. Each sensor has a state variable be-
longing to a set of states {−1, 0, 1, 2, 3, 4} (initialized to −1) which determines
the set of rules to be followed, which solely depend on the robot’s current
state, its position, and the positions of the robots within its visibility radius.

Upon startup, the execution of the algorithm is logically divided in three
phases: Cleaning, Collecting, and Deploying. Waking up for the first time
(in state −1), each sensor determines what phase to start, depending on its
relative position. If a sensor is at the left upper corner it directly enters state
3 (i.e., it starts Deploying). If a robot is on the left or bottom border, it enters
state 0 (i.e., it starts Cleaning). Otherwise, it enters state 1 (i.e., it starts
Collecting).

• Cleaning: robots (if any) on the left and bottom borders move leaving
those nodes empty. (it is performed only by robots in state 0).
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• Collecting: robots move towards the left-upper corner of the grid (it is
performed by robots in states 1 and 2).

• Deploying: robots follow a distinguished path on the grid, called snake-
path, eventually occupying their final positions (it is performed by robots
in states 3 and 4).

Note that, due to asynchrony, at any point in time robots could be per-
forming actions belonging to different phases. The asynchronous execution of
the various phases requires special care in order to insure that robots continue
to progress in their phase avoiding collisions and the creation of deadlocks.
Cleaning. The Cleaning phase is performed only by robots in state 0 and
the goal is to have the robots move from the left and bottom borders toward
the interior of the grid. This is done by having robots on the left border move
down (if the down node is empty) and robots on the bottom border move up
(if the top node is empty) or right (if the top node is occupied but the right
node is empty). When moving up from the bottom border, a sensor enters
state 1 and starts the Collecting phase.
Collecting. The Collecting phase is performed by robots in states 1 or 2 and
the goal of the robots is to arrive to the left-upper corner. To avoid conflicts
with robots possibly already in the Deploying phase, during the Collecting
phase a sensor should not consider robots that are on the left border. The
general rule for a sensor in the Collecting phase is to go up towards the
upper-left corner (i.e., highest priority is given to movements up). However,
depending on the neighboring conditions, to guarantee progress and avoid
deadlocks, robots might have to move also left or right as described below.

Whenever a sensor (in state 1 or 2) has an empty upper node it goes up
and stays in (or enters) state 1. If a sensor in state 1 is on the right neighbor
of the upper left corner and the upper left corner is empty, it goes left and
enters state 3 (Deploying phase). If a sensor in state 1 has all the visible nodes
in its same column above itself occupied, and the left and bottom-left nodes
are empty, it goes left and stays in state 1. Finally, a sensor (in state 1 or
2) goes right and stays in (or enters) state 2 if within its visibility radius all
the following conditions are satisfied: all the nodes not below nor right are
occupied, the lower right node is empty, all the nodes in its same row on the
right are empty, at least one of the the above and right nodes is empty, none
of the robots in the above and right nodes at distance strictly less than 2d
can go up. In all other cases a sensor stays in (or enters) state 1.

The movements of robots in the Collecting phase allow them to accumulate
in a convenient shape around the upper left corner.
Deploying. This phase is executed by robots in state 3 and 4. A sensor starts
this phase when it arrives to the upper left corner and enters state 3. In this
phase the robots move on the snake-path (see Figure 7) and eventually stop
in their final positions, that is the nodes (i · d, j · d), with 0 ≤ i, j ≤ k, called
final nodes.

Let k be odd; the snake-path is the path n0, n1, . . . n(K−1)d, that starts at
n0 = (0, n), ends at n(K−1)d = (d, n) and passes through every final node as
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shown in Figure 7. By a slight modification of this path and, consequently,
of the algorithm, the snake-path can be defined for k even.

Starting point

Fig. 7 The snake-path for N = 212, K = 36,k = 5 d = 4.

Because of asynchrony, complications may arise. For example, if a sensor
in the Deploying phase enters in contact with robots that are still in the
Collecting phase, the sensor has to wait before continuing on the snake-path.
Special care has to be taken and it can be shown that deadlock sare avoided
and progress is guaranteed.

A sensor s enters state 3 when it reaches the left-upper corner. In this
state, s follows the left border moving only if it sees above another sensor
at distance lower than d and if the lower node is empty. If the sensor is in
the left upper corner it only moves if the right node is occupied, insuring
in this way that there is at least one node in the Collecting phase. When
the last node enters the Deploying phase it will stay at the upper left corner
and eventually the other nodes will position themselves at distance d from
each other. When in state 3, a sensor s is following the left border of the
grid. It enters state 4 when it reaches the bottom-left corner. A sensor in
state 4 follows the snake-path, from the left-bottom corner. A sensor s in the
Deploying phase might see in the rows above some robots still performing
the Collecting phase (the presence of these robots can be detected because of
their “wrong” positions). In this case s does not move. If s does not see any
sensor out of the snake-path but there are no robots in the d − 1 preceding
nodes or the next node is occupied, then it waits. Otherwise s moves forward
on the snake-path. When the last node enters the Deploying phase it will stay
at the upper left corner and eventually all other nodes will stop at their final
position.

The correctness of the algorithm is proven by showing that no deadlocks
can occur, and that progress is guaranteed. Notice that, although described
for a square grid, the protocol works in any rectangular grid, provided the di-
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rection of the largest dimension is known. Since protocol scatter terminates
within finite time with a uniform scattering, we have:

Theorem 6. The uniform deployment in rectangular spaces G can be solved
without any collisions by sensors each having a constant amount of memory
and a discrete visibility radius 2d in the Async model.

3.5 Incremental Deployment and Filling

3.5.1 Incremental Deployment as Filling

The task of uniform self deployment is usually performed after the sensors
have entered the space U. This is because typically the sensors enter the
space, all at once or in groups, without attention to the desired final place-
ment criterion3, in a process called injection. Indeed, this is true in many
situations especially in the case of very simple sensors. However the separa-
tion between injection and self deployment does not always occur. In fact,
there are applications where the sensing entities are injected into the system
one at a time, from one or few entry points; this is particularly true in the
case of more complex (and/or delicate) sensorial entities (e.g., to avoid dam-
age). In these situations, instead of having two separate processes, injection
and self-deployment, the focus is on achieving the final goal directly, in a
single process, called incremental deployment.

Howard, Mataric, and Sukhatme [45] proposed an incremental deployment
algorithm for mobile robotic networks. Under the assumptions of global co-
ordination, location awareness, and nodal visibility, that algorithm deploys
robots one-at-a-time from a single entry point (door), and maintains a line of
sight relationship between robots. They assume every sensor is equipped with
an ideal localization sensor; however, localization is very hard, especially for
small sensors, so it can not be generally assumed that the sensors know where
they are. A very important and interesting mechanism they use is a logical
orthogonal grid, superimposed on the space, that divides the space into cells,
transforming the continuous space into an orthogonal cellular space. Let us
stress that orthogonal spaces are interesting of their own, because they can be
used to model indoor and urban environment; furthermore the discretization
of a continuous space into a cellular space is a rather common process used
in a variety of contexts.

This approach has the additional advantage of reducing the problem of
incremental deployment of an unknown arbitrary space U to the problem of
filling an unknown cellular space. In the Filling problem, the mobile entities
have to occupy all the cells of an unknown cellular space, entering through one
or more designated entry points called doors; within finite time, the entities

3 For example, in some applications, sensors are dropped from the air.
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must reach a quiescent state, with exactly one entity in each cell. If two
sensors are in the same cell at the same time then there is a collision. The
algorithm executed by the sensors should avoid collisions (e.g., to prevent
damage to the sensor or its sensory equipment).

The reduction to the filling problem is obtained by superimposing on the
space U a logical orthogonal grid of the appropriate size; this will divide
the space into cells (boundary cells might not be all within U). Notice that
the resulting cellular space M is orthogonal, i.e. polygonal with sides either
parallel or perpendicular to one another (e.g., see Figure 8). The space can
be completed to become a bicolored cellular rectangle4 A, where each cell,
called pixel is colored white if it is part of M, black otherwise (see Figure 8).

At this point, to achieve an incremental deployment in the unknown arbi-
trary space U it is sufficient to perform a filling of the unknown orthogonal
space M; that is, filling the white pixels of A.

The problem of filling unknown orthogonal space M has been investigated
by Hsiang et al. [47] for mobile sensors, and by Das, Mesa and Santoro [16]
for robotic networks.

Fig. 8 A orthogonal space M (white cells) to be filled by the sensors and its enclosing
cellular rectangle A.

In the study of Hsiang et al. [47], the sensors enter M from one or more
doors. Their results are based on an ingenious follow-the-leader technique
where each sensor communicates with the one following it and instructions
to move are communicated from predecessor to successor. The sensors are
anonymous but they need some persistent memory to remember whether or
not is a leader and the direction of its movement. Since the algorithm uses
onlyO(1) bits of working memory in total, computationally the sensors can be
just finite-state machines. In addition to requiring explicit communication,
the solution of [47] assumes that the sensors operate in the Sync model,
which allows perfect coordination and synchronization between the sensors.

4 A is the smallest cellular rectangle enclosing M
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3.5.2 Filling by Robotic Sensors

For robotic sensors (where no direct communication exists), the filling prob-
lem of orthogonal spaces (and thus the incremental deployment problem)
have been investigated by Das, Mesa, Santoro [16]. First of all they proved
that the sensors must have some persistent memory of the past, for solving
the filling problem successfully.

Theorem 7. The filling problem can not be solved by oblivious sensors, even
if they have unbounded visibility. This result holds even if there is only a
single door and the model is Ssync.

Thus some persistent memory is required. Indeed with just a constant
amount of persistent memory, filling can be done in the case of a single door.
This result is obtained in [16] with visibility radius of one in the Ssync model

Let the bicolored cellular rectangle A containing M, be formed of pixels
pi,j , 1 ≤ i ≤ l, 1 ≤ j ≤ c; let discrete visibility radius of 1 mean that
the sensor sees all eight neighboring cells (i.e., v ≥

√
2q, where q is the cell

length). To understand the protocol, the structure of M will be represented
by a graph G = (V,E) defined as follow: First partition each column into
segments of consecutive white pixels ended by a black pixel in both extremes
and numbered from top to down. Each segment is a node of G. Denote by
vk

j ∈ V the node corresponding to the k − th segment of column j, and by

dk
j the bottom-most pixel of the segment vk

j . There is an edge (vk
j , v

k′

j′ ) ∈ E

if and only if: (a) j = j′ + 1 or j = j′ − 1 and (b) there is a pixel pi,j′ ∈ vk′

j′

neighbor to dk
j or there is a pixel pi,j ∈ vk

j neighbor to dk′

j′ .
It is easy to verify that the graph G so obtained is an acyclic connected

graph (i.e. a tree). If there is an edge (vk
j , v

k′

j′ ) such that the bottom-most

pixel dk
j = pi,j of vk

j is a neighbor of the pixel pi,j′ ∈, vk′

j′ , we say that pi,j is

the entry point from vk
j to vk′

j′ and pi,j′ is the entry point from vk′

j′ to vk
j .

The idea of the algorithm (Filling - Single Door) is to move the robots
along the paths in G, starting from the node containing the door. Since the
sensor can see the eight neighboring pixels, it can determine when it has
reached an entry point. Let
block+(pi,j) ≡ (pi,j is empty ) ∧ ((pi−1,j is black) ∨ (pi−1,j+1 is black)))
and let
block−(pi,j) ≡ (pi,j is empty ) ∧ ((pi−1,j is black) ∨ (pi−1,j−1 is black))).
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Protocol Filling - Single Door

Meta-Rule: A sensor never backtracks.
Sensor s in pixel pi,j:

If ( pi+1,j is empty ) Then s moves to pi+1,j .
Else If ( pi−1,j is empty ) Then s moves to pi−1,j .
Else If ( ( block−(pi,j−1) ) ) Then s moves to pi,j−1.
Else If ( ( block−(pi,j+1) ) ) Then s moves to pi,j+1.
Else s does not move.

Since algorithm Single Door is collision free, it terminates in finite time,
and completely fills the space [16], we have the following

Theorem 8. The filling problem for any space orthogonal space M with a
single door, can be solved without any collisions by sensors each having a
constant amount of memory and a discrete visibility radius 1 in the Ssync

model.

In the case of multiple doors, there are other strong limitations: the sensors
must have a discrete visibility radius of at least two and they should not be
indistinguishable [16]. Thus, for the problem to be solvable at all, sensors
entering the space from different doors must be distinguishable, i.e., have
different colors, and each sensor must have discrete visibility radius of at least
two. Indeed, under this assumption, the problem can be solved. However, the
algorithm in this case is more complex that the one when there is only a
single door.

The idea of the algorithm, presented in [16], is as follows. Sensors coming
from different doors (i.e. sensors of different colors) follow distinct paths in G
and these paths do not intersect. In other words, the algorithm ensures that
the cells visited by sensors of color ci are occupied by sensors of the same
color (and never by sensors of any other color). To achieve this, a sensor
before moving to a pixel pi,j needs to determine if this pixel was visited by
sensors of another color; fortunately, this can be done. Hence

Theorem 9. The filling problem for any orthogonal space M with multiple
doors, can be solved without any collisions by sensors (with distinct color
for distinct doors) each having a constant amount of memory and a discrete
visibility radius 2 in the Ssync model.

4 Pattern Formation

The pattern formation problem is one of the most important coordination
problem for robotic systems. The geometric pattern to be formed is a set of
points (given by their Cartesian coordinates) in the plane, initially known
by the entities. Initially the entities are in arbitrary positions, with the only
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requirement that no two entities are in the same position, and that, of course,
the number of points prescribed in the pattern and the number of entities
are the same. The robots are said to form the pattern if, at the end of the
computation, the positions of the robots coincide, in everybody’s local view,
with the points of the pattern. Depending on the application, the formed pat-
tern may be translated, and/or rotated, and/or scaled, and/or flipped into its
mirror position with respect to the initial pattern. In particular, the pattern
formation problem is said to be scale-free if the formed pattern can be an
arbitrarily scaled version of the input pattern.

The pattern formation problem is practically relevant because, if the robots
can form a given pattern, they can agree on their respective roles in a sub-
sequent, coordinated action. For this reason, it has been extensively investi-
gated in the literature on autonomous robots (thus, without using commu-
nication); e.g., see [3, 9, 19, 20, 35, 51, 53, 81, 83, 85, 89]. It has also been
studied in systems using direct wireless communication (e.g., [37, 40, 56]).

The basic research questions are which patterns can be formed, and how
they can be formed. In this section, we review the existing results on pattern
formation by mobile robotic sensors, that is by mobile entities that are silent
and myopic. The spatial universe U is assumed to be the 2D space, and it
is assumed that initially the sensors are arbitrarily dispersed in U but the
visibility graph is connected.

4.1 Forming Scale-Free Patterns

Almost all protocols for pattern formation of silent autonomous robots as-
sume unlimited visibility; in particular, they use the fact that each sensor can
see all the other robots (e.g., [3, 9, 19, 20, 35, 51, 53, 81, 83, 85, 89, 90]).
Thus, these protocols can not be employed directly by robotic sensors, which
by definition have a limited sensing range.

However, those same algorithms can be effectively used if the formed pat-
tern can be an arbitrarily scaled version of the input pattern, i.e. for the
scale-free pattern formation problem. This can be achieved by the following
two-steps strategy:

Gather & Form

1. Every sensors gets within the visibility range of every other
sensor.

2. The sensors execute the relevant pattern formation protocol
that assumes unlimited visibility.

The first step of this strategy requires solving the problem called Near
Gathering [32]: starting from an initial arbitrary distribution in U, the sensors,
avoiding any collision, must within finite time reach a static equilibrium in
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which they are all mutually visible and on distinct locations; that is, there
exists a time t when all sensors are in a state of static equilibrium and, for
any two sensors s and r, 0 < |s(t)− r(t)| ≤ v. This problem is closely related
to the Rendezvous or Gathering problem that will be discussed in details in
Section 5.

Once the first step has been performed, then the appropriate unlimited-
visibility pattern formation protocol can be started. In particular, the algo-
rithms for arbitrary pattern formation (e.g., [35, 83, 90]) can be used by the
sensors to form any input pattern. There are some provisos. In particular,
to start the second step, a sensor must know that the execution of the first
step has been completed; that is, all sensors are within its visibility range.
However this implies that the number n of sensors must be known to the sen-
sors. Another important point is that global mutual visibility, once reached
in the first step, must be maintained throughout the execution of the second
step. This necessary condition might not be of trivial enforcement; for exam-
ple there are some pattern formation algorithms that require, during their
execution, some entities to move away from the others at a distance that
(because of the limited visibility range of the sensors) might bring them out
of the range of some other sensors.

In other words, the execution of the unlimited-visibility pattern forma-
tion protocol must be carefully planned, tailored to the requirements of the
pattern being formed, taking into accounts the movements of the sensors re-
quired by the algorithm: a non trivial task. To date, no generic protocol is
available for scale-free pattern formation by robotic sensors.

4.2 Circle Formation

A particular pattern extensively studied in literature is the circle: the sensors,
starting from arbitrary positions in the plane, have to arrange themselves in
a circle of a given diameter D. Observe that this pattern formation problem
is not scale-free, and thus requires the agreement of the robots on the same
unit distance.

If the sensors must be arranged at regular intervals on the boundary of a
circle the problem is also called uniform circle formation. This kind of for-
mation can be usefully deployed in surveillance tasks: the sensors are placed
on the border of the area (or around the target) to surveil.

One of the first discussion on circle formation by a group of mobile entities
was by Debest [17], who introduced it as an illustration of self-stabilizing
distributed algorithms. He discussed the problem, but did not provide an
algorithm.

The uniform circle formation problem was first studied by Sugihara and
Suzuki [81]. They presented an heuristic that allowed the sensors to form an
approximation of a circle having a given diameter D ≤ v; it works without
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requiring common coordinate systems, the sensors can be oblivious, and the
scheduling Async. For sensor s, let sf (t) and sc(t) denote the position of the
farthest and of the closest sensors at time t, respectively; and let ǫ > 0 be an
arbitrarily small predefined quantity. The protocol is rather simple:

Protocol Circle Convergence (for sensor s at time t)

1. If |sf (t) − s(t)| > 2D then move towards sf (t).
2. If |sf (t) − s(t)| < 2D − ǫ, then move away from sf (t).
3. If 2D − ǫ ≤ |sf (t) − s(t)| ≤ 2D, then move away from sc(t).

Experiments have shown that sometimes the sensors converge towards a
conguration similar to a Reuleaux triangle rather than a circle. Successively,
the protocol has been improved by Tanaka [85], that proposed a new solution
that produces a better approximation of the circle.

For the simpler Sync model, a protocol that allows oblivious sensors with-
out common coordinate system to converge towards a uniform placement on
a circle has been recently proposed by Lee et al as part of their investigation
on forming concentric circles [55].

There are many other protocols for uniform circle formation [9, 19, 20,
23, 22, 53, 77]. For instance, the problem has been studied in the Ssync

setting by Défago and Konagaya [19], with anonymous and oblivious sensors,
by presenting a solution that is a composition of two independent algorithms
whereby the sensors first deterministically form a circle, and then converge
to a situation in which all sensors are arranged uniformly on its boundary;
simulation results of these studies have been presented in [77]. The solution
in [19] is, however, computationally expensive: in fact, it involves the use of
Voronoi diagrams, necessary to avoid the very specic possibility in which at
least two robots share at some time the same position and also have total
agreement on the coordinate system. Based on this observation, in [9] it is
presented a new algorithm that avoids these expensive calculations; unfortu-
nately, their solution relies on the simplifying assumption that sensors must
not be located on the same radius, that radically changes the difficulty of the
problem. Katreniak in [53], employing anonymous and oblivious sensors with
no common coordinate system, handles to task of forming a biangular circle,
when the number of sensors is even: the sensors place themselves on the rim
of a circle, each pair of adjacent sensors on the rim of the circle form with its
center either an angle α or an angle β, and the angles alternate; the sensors
act under Async scheduling. When the number of sensors is odd, the sensors
achieve the uniform circle. A solution that does not work for any number of
robots has also been presented in [23], where the proposed oblivious algo-
rithm works for a prime number of sensors in the semi-synchronous model.
Dieudonné et al. [22] build upon the work of Katreniak [53], and extend it for
the case with an even number of sensors; the algorithm solves the problem in
nite time for any number n of sensors, except when n = 4, 6 and 8, under the
Ssync schedule. Also, here the sensors have the ability to reach exactly in
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one step their computed destination, and cannot stopping on the way. This
assumption was later dropped in [24]; however, the algorithm in [24] still does
not work for n = 4. Successively, Défago and Souissi presented in [20] an al-
gorithm by which sensors deterministically form a circle in a finite number
of steps, and then asymptotically converge toward a situation in which they
are positioned at regular intervals on the boundary of this circle, again un-
der the Ssync schedule. In contrast with the analogous two-parts solutions
previously presented in [19], here the two parts are combined in a single and
simpler algorithm. However, even if this solution works for any number of
sensors, it only converges to the uniform circle formation, in contrast with
the solution in [24].

There are two major problems with all these solutions [9, 19, 20, 23, 22,
53, 77]. The first problem is that these protocols assume unlimited visibility;
hence they can not be used directly by robotic sensors, by definition myopic.
This means that, first of all, robotic sensors can use these protocols only
if the sensors are all mutually visible (i.e., the visibility graph is complete)
and continue to be so throughout the execution of the protocol. The second
problem is that these protocols are for scale-free circle formation; however,
the problem we are facing has a fixed scale (given by the diameter D).

To overcome the first problem, the sensors can obtain an initial global mu-
tually visibility by first performing a Near Gathering [32], and then execute
the protocol (i.e., using the strategy Gather&Form discussed in Section
4.1); the difficulty of ensuring maintenance of global mutual visibility during
execution clearly depends on which of those protocols is being used. To over-
come the second problem, once a uniform circle formation has been obtained,
an additional step is needed to scale the circle to the required dimension; this
is not difficult provided v ≥ D.

FV

LV RV

Fig. 9 The vision model for the emergent approach to circle formation. The black circle
represents the robots; the dark area is the blind zone of the robot.

The problem of arranging robotic sensors in circular shapes has been stud-
ied by Miyamae, Ichikawa and Hara [68], considering robotic sensors whose
vision is not only limited (i.e., within the visibility range v) but also direc-
tional. In fact, the vision function of each sensor detects another sensor within
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distance v with the center of the sensor assumed to be the origin and the di-
rection of movement the reference angle (0◦); however the detection occurs
only within three areas: forward (FV), and its left (LV) and right (RV) sides;
the backward area is that not detecting a sensor (see Figure 9),

Furthermore, the sensors can only detect the presence of other sensors
within their visibility areas, and not the exact number of sensors in their
surrounding. In particular, each sensor can distinguish two scenarios for the
forward area: zero sensors (FV= 0), or ≥ 1 sensors (FV= 1); for the left area,
each sensor can distinguish three scenarios: zero sensors (LV= 00), one sensor
(LV= 01), or more than one sensor (RV= 10); symmetrically, three scenarios
can be detected for the right area as well. Based on these simple information,
each sensor acts as described in the following protocol.

Protocol Emergent Circle (for sensor si)

1. If FV= 0, LV= 01, and RV= 00, then turn left.
2. If FV= 0, LV= 00, and RV= 01, then turn right.
3. If FV= 0, LV= 01, and RV= 01, then turn to the last previous direc-

tion.
4. For the others scenarios, proceed straight.

The emergent behavior of the sensors following these simple rules has been
analyzed by computer simulations in [68]. The experimental results show that
the formation of the circle depends on the number of sensors and the front
and side view angles of local vision, demonstrating that the front view angle
must be between 15◦ and 75◦, while the side view angles between 60◦ and
120◦. Another interesting observation arising from the simulations is that the
circle formation rate decreases the larger the number of sensors is; that is, an
excessive number of sensors affects negatively the formation process.

5 Gathering

In systems of mobile entities, one of the most basic coordination and synchro-
nization task is that of gathering: the entities, placed in arbitrary positions in
U, must congregate at a single location (the choice of the location is not pre-
determined). This fundamental problem is also called rendezvous or homing.
If the entities are seen as points, the gathering problem is the one of having
all entities move to the same point, that is forming the special pattern point;
hence the problem is sometimes called point formation.

The gathering problem has been extensively investigated both experimen-
tally and theoretically in the unlimited visibility setting, that is assuming
that the entities are capable to sense (“see”) the entire space (e.g., see
[1, 10, 12, 18, 35, 49, 81, 83]).
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In general, and more realistically, sensors can sense only a surrounding
within a radius of bounded size (refer to the example depicted in Figure 1).
This setting, which is the one in which robotic sensors operate, is under-
standably more difficult; for example, a sensor might not even know the
total number of sensors nor where they are located if outside its radius of
visibility. Not surprisingly, not many algorithmic results are known (e.g.,
[2, 3, 34, 59, 60, 79]). They are reviewed in this section, according to the
scheduling model assumed: Async, Ssync, and Sync.

5.1 Asynchronous Gathering

The most difficult setting for the gathering problem is clearly the asyn-
chronous one, where little or no timing assumptions are made. In the lit-
erature, there are only few algorithms tackling asynchrony when gathering
robotic sensors [34, 60].

In the investigation of Lin, Morse and Anderson [60], a limited form of
asynchrony is considered where the time required by the Wait, Locate, and
Compute states is bounded by a globally predefined amount, while the time
spent in the Move state by sensor i is bounded by a locally predefined quantity
(i.e., not necessarily the same for each sensor). This form of asynchrony lies
in between the Async model and the Ssync model. The resulting solution
allows a set of non-oblivious sensors with limited visibility to converge towards
a single point.

The fully asynchronous model Async is considered only in the investiga-
tion of Flocchini et al [34]. They show that the availability of orientation5

allows a set of anonymous oblivious sensors with limited visibility to gather at
a single point in finite time. This result holds not only allowing each activity
and inactivity of the sensors to be totally unpredictable (but finite) in du-
ration, but also making their movement towards a destination unpredictable
(but not infinitesimally small) in length. In the rest of this subsection, we
look at this result in more details.

Let Right be the rightmost vertical axis where some sensor initially lie.
The idea of the algorithm is to make the sensors move towards Right , in such
a way that, after a finite number of steps, they will reach it and gather at
the bottommost position occupied by a sensor at that time.

Let s perform a Locate operation at time t; as a result, it has available its
circle of visibility Ct(s) with the positions of all the sensors in it at time t.
The algorithm describes the computation that s will now do with this input.
Different destination points will be computed depending on the positions of
the sensors in its circle of visibility; once the computation is completed, s

5 i.e., agreement on axes and directions (positive vs. negative) of a common coordinate
system, but not necessarily on the origin nor on the unit distance.
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Fig. 10 (a) Notation used in the Gathering Algorithm. (b) Horizontal move. (c) Diagonal
move.

starts moving towards its destination (but it may stop before the destination
is reached). Informally,

• If s sees sensors to its left or above on its vertical axis, it does not move.
• If s sees sensors only below on its vertical axis, it moves down towards the

nearest sensor.
• If s sees sensors only to its right, it moves horizontally towards the vertical

axis of the nearest sensor.
• If s sees sensors both below on its axis and on its right, it computes a

destination point and performs a diagonal move to the right and down, as
explained below.

To describe the diagonal movement in details we need to introduce some
notation (refer to Figure 10). Let AA′ be the vertical diameter of Ct(s) with
A′ the top and A the bottom end point; let Rs denote the topologically open
region (with respect to AA′) inside Ct(s) and to the right of s and let S = sA
and S′ = sA′, where both S′ and S are topologically open on the s side (i.e.,
s belongs neither to S′ nor to S). Let Ψ be the vertical axis of the sensor in
Rs, if any, nearest to s with respect to its projection on the horizontal axis.
We are now ready to describe the details of the diagonal movement routine:

Diagonal Movement(Ψ)

B := upper intersection between Ct(s) and Ψ ;
C := lower intersection between Ct(s) and Ψ ;
A := point on S at distance v from s;
2β = AŝB;
If β < 60◦ Then

(B,Ψ) := Rotate(s,B);
H := Diagonal Destination(Ψ,A,B);
Move(H).
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Fig. 11 Routine Rotate(): in (a), β < 60◦; in (b) the scenario after Rotate() has been
executed.

where Rotate() and Diagonal Destination() are as follows.

- Rotate(s,B) rotates the segment sB in such a way that β = 60◦ and
returns the new position of B and Ψ . This choice of angle ensures that the
destination point is not outside the circle. (see Figure 11).

- Diagonal Destination(Ψ,A,B) computes the destination of s in the fol-
lowing way: the direction of s’s movement is given by the perpendicular
to the segment AB; the destination of s is the point H on the intersection
of the direction of its movement and of the axis Ψ .

The correctness of the algorithm is proven by first showing that the sen-
sors which are initially visible will stay visible until the end of the computa-
tion, and then that the robots’ movement leads to non-infinitesimally-small
progress towards gathering thus concluding that all sensors will gather in a
point on Right in finite time. We then have:

Theorem 10. In the Async model a set of anonymous oblivious sensors in
R2, endowed with orientation, can gather at a single point in finite time.

Notice that the proposed algorithm does not assume that the sensors have
the capability of multiplicity detection (i.e., the ability to determine in the
sensing phase if more than one sensor is in a given location).

As mentioned, the above algorithm requires an agreement on the coor-
dinate system. The problem of creating such an agreement in Async has
been studied by Samiloglu, Gazi, and Bugra Koku, who have proposed sev-
eral strategies that experimentally have been observed to converge towards
a common orientation [78].

Probabilistic protocols for gathering in absence of agreement on the co-
ordinate systems have been proposed and experimental analyzed by Soysal,
Bahçeci, and Şahin [80].
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5.2 Semi Synchronous Gathering

In the Ssync model, the gathering problem has also been tackled by Ando et
al [2]. In contrast with the setting considered in Section 5.1, here the sensors
do not have any kind of common orientation. However, the compass has been
traded with the semi-synchronicity of the sensors. Moreover, with the solution
of [2], the robots only converge towards a gathering point.

Let P (t) = {s1(t), . . . , sn(t)} denote the set of the n sensors’ positions at
time t. Also, let Si(t) denote the set of sensors that are within distance v
from si at time t; that is, the set of sensors that are visible from si (note that
si ∈ Si(t)). SCi(t) denotes the smallest enclosing circle of the set {sj(t)|sj ∈
Si(t)} of the positions of the sensors in Si(t) at t; let ci(t) be the center of
SCi(t).

The algorithm is described below (refer also to Figure 12).

Semi-synch Gathering Algorithm

1. If Si(t) = {si}, then x = si(t).
2. ∀sj ∈ Si(t) \ {si},
2.1. dj = dist(si(t), sj(t)),

2.2. θj = ci(t)ŝi(t)sj(t),

2.3. lj = (dj/2) cos θj +
√

(v/2)2 − ((dj/2) sin θj)2,

3. LIMIT = minsj∈Si(t)\{si}{lj},
4. GOAL = dist(si(t), ci(t)),
5. MOV E = min{GOAL,LIMIT, σ},
6. x = point on [si(t)ci(t)] at distance MOV E from si(t).

Every time a sensor si becomes active, it moves toward ci(t), but only over
a certain distance MOV E. Specifically, if si does not see any sensor other
than itself, then si does not move at all. Otherwise, the algorithm chooses as
next position for si the point x on the segment si(t)ci(t) that is closest to
ci(t) and that satisfies the following conditions:

1. dist(si(t), x) ≤ σ. Note that this means that the sensors agree on an
arbitrary small constant σ > 0, a-priori known, and they use it to bound
the distance traveled by a sensor in one step.

2. For every sensor sj ∈ Si(t), x lies in the disk Dj whose center is the
midpoint mj of si(t) and sj(t), and whose radius is v/2. This condition
ensures that si and sj will still be visible after the movement of si (and
possibly of sj , see Figure 12.a).

The correctness proof is based on the following reasoning: First, two sen-
sors that are connected in the visibility graph at time t, will stay connected
at time t+ 1. In fact, if si(t) and sj(t) are connected, then sj(t) ∈ Si(t) and
si(t) ∈ Sj(t) and then, by definition of LIMIT , both si(t+ 1) and sj(t+ 1)
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Fig. 12 The algorithm for the gathering problem in Ssync.

lie inside the disc with center mj (Figure 12.a). Second, let CH(t) be the
convex hull of the sensors at time t, for any t ≥ t0, CH(t + 1) ⊆ CH(t)
leading to the proof that CH(t) converges to a point. Then we have:

Theorem 11. In the Ssync model, a set of anonymous oblivious sensors in
R

2 can converge to a gathering point.

The problem has also been examined in the same model Ssync when there
are are inaccuracies or faults. In particular, Gordon, Wagner and Bruck-
stein have investigated the case when the sensors cannot accurately measure
the distance from their neighbors, and hence cannot rely on this informa-
tion [42, 41]. The gathering problem has also been examined with respect to
the availability of compasses. As discussed in Section 5.1, the presence of reli-
able compasses allows the sensors to gather in finite time even in the Async

model (Theorem 10) (and thus also in the Ssync model). The problem of
gathering when compasses are unstable for some arbitrary long periods has
been studied by Soussi, Défago and Yamashita [79]. They proved that, in
the Ssync model, the sensors will gather in finite time, provided that the
compasses stabilize eventually.

5.3 Fully Synchronous Gathering

There have been several investigations on the gathering problem with sensors
operating in the fully synchronous scenario, i.e., in model Sync [39, 59, 64,
91]. The starting point of these investigations is the convergence protocol of
Ando et al [2], described in Section 5.2, operating in the Ssync and thus in
the Sync models. Like [2], these protocols work for oblivious sensors with no
common coordinate system, and they all converge towards a unique point;
unlike [2], they are only for the Sync model.
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Lin, Morse, and Anderson [59] propose and analyse a family of conver-
gence algorithms for gathering in the plane based on [2]. In [64] variants of
the general strategy described in [59] are developed: Mart́ınez considers the
presence of noisy measurements of neighbors [64].

In all the above investigations on gathering, as well as those in the Async

and Ssync models discussed before, the universe U in which the gathering
was taking place was (implicitly) assumed to be either the entire plane or a
convex region of the plane.

The case when the sensors operate in a non-convex region (see Figure 13),
of which they have no map, has been considered only by Ganguli, Cortés, and
Bullo in [39]. In such a space, two sensors s and s′ are said to be mutually
visible at time t if not only their distance is at most v but also the segment
connecting their positions at time t is completely contained in U;. for instance,
sensors s and s′ in Figure 13 are within distance v, but they are not mutually
visible. The approach used to solve the problem is that of computing a set
of constraints that the sensors have to follow when moving so that (a) the
mutual visibility graph stays connected during the movements, and (b) the
distances between sensor strictly decrease at each time step.

s′
s

Fig. 13 An example of non-convex environment for the gathering problem in [39]. The
edges between sensors represent the edges of the visibility graph.

The first set of constraints is derived from those by Ando et al [2] discussed
in section 5.2, and guarantees that condition (a) is met; in particular, it
imposes that if two sensors si and sj are mutually visible at time t, they stay
connected at time t+1: let pi = si(t) and pj = sj(t) be the positions of sensors
si and sj at time t, respectively, then si and sj are allowed to move inside
the ball B of radius v

2 centered in the mid-point of pi and pj (see Figure 12).
Clearly, since the sensors operate in a non-convex environment, the sensors
are limited to move inside any convex area contained in the intersection
between B and U: in [39] the Constraint Set Generator Algorithm is given, to
allow the computation of such a convex area by any pair of mutually visible
sensors.
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The overall idea of the gathering algorithm, called the Perimeter Mini-
mizing Algorithm, can be summarized as follows: at each time step t, each
sensor computes all convex areas resulting from executing the Constraint Set
Generator Algorithm for all its neighbors in the v-range visibility graph at
t; the area where it is allowed to move in order to verify condition (a) is
therefore the intersection of all these areas. The sensor moves now towards
the circumcenter of its allowed moving zone, i.e. the center of the smallest
circle enclosing this area. It can be proven that this choice satisfies condition
(b) above.

Theorem 12. In the Sync model, a set of anonymous oblivious sensors in
operating in a non-convex environment can converge to a gathering point.

The behaviour of this protocol has been analyzed experimentally in [39]
also when (i) the sensors operate asynchronously, or (ii) the sensors can in-
troduce distance and direction errors in both sensing and moving, or (iii) the
sensors are modeled as disks; the results give an indication of the robustness
of the protocol with respect to those three factors.

5.4 Coalescence

An interesting problem related to the gathering is Coalescence: arbitrarily
dispersed (and possibly isolated) mobile sensors must independently search
for their fellow sensors with the goal of being all within a given distance.
Note that if that distance is not greather than v, this is precisely the Near
Gathering problem whose goal is to form a single connected visibility graph.

The coalescence problem has been investigated by Poduri and Sukhatme
in [73]. They consider sensors performing an independent random search of
the other sensors according to the following set of rules.

Coalescence

1. An isolated sensor

a. uniformly chooses a direction of movement θ in [0, 2π).
b. moves following the chosen direction with a constant speed for a

constant distance.

2. When two sensors “meet” (i.e., they are within distance v)
they form a single cluster: they stay connected to each other and
move together following the same (random) path.

3. When two clusters meet they coalesce to form a single cluster.

Given this set of rules, considering a fully synchronous scenario (i.e., the
Sync model), the main question addressed in [73] is how long will it take
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the sensors to coalesce into a single connected visibility graph. Clearly the
spread of the clusters plays an important role: in fact, if the sensors in each
cluster remain spread out, the disconnected sensors have higher probability
of being discovered. That is, here the focus is on connectivity rather than on
colocation. They show analytically that coalescence time has an exponential
distribution which is function of the number of sensors, spread, communica-
tion range, and size of the domain. Also, as the number of sensors increases,
coalescence time decreases as O( 1√

n
) and Ω( 1

n logn). Simulation experiments

support the analytical results, suggesting that the lower bounds derived an-
alytically for coalescence time is tight.

6 Conclusions and Open Problems

Several research questions are still open. With respect to gathering, the out-
standing open problem is whether it is possible to gather when the robotic
sensors are asynchronous, oblivious and without common orientation.

For self-deployment, the foremost open problem is the determination of
whether knowledge of d is indeed necessary for exact self-deployment in an
oriented ring. Should this be the case, the research goal becomes to deter-
mine which is the “weakest” additional assumption (e.g., a priori knowledge,
capability) that would make exact self-deployment possible. A more general
and challenging open problem is to find additional sensors’ capabilities that
would enable the existence of an asynchronous exact self-deployment protocol
in unoriented rings.

The impact that sensorial errors and inaccuracies have on the correctness
of the algorithms should be studied in detail. New algorithms are needed for
different assumptions on the visibility power of the sensors; for instance, the
accuracy of the sensors’ ability to detect the other sensors’ positions might
decrease with the distance. Another important concern is clearly the one of
the presence of possible faulty sensors. The fault-tolerant issues have been
recently addressed in [1, 52, 79], but only in the unlimited visibility setting.

Finally, an open and important research direction is to identify meaningful
efficiency parameters and study the computational complexity of the prob-
lem. In fact, in all existing investigations, the complexity of the solutions has
never been an issue; indeed, there is an absence of cost measures.

Slightly faulty snapshots, obstacles that limit the visibility and that mov-
ing sensors must avoid or push aside, sensors that appear and disappear from
the scene, as well as precise cost measures, clearly suggest that the algorith-
mic nature of distributed coordination of autonomous, mobile robotic sensors
is far from been completed and further investigations are clearly needed.
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[22] Y. Dieudonné, O. Labbani-Igbida, and F. Petit. Circle formation of
weak mobile robots. ACM Transactions on Autonomous and Adaptive
Systems, 3(4), 2008.
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