
International Journal of Foundations of Computer Science
c© World Scientific Publishing Company

UNIFORM SCATTERING OF AUTONOMOUS MOBILE ROBOTS
IN A GRID

LALI BARRIÈRE

Universitat Politècnica de Catalunya∗

PAOLA FLOCCHINI

University of Ottawa†

EDUARDO MESA-BARRAMEDA

Universidad de la Habana ‡

NICOLA SANTORO

Carleton University§

Received (received date)
Revised (revised date)

Communicated by Editor’s name

ABSTRACT

We consider the uniform scattering problem for a set of autonomous mobile robots

deployed in a grid network: starting from an arbitrary placement in the grid, using
purely localized computations, the robots must move so to reach in finite time a state

of static equilibrium in which they cover uniformly the grid. The theoretical quest is on

determining the minimal capabilities needed by the robots to solve the problem.
We prove that uniform scattering is indeed possible even for very weak robots. The proof

is constructive. We present a provably correct protocol for uniform self-deployment in a

grid. The protocol is fully localized, collision-free, and it makes minimal assumptions; in
particular: (1) it does not require any direct or explicit communication between robots;

(2) it makes no assumption on robots synchronization or timing, hence the robots can be

fully asynchronous in all their actions; (3) it requires only a limited visibility range; (4)
it uses at each robot only a constant size memory, hence computationally the robots can

be simple Finite-State Machines; (5) it does not need a global localization system but
only orientation in the grid (e.g., a compass); (6) it does not require identifiers, hence
the robots can be anonymous and totally identical.

∗Departament de Matemàtica Aplicada IV, Barcelona, Spain. lali@ma4.upc.edu
†SITE, Ottawa, Canada. flocchin@site.uottawa.ca
‡Facultad de Matemática y Computación, La Habana, Cuba. eduardomesa@matcom.uh.cu
§School of Computer Science, Ottawa, Canada. santoro@scs.carleton.ca

1

1. Introduction

Consider a set of autonomous computational entities, called robots or agents,
located in a grid network. A robot is capable of limited sensing and computational
activities, and it can move in the grid from a node to a neighbouring node. The
initial positions of the robots in the grid is arbitrary; the goal is to reach a state of
static equilibrium in which they are uniformly scattered in the grid. This problem,
called uniform scattering (or covering, or self-deployment), occurs in practice, e.g.
when robots are randomly deployed in a region but the requirement is for the
region to be covered uniformly, so to maximize coverage. A scattering or self-
deployment algorithm, the same for all robots, will specify which operations a robot
must perform whenever it is active to achieve this goal. An essential requirement is
clearly that the robots will reach a state of static equilibrium, that is the scattering
will be completed within finite time.

How uniform scattering can be efficiently accomplished in a region is the subject
of extensive research in several fields. In cooperative mobile robotics and swarm
robotics, this question has been posed under the terms scattering, coverage, and as
a special case of formation (e.g. [2, 3, 5, 11, 13, 17, 18]). Similar questions have
been posed in terms of self-deployment in mobile sensor networks and in networks
of robotic sensors (e.g., [7, 8, 9, 10, 15, 16]).

The existing protocols differ greatly from each other depending on the assump-
tions they make. The first and foremost difference is on the nature of the environ-
ment, depending on whether the environment is a subset of two-dimensional plane,
a setting usually called continuous (e.g., [5, 14, 17, 18]), or it is a network or a
graph, a setting usually called discrete or graph world (e.g., [1, 9, 11]). Other major
differences exist depending on whether: the robots’ actions are synchronized (e.g.,
[2, 11, 17, 18]) or no timing assumptions exist (e.g., [4, 5, 13]); the robots have
persistent memory (e.g., [2, 7, 18]) or are oblivious (e.g., [5, 10]); the robots have
the computational power of Turing machines (e.g., [12, 17, 18]) or are simple Finite
State machines (e.g., [1, 11]); the visibility/communication range is limited (e.g.,
[4, 7, 6, 11]) or extends to the entire region (e.g., [5]); exact or approximate uniform
covering is reached within finite time (e.g., [4, 5, 11]) or the protocol converges
without ever terminating (e.g., [2, 3]); the protocol is generic, i.e., it operates in
any space/network (e.g., [5, 12, 18]) or only in specific for classes of regions/graphs
(e.g., [2, 3, 6]); etc.

The robots we consider here are autonomous (i.e., without a central control),
anonymous (i.e., identical), asynchronous (i.e., their actions take a finite but unpre-
dictable amount of time), randomly dispersed in the environment, without a global
localization system, with limited sensing range (called visibility radius), with no
communication capabilities, and constant size memory.

Under these conditions, there is no generic protocol capable of a uniform cover-
age. This fact is hardly surprising considering both the weakness of the robots and
the requirement that a generic protocol must work in any environment regardless
of its topology or structure. This fact opens the natural question of whether it
is possible for these weak robots to self-deploy achieving uniform coverage in spe-

2

Figure 1: A random initial configuration, and the uniform scattering configuration.

cific environments (e.g., corridors, grids, rims). A solution algorithm has recently
been developed for the line (e.g., a rectilinear corridor) [2], and several have been
designed for the ring (e.g., the border of a convex region) [3, 4, 13].

We are interested in the uniform scattering of these weak robots in a grid:
starting from an initial random placement on the grid, the robots must position
themselves in the grid at equal distance, within finite time (see Figure 1). The
existing investigations on uniform covering of a grid by weak robots [1, 11] assume
that the robots enter the grid one at a time from fixed locations. However, nothing
is known, to date, on whether or not the problem is solvable when the robots are,
initially, arbitrarily dispersed in the grid.

In this paper we prove that indeed uniform coverage by very weak robots is
possible in a square grid starting from any arbitrary initial configuration and with-
out any collisions. The proof is constructive: we present a collision-free protocol
for uniform scattering in a grid and prove its correctness. The protocol is fully
localized and decentralized, and it makes minimal assumptions; in particular: (1) it
does not require any direct or explicit communication between robots; (2) it makes
no assumption on robots synchronization or timing, hence the robots can be fully
asynchronous in all their actions; (3) it requires only a limited visibility range; (4)
it uses at each robot only a constant persistent memory, hence computationally the
robots can be simple Finite-State Machines; (5) it does not need a global localiza-
tion system but only orientation in the grid (e.g., a compass); (6) it does not require
identifiers, hence the robots can be anonymous and totally identical.

2. Model

The system is composed of a set S of K = (k + 1)2 identical computational
entities, called robots, dispersed in a a square grid G of N = (n+1)× (n+1) nodes,
where n = k · d, d ≥ 2, and k ≥ 2.

The robots in S are autonomous, asynchronous, anonymous computational units
with sensory and locomotion capabilities. Each robot functions according to an
algorithm (the same for all robots) preprogrammed into it, and can move from a

3

node to any neighbouring node in the grid. They have a local sense of orientation
(i.e., each robot has a consistent notion of “up-down” and “left-right”, e.g., as
provided by a compass) but no access to any global localization system, so in general
they do not know their own position in the grid. The common orientation will be
modeled by assuming that the edges of the grid are consistently labeled Up, Down,
Left and Right, and edge labels are visible to the robots. We will indicate by (0, 0)
the left-most lower corner of G and by (i, j) the node belonging to column i and
row j.

The sensory devices on the robot allow it to have a vision of its immediate
surrounding; we assume the robots to have restricted vision of radius 2d around it;
i.e., a robot sees all nodes at distance (in the Manhattan or city block metric) at
most 2d from it and the links between them. Even if two robots see each-other,
they do not have any explicit means of communicating with each-other.

Each robot performs the following sequence of operations: Look: the robot
obtains a snapshot of its surroundings within its visibility radius 2d, to see which
nodes are empty and which are occupied and on which links robots are moving;
Compute: based on the obtained snapshot and the rules of the algorithm, the robot
chooses as its next destination either one of the neighboring nodes or the node where
it resides; Move: the robot moves to the computed destination node. The sequence
Look-Compute-Move constitutes the unit cycle, and each robot reiterates this cycle
endlessly.

The robots are fully asynchronous; that is, between successive operations, the
robot can be idle for a finite but unpredictable amount of time. While Look is by
definition instantaneous, Compute and Move may take an unpredictable (but finite)
amount of time. Nevertheless, without any loss of generality, it is possible to assume
that also these two operation are instantaneous. This is trivially true in the case
of Compute (e.g., by attributing its duration to idle time after the operation); in
the case of Move, every protocol can be easily modified by adding rules to ensure
atomicity of the operation (e.g., the current cycle will be ended if the snapshot
shows some robots on the edges). Hence, in the following, we will assume that all
operations are instantaneous.

The uniform scattering (or self-deployment) problem consists of starting from
a random initial placement of the robots in G and to reach an equilibrium config-
uration where the robots cover the grid evenly. Since n = kd such an equilibrium
configuration consists of nodes (i ·d, j ·d), with i, j ∈ [0, k] hosting exactly one robot
each (see Fig 1).

In the description of the algorithm for robot s we use the following notation:
`t(s) denotes the location of s at time t (i.e., it is a pair (i, j) ∈ [0, n]2), and (x, y)+t
denotes coordinates relative to s at time t (i.e. (x, y)+t = `t(s) + (x, y)). The
algorithm will use only relative coordinates because the robots are not aware of
their global coordinates; a robot, in fact, can only understand whether it is located
inside the grid, on a corner or on a border. Note that, due to orientation it can
also distinguish the four borders and corners, and due to visibility it can “see” a
border or a corner if at distance smaller than 2d− 1 from it: in particular, if it sees

4

a border it can also understand its global coordinates.
The visibility set of s at time t is the set of the nodes of the grid that are visible

by s at time t; that is Vt(s) = {`t(s) + (x, y) : |x|+ |y| ≤ 2d} ∩ [0, n]× [0, n].
Let V ∗

t (s) = {`t(s)+(x, y) : |x|+ |y| ≤ 2d, x > −2d}∩ [1, n]× [0, n] indicate the
visibility set Vt(s) of s excluding any node that is, or might be, on the left border
of the grid (we will need such a set for a phase of the algorithm). Notice that if
robot s does not “see” the border, the node `(s) + (−2d, 0), which it perceives as
(−2d, 0)+, might belong to the border, so the need to exclude it as well.

In the following, when no ambiguity arises, we will omit the subscript t.

3. Uniform Scattering Protocol

The uniform scattering algorithm scatter is a set of local rules for the robots.
Each robot has a state variable (initialized to −1) which determines the set of
rules to be followed, which solely depend on its current state, its position, and the
positions of the robots within its visibility radius. Recall that if 0 ≤ δ < 2d, a robot
is able to determine whether it is at a distance δ from any of the borders of the
grid.

Upon startup, the execution of the algorithm is logically divided in three phases.

• Cleaning: robots (if any) on the left and bottom borders move leaving those
nodes empty (it is performed only by robots in state 0).

• Collecting: robots move towards the left-upper corner of the grid (it is per-
formed by robots in states 1 and 2).

• Deploying: robots follow a distinguished path on the grid, called snake-path,
eventually occupying their final positions (it is performed by robots in states
3 and 4. We refer to the first robot to enter this phase the head of the snake;
however, such a robot does not need to be aware of being the head.

Waking up for the first time (in state −1), each robot executes the following set
of rules:

Robot s in state −1 (waking up for the first time):
LOOK V (s)∗

• If s is at left or bottom border, but not on upper corner (i.e., `(s) = (0, j),
with j < n, or at `(s) = (i, 0), with i > 0): s enters state 0 (i.e., it
performs Cleaning).

• If s is not in the left nor in the bottom border (i.e., `(s) = (i, j), with
i, j ≥ 1): s enters state 1 (i.e., it performs Collecting).

• If s is at left upper corner: (i.e., `(s) = (0, n)): s enters state 3 (i.e., it
starts Deploying).

Note that, due to asynchrony, at any point in time robots could be performing
actions belonging to different phases. In particular, all robots that wake up for the
first time on the left or bottom borders, enter the Cleaning phase; robots that are
already inside the grid the first time they wake up enter the Collecting phase; if a

5

Wait

Wait
Wait Wait

Figure 2: Rules of the Cleaning phase.

robot starts the algorithm in the upper left corner, it enters directly the Deploying
phase. The asynchronous execution of the various phases requires special care in
order to insure that robots continue to progress in their phase avoiding collisions
and the creation of deadlocks.

3.1. Algorithm scatter: Cleaning

The Cleaning phase is performed only by robots in state 0. The goal is to have
the robots move from the left and bottom borders. If moving from the bottom, a
robot enters state 1 and starts the Collecting phase. The rules are described below
(see also Figure 2).

Robot s in state 0:
LOOK V (s)∗

• If s is at left border but not on the corners (i.e., `(s) = (0, j), with
0 < j < n):

• If its lower node ((0,−1)+) is empty: s goes down.
• Otherwise, s waits.

• If s is at left bottom corner (i.e., `(s) = (0, 0)).

• If its right node ((1, 0)+) is empty: s goes right.
• Otherwise, s waits.

• If s is at bottom border but not on the left corner (i.e., `(s) = (j, 0), with
0 < j ≤ n).

• If the upper node ((0, 1)+) is empty, s goes up, enters state 1 (i.e.,
starts Collecting).

• If the upper node ((0, 1)+) is occupied and the right node ((1, 0)+)
is empty, s goes right .

• Otherwise, s waits.

6

3.2. Algorithm scatter: Collecting

The Collecting phase is performed by robots in states 1 or 2. The goal of the
robots is to arrive to the left-upper corner, i.e. node (0, n). To avoid conflicts with
robots possibly already in the Deploying phase, during the Collecting phase a robot
should not consider robots that are on the left border; i.e., it limits its observation
to V ∗(s). With this aim, robots act according to the following rulesa (see also
Figure 3).

Robot s in state 1:
LOOK V ∗(s)
- If s is on the right neighbor of the upper left corner (i.e. `(s) = (1, n)):

• If the upper left corner ((0, n)) is empty, s goes left and enters state 3 (i.e.,
starts the Deploying phase).

• Otherwise, s waits and stays in state 1.

- Otherwise (i.e., `(s) = (i, j), i, j > 0; `(s) 6= (1, n)):

• If the upper node ((0, 1)+) is empty, s goes up and stays in state 1.

• If all the above nodes in its same column (i.e., (0, y)+, with 1 ≤ y ≤ 2d),
are occupied and the left and bottom-left nodes ((−1, 0)+ and (−1,−1)+) are
empty, s goes left and stays in state 1.a.

• If within V (s)∗ all the following conditions are satisfied, then s goes right and
enters state 2.

• All the nodes not below nor right (i.e., (x, y)+, with x ≤ 0 and y ≥ 0), are
occupied.

• If the lower right node (i.e., (1,−1)+) is empty.
• All the nodes in its same row on the right (i.e., (x, 0)+, with x > 0), are

empty.
• At least one of the the above and right nodes (i.e., (x, y)+, with x > 0 and

y > 0), is empty.
• None of the robots in the above and right nodes at distance strictly less

than 2d (i.e., (x, y)+, with x > 0, y > 0 and x + y < 2d), can go up.

• Otherwise, s waits and stay in state 1.
aNote that a robot in state 1 never moves to the left border unless it is at node (1, n)

As we will show in Section 4, this set of rules allows the robots to be located in
a monotone portion of the grid. These rules are shown in Figure 3.

aNote that if s is in state 1 then it can not be on the left nor bottom border

7

2d

None of the robots can go up
Exists an empty node

Figure 3: Rules for state 1 of the Collecting phase.

Robot s in state 2:
LOOK V ∗(s)
- In all situationsa (i.e., `(s) = (i, j), i, j > 0):

• If the upper node ((0, 1)+) is empty, s goes up and enters again state 1.

• If within V (s)∗ all the following conditions are satisfied, then s goes right
(staying in state 2).

• All the nodes above and the ones not to the right (i.e., (x, y)+, with
x ≤ 0 and y > 0), are occupied.

• The lower right node (i.e., (1,−1)+) is empty.
• All the nodes in the same row on the right (i.e., (x, 0)+, with x > 0),

are empty.
• At least one among the nodes above and the ones to the right (i.e.,

(x, y)+, with x > 0 and y > 0), is empty.
• None of the robots in the above and right nodes at distance strictly

less than 2d (i.e., (x, y)+, with x > 0, y > 0 and x+ y < 2d), can go
up.

• Otherwise, s enters state 1.
aNotice that if s is in state 2 then it can not be on the left nor bottom border.

Notice that state 2 is dedicated to robots going right, which is a non-prioritary
movement. As we will see, these movements allow the set of robots to adopt a shape
in the grid that facilitates avoiding deadlocks. These rules are shown in Figure 4.

3.3. Algorithm scatter: Deploying

This phase is executed by robots in state 3 and 4. A robot starts this phase
when it arrives to node (0, n) and enters state 3. In this phase the robots move on
the snake-path (see Figure 5) and eventually stop in their final positions, that is
the nodes (i · d, j · d), with 0 ≤ i, j ≤ k, called final nodes.

Let k be odd; the snake-path is the path n0, n1, . . . n(K−1)d, that starts at n0 =
(0, n), ends at n(K−1)d = (d, n) and passes through every final node as shown in
Figure 5. We will denote the nodes in the snake-path as ni·d, for the i-th final node,
and ni·d+j , 1 ≤ j < d, for the j-th node in the path between ni·d and n(i+1)d. By a

8

2d

None of the robots can go up
Exists an empty node

Figure 4: Rules for state 2 of the Collecting phase.

slight modification of this path and, consequently, of the algorithm, the snake-path
can be defined for k even.

Starting point

Figure 5: The snake-path for N = 212, K = 36,k = 5 d = 4.

Because of asynchrony, complications may arise. For example, if a robot in the
Deploying phase enters in contact with robots that are still in the Collecting phase,
the robot has to wait before continuing on the snake-path. Special care has to be
taken to avoid deadlocks and guarantee progress.

Rules for state 3. A robot s enters state 3 when it reaches the left-upper corner,
i.e. node (0, n). In this state, s follows the left border moving only if it sees above
another robot at distance lower than d and if the lower node is empty. If the robot
is in the left upper corner it only moves if the right node is occupied, insuring in
this way that there is at least one node in the Collecting phase. When the last node
enters the Deploying phase it will stay at the upper left corner and eventually the
other nodes will position themselves at distance d from each other. When in state

9

3, a robot s is following the left border of the grid, i.e., its location can be indicated
by `(s) = ni, for 0 ≤ i < kd. It enters state 4 when it reaches the bottom-left
corner. See Figure 6 for an illustration of the rules.

Robot s in state 3:
LOOK V (s)

• If s is at upper left corner (i.e., `(s) = n0 = (0, n)):

• If the right node ((1, n)) is occupied and the lower node is empty
then s moves down.

• Otherwise s waits.

• If s is at left border but not on the corners (i.e., `(s) = nj , for 0 < j < kd):

• If the next node on the snake-path (i.e., nj+1) is occupied then s
waits.

• If all the d − 1 prior nodes on the snake-path (i.e., nodes from
nj−(d−1) to nj−1)a are empty, then s waits.

• Otherwise, s goes down. If s reaches node (0, 0), it enters state 4.

aIf j < (d− 1) robot s only sees the path from n0 to nj−1

Go

Wait

Wait

Wait

Go

A
B D

C

Figure 6: Rules for states 3 and 4. Gray nodes are final nodes; black nodes are hosting a robot.
Robots in A are in state 3; robots in B are in state 4 and only look at the snake-path to decide
whether to go on or wait; robots located in C and D are in state 4 and can continue only if they
are alone in the marked areas.

Rules for state 4. A robot s in this state is following the snake-path, from the
left-bottom corner. That is, its location is `(s) = ni, for kd ≤ i ≤ (K − 1)d.

A robot s in the Deploying phase might see in the rows above some robots
still performing the Collecting phase (the presence of these robots can be detected
because of their “wrong” positions). In this case s waits. If s does not see any robot

10

out of the snake-path but there are no robots in the d − 1 preceding nodes or the
next node is occupied, then it waits. Otherwise s moves forward on the snake-path.
When the last node enters the Deploying phase it will stay at the upper left corner
and eventually all other nodes will stop at their final position.

Robot s in state 4: LOOK V (s)

• In all situations (i.e., `(s) = nj , for kd ≤ j ≤ (K − 1)d):

• If all the d−1 prior nodes in the snake-path (i.e., from node nj−(d−1)

to nj−1) are empty, then s waits.

• If the next node in the snake-path (nj+1) is occupied then s waits.

• If s is not on the two last row of the snake-path(i.e., `(s) = nj , for
kd ≤ j ≤ (K − 2k − 1)d):

• If s detects a robot z not in the snake-path, in the next d + 1 rows
above and at most d− 1 columns farther, then s waits (for example,
robots in C in Figure 6 apply this rule).

• If s is in one of the last kd−d+1 nodes of the snake-path (i.e., `(s) = nj ,
for (K − k)d ≤ j < (K − 1)d):

• If s detects a robot z at left in the d − 1 rows below (i.e, at least
one of the nodes (−i,−j)+, with 1 ≤ i, j ≤ d− 1 is occupied), then
s waits (for example, robots in D in Figure 6 apply this rule).

• Otherwise, s goes forward on the snake-path.

4. Correctness

In this Section we show the correctness of algorithm scatter: we prove that
both collisions between robots and deadlocks are avoided, and also that any execu-
tion of the algorithm eventually ends in a uniform scattering configuration.

First we start with two observations.
Note that, according to the rules for state 4, a robot s in state 4, which is not

on the last two rows of the snake-path, never moves if it detects a robot z, not in
the snake-path, in the d + 1 rows above it. Thus:
Observation 4.1 If s is in state 4, and it is not on the d − 1 last rows of the
snake-path, then every robot below s is in the Deploying phase.

Note also that, if s is in one of the last kd− d + 1 nodes of the snake-path then,
according to the rules for state 4, s will not move if it detects a robot z at left in
the d− 1 rows below it. Thus, with this fact and observation 4.1 we have that:
Observation 4.2 If a robot s in the Collecting phase is blocked by a robot in the
Deploying phase, then it is at node (1, 0).

Using the above observations we can derive the following theorem.
Theorem 1 During the execution of algorithm scatter, no two robots can collide.

11

m-1

n - m + 1
n - m + 2
n - m + 3

n
n - 1

m

3
2

1

Figure 7: A m-stable configuration, with no complete rows.

We now define, for a given set of robots, a particular configuration in the grid
which we call a stable configuration. This definition will be used later to prove that
algorithm scatter cannot stop because of deadlock.

Definition 1 (Stable configuration) Let S ⊆ S be a set of robots executing al-
gorithm scatter. We say that the set S is in an m-stable configuration with t

complete rows (possibly t = 0) if:
• all robots of S are located in the upper m rows;
• all robots located in the upper m rows are in S;
• for every j = 1, . . . ,m − t, the robots of S located in row n − m + j occupy
consecutive nodes (1, n−m + j), . . . , (λj , n−m + j);
• the m−t positive integers λ1, . . . , λm−t satisfy λ1 ≥ 1 and, kd > λj ≥ λj−1+2d−1,
for every j = 2, . . . ,m− t;
• λj = kd, for every j = m− t + 1, . . . ,m.

We say that S is in an stable configuration if it is a m-stable configuration, for
some m. (See Figure 7.)

Notice that, for a set of robots S to be in a stable configuration, we ask the
robots to be located at the upper rows of the grid, occupying consecutive nodes and
every row hosting at least 2d − 1 nodes more than the previous one. In fact, this
last condition cannot be fulfilled if the row is complete. This is reflected in the last
t rows, which host kd robots each (i.e., every node is occupied).

The correctness of the algorithm follows from a sequence of lemmas.
In the following Lemma it is shown that, if no robot in the Collecting phase enters

in the Deploying phase for a sufficient amount of time then they will eventually reach
a stable configuration.
Lemma 1 Let S be the set of robots in the Collecting phase. Then eventually they
will reach a stable configuration, provided that no robot in S enters the Deploying
phase.
Proof. Assume that for a large enough number of steps, robots in S cannot enter
the Deploying phase. Let h in row n−m−1 be the head of the snake. By observation
4.1 we know that every robot in rows below n − m − 1 is in the Deploying phase.
Moreover, we know by observation 4.2 that no robot in the Collecting phase could

12

be blocked by a robot in the Deploying phase which is not at node (0, 0). Thus,
eventually the set of robots S will be isolated in the last m upper rows.

By the rules for states 1 and 2, if a robot s decides to go right and enter state 2,
either it will go up in a few steps or a faster robot will come from below, occupying
an empty node in the same row as s or in a row above. After that, s will go back to
state 1. Since robots never go down, after a finite number of steps in the execution
of algorithm scatter, no robot enters state 2 again.

We can therefore assume that we have reached a situation in which none of the
robots enter state 2 again. By an analogous reasoning, if all robots can only go left
or up, then, after some steps, they all will be blocked.

We now show that, if none of the robots can move, then they are in a stable
configuration.

If none of the robots can go up, nor left, the robots in S are located in the upper
m′ rows, for some m′ < m. In every row, they occupy consecutive nodes. Moreover,
if λj is the number of occupied nodes in row n−m′ + j, then λ1 ≥ 1, and λj ≥ λj−1

for j = 2, . . . ,m′.
Let us concentrate now in robot sj , with j < m′, located at node `(sj) =

(λj , n − m′ + j). We know that sj cannot enter state 2 and go right. We can
distinguish the following three cases:

• if λj = kd, then λi = kd, for j ≤ i ≤ m′;

• if λj ≤ kd − (2d − 1), then all 2d − 1 nodes (λj + 1, n − m′ + j + 1), (λj +
2, n−m′ + j + 1), . . ., (λj + 2d− 1, n−m′ + j + 1) are occupied (otherwise,
s could go right, by rules for states 1 and 2), and λj+1 ≥ λj + 2d− 1;

• if λj > kd − (2d − 1), then all kd − j nodes (λj + 1, n − m′ + j + 1), (λj +
2, n−m′ + j + 1), . . . (kd, n−m′ + j + 1) are occupied (otherwise, s could go
right, by rules for states 1 and 2), and λj+1 = kd.

So, S satisfies the conditions of Definition 1, and thus it is an m′-stable config-
uration. This completes the proof. 2

In the next Lemma we give a lower bound on the number of robots in a stable
configuration. Notice that the condition on m does not necessarily imply that there
are no complete rows, since we are computing a lower bound.
Lemma 2 Let S be a set of robots in an m-stable configuration. If 1+(2d−1)(m−
1) ≤ kd, then

|S| ≥ m +
2d− 1

2
(m2 −m)

Proof. The number of robots in the m-stable configuration is, by definition,
|S| = λ1 + λ2 + · · ·+ λm with λ1 ≥ 1, λj ≥ λj−1 + 2d− 1, for j = 2, . . . ,m− t. If
1 + (2d − 1)(m − 1) ≤ kd, then λj ≥ 1 + (j − 1)(2d − 1), for every j = 1, . . . ,m.
Therefore |S| ≥

∑m
j=1 1+(j−1)(2d−1) = m+(2d−1)

∑m−1
i=1 i = m+ 2d−1

2 (m2−m).
2

To prove that there is no deadlock, we first introduce some lemmas.
Lemma 3 No robot can be blocked in the Cleaning phase.

13

Proof. Notice that robots in state 0 (i.e., in the Cleaning phase) could only wait
for robots in state 1 located at some nodes (i, 1), i.e., in row 1. Moreover, robots in
state 1 are waiting for robots in state 0 only if there are robots at some nodes (j, 0)
(i.e., in row 0). By construction however, robots in row 1 will eventually move up,
leaving room for robots in state 0 to go up as well and enter state 1. 2

Lemma 4 Let s be the first robot, on the snake-path from the node n0, which is in
the Deploying phase and blocked by a robot in the Collecting phase. Let s be located
in node ni = (x, y). Eventually one of the two conditions will occur: 1) all the nodes
on the snake-path in rows below s (i.e., nodes nj = (x′, y′); y′ < y) are occupied by
robots in the Deploying phase or 2) all the robots are in the Deploying phase.
Proof. Suppose that there is a case when at least one node in the Deploying
phase is blocked by a robot in the Collecting phase. By contradiction suppose that
some nodes behind it, in the snake-path and in a lower row, remains empty. It is
possible that for some steps none of the robots in the Collecting phase enter the
Deploying phase; however, we know by lemma 1, that they eventually reach a stable
configuration. Let s, in node ni, be the first robot on the snake-path from node n0,
which is blocked by a robot in the Collecting phase. Let nj ; 0 ≤ j < i be the first
empty node on the snake-path in a lower row. If j = 0 then the robot in node (1, n)
could move entering the Deploying phase thus reaching a contradiction.

On the other hand, if j > 0, we can assure that eventually there will be at least
one robot in the path Γ := {n0, n1, . . . nj−1}, in the Deploying phase. Let s′ be the
robot in path Γ which is closest (in Γ) to the empty node nj . We next show that
robot s′ will eventually arrive to nj . We can distinguish two cases:

• If 1 ≤ j ≤ kd, then robot s′ is in state 3. Rules for state 3 allow s to go down
and to arrive to node nj .

• If j > kd, then robot s′ is in state 4.

Notice that robots in the Collecting phase never move down. Moreover, robot s has
already passed through nodes n0, n1, . . . nj−1, nj . This allows us to assure that no
robot in the Collecting phase is neither entering Γ, nor in the d + 1 rows above nj .
Applying the rules for state 4, s′ is able to follow the snake-path and to arrive to
node nj . In both cases, robot s′ could move to nj leaving a new empty node in
the same row or in the row below. So, the robots in Γ will move successively until
n0 is left empty. At this moment, a robot in the Collecting phase will move to n0

entering the Deploying phase thus reaching a contradiction. 2

As a consequence of the previous lemmas we have that:
Lemma 5 If there is no robot in the Deploying phase blocked by a robot in the
Collecting phase nor robot in the Collecting phase blocked by a robot in the Deploying
phase then Deadlock is not possible.

We are ready to prove that algorithm scatter never stops in a deadlock situ-
ation.
Theorem 2 No deadlocks will occur during any execution of algorithm scatter.

14

Proof. By Lemma 3, after some steps in the execution of algorithm scatter, all
robots are in the Collecting phase or in the Deploying phase. Assume by contradic-
tion that there is a deadlock; then, by Lemma 5, we know that there is at least one
robot in the Deploying phase blocked by a robot in the Collecting phase. Let s be
the first robot, in the Deploying phase, in the snake-path blocked by a robot in the
Collecting phase.

By Lemma 4, after some steps all the nodes in the snake-path in a row lower
than s are occupied by robots in the Deploying phase. Robot t in node n0 will wait,
provided that s is waiting. Therefore, by Lemma 1, after some steps, the set S of
robots in the Collecting phase will be in a m′′-stable configuration, for some m′′

(see gray robots in Figure 8).
Let m′′ = m+m′ such that m satisfies 1+(2d−1)(m−1) ≤ kd < 1+(2d−1)m.

By definition 1, we know that the upper m′ rows contain kd robots each. Note that
robots in the Deploying phase can only occupy nodes on the snake path. This means
that, for a deadlock to occur when robots are in the Collecting phase we would need
a higher number of robots if they are in an m′′-stable configuration than if they are
in an m-stable configuration. Thus we can assume that the robots in the Collecting
phase are in an m-stable configuration with 1 + (2d − 1)(m − 1) ≤ kd. This will
allow us to apply Lemma 2 for a lower bound on the number of robots in the stable
configuration.

We now show that there is a contradiction, based on the fact that there are
always at least d + 1 empty rows between robots in the Collecting phase (the gray
robots in Figure 8) and robot s. First of all we know that:

• There are (k + 1)d robots in the Deploying phase in the d left-most columns.
In fact, the snake path contains kd + 1 nodes on the left border and only one
node, the bottom-most, on each of the next d− 1 columns, and by Lemma 4
all these nodes have been occupied.

• By Lemma 2, the number of robots S(m) in the stable configuration satisfies
S(m) ≥ m + 2d−1

2 (m2 −m).

• The number of rows below s in the Deploying phase is kd−m−d. By Lemma
4, the number of robots in the Deploying phase is thus S(d) ≥ (k + 1)d +⌈

kd−m−d
d

⌉
kd.

The total number of robots used is S(t) = S(m)+S(d). To obtain a contradiction
we have to prove that the number of used robots exceeds the number of robots in
the space, that is, S(t) ≥ (k + 1)2. The lower bound on S(m) implies that:

S(t) ≥ m +
2d− 1

2
(m2 −m) + (k + 1)d +

⌈
kd−m− d

d

⌉
kd

≥ m +
2d− 1

2
(m2 −m) + (k + 1)d + k(kd−m− d)

= (k + 1)d + k2d− kd +
(

1− 2d− 1
2

− k

)
m +

2d− 1
2

m2

15

= k2d + d +
−2d− 2k + 3

2
m +

2d− 1
2

m2

Let us subtract (k + 1)2 to this amount and let us denote the result by f(m):

f(m) = (k2 + 1)(d− 1)− 2k +
−2d− 2k + 3

2
m +

2d− 1
2

m2

We will show that f(m) > 0.
First, we show that f(m) is increasing for m > m∗ = 2d+2k−3

2(2d−1) . In fact f ′(m) =
(2d−1)m+ −2d−2k+3

2 . Now, f ′(m∗) = 0 if and only if m∗ = 2d+2k−3
2(2d−1) . Since f ′′(m) =

(2d− 1) > 0 we have that for m > m∗ the function f(m) is strictly increasing.
We know that m > d(k

2 − 1), otherwise the number of rows below s would be
greater or equal than k

2d. The reason is that if we had s ≥ k
2d, the snake path could

room the (k + 1)2 robots behind s because d ≥ 2, which is not possible if there is a
deadlock.

Notice also that (k
2 − 1)d − 2d+2k−3

2(2d−1) = d2(2k−4)−k(d+2)+3
2(2d−1) > 0 if k ≥ 4. This is

true because d2 ≥ (d + 2) for d ≥ 2; and (2k − 4) ≥ k for k ≥ 4. Furthermore,
substituting k = 3 we obtain (d − 3)(2d + 3) + 6 > 0 which is true for d ≥ 3.
Therefore, f(m′) ≥ f((k

2 − 1)d) for any m′ ≥ d(k
2 − 1) if k ≥ 4, or k = 3 and d ≥ 3.

Now we show that f((k
2 − 1)d) > 0.

f((
k

2
− 1)d)

= (k2 + 1)(d− 1)− 2k + (
−2d− 2k + 3

2
)(

(k − 2)d
2

) + (
2d− 1

2
)(

(k − 2)d
2

)2

=
k2(2d3 − d2 + 4d− 8)− 2k(4d3 − 7d + 8) + 8d3 + 4d2 − 4d− 8

8
Let us denote the numerator as the function g(k) = k2a−2kb+c, where a = 2d3−

d2+4d−8 = ((d−2)(2d2+3d+10)+12), b = 4d3−7d+8 = ((d−2)(4d2+8d+9)+26)
and c = 8d3 + 4d2 − 4d − 8 = 8(d3 − 1) + 4d(d − 1). Notice that, since d ≥ 2, the
three terms a, b and c are positive. Thus, g(k) is a parabola opening up and its
vertex is in k = b

a .

g(
b

a
) =

ac− b2

a
=

76d4 − 124d3 − 89d2 + 112d

a

=
d((d− 2)((d− 1)(76d + 104) + 71) + 46)

a

Since d ≥ 2, then g(b
a) > 0 and thus f((k

2 − 1)d) > 0.
This implies that, when i) k = 3 and d ≥ 3, or ii) k ≥ 4, for deadlock to exist

there must be more than (k + 1)2 robots. Since there are only (k + 1)2 robots a
deadlock is not possible in these cases. Finally, it is easy to verify (by simple but
tedious calculations) that deadlock cannot occur in the special cases of i) k = 3 and
d = 2, ii) k = 2.

Therefore, no deadlocks can occur during any execution of algorithm scatter.
2

Hence, by Theorems 1 and 2 the correctness of the possibility result follows.

16

h

Waiting for the gray robots to move

s
t

Waiting for t to move
Waiting for h to move

Figure 8: There is deadlock, if δ ≤ d + 1.

Theorem 3 Any execution of algorithm scatter terminates within finite time
with a uniform scattering.

Proof. By theorem 2, deadlock is avoided. Thus, eventually every robot will
enter state 3. When the last robot s0 enters state 3 reaching node n0 = (0, n) by
the rules for state 3 it will remain at node (0, n). The first robot s1 in front of s

will move until be at distance d from s0. At that moment s1 will be at node nd.
In this way the robot ni will stop at distance d from n(i−1) its successor reaching
a final node. This process ends when the head reaches the node n(K−1)d and every
robot is in a final node. 2

5. Concluding Remarks and Open Problems

We have proved that the problem of uniform scattering in a grid is indeed
solvable without collisions even for very weak robots. The results of this paper have
been proven for square grids. They however hold also in rectangular grids, provided
that the direction of the largest dimension is known.

Although the focus of this work has been on the computability rather than the
complexity aspects of the problem, it is easy to verify that the proposed solution
requires no more than O(N/d) time units in the worst case. An interesting open
research question is whether this cost is optimal, or a more efficient solution strategy
can be designed.

An important research direction involves the study of the problem in more com-
plex orthogonal spaces (e.g., with holes). It appears doubtful that these cases could
be solved without increasing the capabilities of the robots. In particular, the com-
putational power and performance capabilities of weak robots that are however

17

provided with explicit communication seems to be a promising direction for future
research on the uniform deployment problem.

Acknowledgements

The authors would like to thank the anonymous referees for their comments
and observations, which have helped improving the presentation of the results.
This work has been supported in part by NSERC Discovery grants, and by Dr.
Flocchini’s University Research Chair.

References

1. S. Das, E. Mesa Barrameda, and N. Santoro. Deployment of asynchronous
robotic sensors in unknown orthogonal environments Proceedings of the 4th In-
ternational Workshop on Algorithmic Aspects of Wireless Sensor Networks (ALGO-
SENSOR’08), 125-140, 2008

2. R. Cohen and D. Peleg. Local spreading algorithms for autonomous robot systems.
Theoretical Computer Science 399 (1-2): 71-82, 2008.

3. X. Défago, and S. Souissi. Non-uniform circle formation algorithm for oblivious
mobile robots with convergence toward uniformity. Theoretical Computer Science
396 (1-3): 97-112, 2008.

4. P. Flocchini, G. Prencipe, and N. Santoro. Self-deployment algorithms for mobile
sensors on a ring. Theoretical Computer Science 402 (1): 67-80, 2008.

5. P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Arbitrary pattern for-
mation by asynchronous oblivious robots. Theoretical Computer Science 407 (1-3):
412-447, 2008.

6. A. Ganguli, J. Cortes, and F. Bullo. Visibility-based multi-agent deployment in
orthogonal environments Proceedings of the American Control Conference, 3426-
3431, 2007.

7. N. Heo and P. K. Varshney. A distributed self spreading algorithm for mobile
wireless sensor networks. Proceedings of the IEEE Wireless Communication and
Networking Conference, volume 3, 1597–1602, 2003.

8. N. Heo and P. K. Varshney. Energy-efficient deployment of intelligent mobile sensor
networks. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems
and Humans 35 (1): 78–92, 2005.

9. A. Howard, M. J. Mataric, and G. S. Sukhatme. An incremental self-deployment
algorithm for mobile sensor networks. Autonomous Robots 13 (2): 113–126, 2002.

10. A. Howard, M. J. Mataric, and G. S. Sukhatme. Mobile sensor network deployment
using potential fields. Proceedings of the 6th International Symposium on Distributed
Autonomous Robotics Systems (DARS’02), 299–308, 2002.

11. T.-R. Hsiang, E. Arkin, M. A. Bender, S. Fekete, and J. Mitchell. Algorithms for
rapidly dispersing robot swarms in unknown environments. Proceedings of the 5th
Workshop on Algorithmic Foundations of Robotics (WAFR), 77–94, 2002.

12. M. Kasuya, N. Ito, N. Inuzuka, and K. Wada. A pattern formation algorithm for a
set of autonomous distributed robots with agreement on orientation along one axis.
Systems and Computers in Japan 37 (10): 747-757, 2006,

13. B. Katreniak. Biangular circle formation by asynchronous mobile robots. Pro-
ceedings of the 12th International Colloquium on Structural Information and Com-

18

munication Complexity (SIROCCO’05), 185–199, 2005.

14. Y. Ikemoto, Y. Hasegawa, T. Fukuda, and K. Matsuda. Gradual spatial pattern
formation of homogeneous robot group. Information Sciences 171 (4): 431-445,
2005

15. X. Li and N. Santoro. An integrated self-deployment and coverage maintenance
scheme for mobile sensor networks. In Proceedings of the 2nd International Confer-
ence on Mobile Ad-Hoc and Sensors Networks (MSN’06), 847-860, 2006.

16. S. Poduri and G.S. Sukhatme. Constrained coverage for mobile sensor networks.
In Proceedings of the IEEE International Conference on Robotic and Automation,
165–173, 2004.

17. K. Sugihara and I. Suzuki. Distributed algorithms for formation of geometric
patterns with many mobile robots. Journal of Robotics Systems 13: 127–139, 1996.

18. I. Suzuki and M. Yamashita. Distributed anonymous mobile robots: Formation of
geometric patterns. SIAM Journal on Computing 28 (4): 1347–1363, 1999.

19

