
FAULT-TOLERANT EMERGENT SEMANTICS IN P2P NETWORKS

Abdul-Rahman Mawlood-Yunis1, Michael Weiss2 and Nicola Santoro1
1 School of Computer Science, Carleton University

2 Department of System and Computer Engineering, Carleton University
1125 Colonel By Drive, Ottawa, Ontario, K1S5B6, Canada
{armyunis,santoro}@scs.carleton.ca, weiss@sce.carleton.ca

ABSTRACT

To survive in the twenty-first century, enterprises need to collaborate. Collaboration at
the enterprise-level presupposes the interoperability of the underlying information
systems. Access to heterogeneous information sources must be provided transparently
while maintaining their autonomy. Further, the availability of nearly unlimited
information calls for efficient and precise information retrieval, which can be achieved by
making the semantics embedded in information sources explicit. Solving the semantic
interoperability problem becomes imperative to the success of information search and
retrieval applications and enterprises that rely on them.

Inspired by self-organizing systems found in biology, physics and computing, the
approach of emergent semantics has been proposed as a solution to the semantic
interoperability problem. Emergent semantics refers to the bottom-up construction of
interoperable systems, in which semantically related peers are discovered and linked
together during the normal operation of the system. Individual information source
providers will provide mappings (so-called semantic bridges) between their own local
and semantically related foreign information sources. Emergent Semantics in a peer-to-
peer (P2P) network is the lowest common knowledge, semantically relevant concepts,
among all the peers of the network.

Local mappings between peers with different knowledge representations, and their
correctness are prerequisite for the creation of emergent semantics. Yet, often approaches
to emergent semantics fail to distinguish between permanent and transient mapping
faults. This may result in erroneously labeling peers as having incompatible knowledge
representations. In turn, this can further prevent such peers from interacting with other
semantically related peers1. This is because, in emergent semantics, peers use past
interactions to determine which peers they will interact with in future collaborations.

This chapter will explore the issue of semantic mapping faults. This issue has not
received enough attention in the literature. Specifically, it will focus on the effect of non-
permanent semantic mapping faults on both inclusiveness of semantic emergence and
robustness of applications and systems that use semantic mappings. A fault-tolerant
emergent semantics algorithm with the ability to resist transient semantic mapping faults
is also provided. The contributions of this chapter are: (i) an analysis of the impact of the
semantic mapping faults on the inclusiveness of semantic knowledge sharing in P2P

1 Emergent Semantic depends on the adaptive query routing algorithm. Checking for semantically related
peers are embedded in the method. There is little chance for unrelated peers to interact.

systems, (ii) a preliminary solution to the problems created by semantic mapping faults in
P2P semantic knowledge sharing systems, and (iii) a qualitative analysis of the causal
links between fault causes and fault types.

The rest of this chapter is organized as follows. Section 2 provides broad discussion and
literature review about semantic interoperability problem among heterogeneous
information source. Section 3 defines what we mean by a semantic mapping fault and the
types of faults. Section 4 lists sources of semantic mapping faults. Section 5 classifies
temporal semantic mapping faults. Section 6 describes the emergent semantics approach.
Section 7 presents an algorithm to eliminate the harmful effects of transient mapping
faults on emergent semantics (fault-tolerant emergent semantics). Section 8 concludes the
chapter and Section 9 identifies directions for future work.

KEYWORDS
Ontologies, Emergent Semantics, Semantic Interoperability, Data sharing, Distributed
Systems, Semantic Matching, Query Processing, Fault-tolerance

 BACKGROUND

In today's globally connected and digitalized world, the ability to exchange information,
provide services and carry out business worldwide has become an essential requirement
for many government agencies and departments, interest groups, businesses, etc. The
need for transparent exchange of information and doing business on the global scale is
faced with the semantic heterogeneous information representation problem among
autonomous and distributed information source providers.

Existing information sources are scattered around the world. They are stored in
repositories located in different government departments, research labs, universities,
interest groups, enterprises, etc. The stored information is represented heterogeneously
along different aspects. For example, data or information can be in XML files2, relational
tables, HTML files, RDF3 documents etc. Further, when the same type of representation
format is used for storing information, the information modeling, the structure and
semantics of concepts used in the modeling may vary among different information source
providers.

An example of semantic differences would be using different vocabularies to refer to the
same physical or conceptual object by different information representations: one's “zip
code” is somebody else's “area code”; or using the same vocabulary to refer to different
conceptual or physical real life objects in different representations: a “terminal” for one is
a computer monitor, but a “station” for somebody else.

In the distributed environment, information source providers are autonomous. In other
words, information source providers have control on their local information sources.
They could make changes, update, remove or restrict the access to their information

2 http://www.w3.org/XML/
3 http://www.w3.org/RDF/

sources. Consequently, in order for various businesses and service applications and
systems to be able to cooperate and exchange information in the environment described
above, they need to overcome the barrier of heterogeneity between semantic information
representations.

In the sections below, we will delineate how a common ontology and emergent semantics
help resolve the issue of semantic heterogeneity, and review existing literature on the
different approaches for solving the problem.

Ontology-enabled Semantic Reconciliation

Common ontologies and shared semantics (Gruber, 1993) have been used for semantic
reconciliation, recognizing similarities and enabling information exchange to overcome
the representational differences. Knowledge engineers and domain experts use concepts
from common ontologies to model the area of interest (e.g. medicine, education, tourism)
where concept meanings are shared and agreed upon by members of the domain, i.e.
individuals commit to the meanings assigned to vocabularies used to describe the
domain.

To enable information exchange among multiple independent ontologies for the same
domain or among ontologies from overlapping domains, an upper ontology is utilized as
mediator. Concepts from independent ontologies are mapped to the common ontologies
and from common ontologies to the other independent ontologies. This procedure
continues back and forth and for as much as needed.

Several global ontologies have been constructed including OpenCyc, SUO/SUMO,
UNPSC etc (Gomez-Perez, 2004). Despite some usefulness of this approach and the
existing number of common upper ontologies, the prominent problems with this type of
work are the maintenance and scale up difficulties as ontology domain concepts change
or evolve over time. It is hard to have an ontology which is comprehensive and highly
agreed upon. Thus, to date, there is no privileged or standard common ontology in use for
any domain.

More recently, contextualization, or use of local ontologies, has been suggested by some
authors (Bonifacio, 2002 ; Bouquet, 2003; Ghidini) as a strategy for modeling
information sources. Following this paradigm, individual information source providers
(be they Web site owners, operators of peers in a semantic P2P network, or database
designers) will annotate their information sources with semantics in their own ontologies.
These semantics will be provider-specific, and reflect the information provider's
knowledge of the application domain, experience, or culture. This implies a shift from
large and centralized to smaller and possibly simpler distributed ontologies.

However, contextualization also imposes new restrictions. Allowing users to create their
own local data representations and semantics raises heterogeneous representation
problem, e.g. problem of semantic incompatibility among the interacting information
sources. To resolve the heterogeneity problem (i.e. enable independent and autonomous

information sources to communicate with one another) we need to provide semantic
mappings, i.e. translations between semantically related peers.

Local Translation and Emergent Semantics

Emergent behavior is a well-known phenomenon in biology, physics and (distributed)
computing. For example, several optimization and network routing techniques have been
inspired by the way the behavior of an ant colony as a whole emerges from local
interactions between individual ants.4 Similarly, local cooperation between robots in
multi-robot systems for search and rescue operations has been modeled after the
formation of flocks of birds (Bahceci, 2003).

Inspired by emergent behavior, the approach of emergent semantics has been proposed as
a solution to the semantic interoperability problem among autonomous, heterogeneous
information sources with local ontologies. Emergent semantics refers to the bottom-up
construction of interoperable systems, in which semantically related peers are discovered
and linked together during normal operation of the system --- as part of regular search
and query forwarding operations. Under this approach, individual information source
providers provide semantic mappings (so-called semantic bridges) between their own
local and semantically related foreign information sources (Aberer, 2003, 2004; Larry,
2006; Staab, 2002). This implies a shift from large and centralized approach to a
decentralized approach with smaller ontologies. Bottom-up construction of emergent
semantic enables consensus reaching on the semantics of concepts used in distributed
local ontologies. This in turn paves the way for the knowledge sharing among
independent and autonomous peers. Emergent Semantics in a P2P network is the lowest
common knowledge among all peers’ contextual ontologies in the network.

The decentralized approach, not only puts the scalability problem behind, but also if used
with simpler ontologies -- ontologies with less expressive power and less restricted
language -- mainly taxonomy, causes dramatic change in the scale of semantic Web
applications and semantic information exchange in P2P applications. This is because
simplicity encourages users to annotate their information sources with semantics
(Rousset, 2004), to understand and make use of others’ ontologies.

The decentralized semantic reconciliation approach is especially attractive for semantic
search and query forwarding in peer-to-peer (P2P) network (Staab, 2006). This is not
only because the information peers bring to the network is heterogeneous and their
meanings need to be reconciled in order to improve the search and query results, but also
because P2P network is dynamic and the decentralized approach performs dynamic
semantic mapping.

Using dynamic semantic mapping, concepts that constitute the query are the only ones
which need to be translated and it is done on the fly, i.e. during system operation. This

4 http://iridia.ulb.ac.be/~mdorigo/ACO/ACO.html

approach suits the P2P dynamic network well and is much preferred over the pre-defined
mappings of all concepts among semantically connected peers.

Local mappings between peers with different knowledge representations, and their
correctness are a prerequisite for the creation of emergent semantics. Yet, often
approaches to emergent semantics fail to distinguish between permanent and transient
mapping faults. This may result in the erroneous labeling of peers as having incompatible
knowledge representations. In turn, this can further prevent such peers from teaming up
with other semantically related peers in the future. This is because, in emergent
semantics, peers use past interactions to determine which peers they will interact with in
future collaborations.

The importance of tolerating non-permanent faults (also known as noise) has long been
recognized in hardware and software reliability studies. Non-permanent faults include
transient, but also intermittent faults (which are recurring transient faults; for definitions
of these terms see Section 3). Methods for controlling the effects of non-permanent faults
form an important part of disciplines such as fault-tolerance (Bondavalli, 1997, 2000;
Pizza, 1998) and evolutionary game theory (see e.g. Axelrod, 97; Wu, 1995 for a
discussion of noise in the iterated prisoner's dilemma).

We argue that Web information systems must also tolerate non-permanent faults. This is
particularly true for mission-critical applications such as security and business-to-
business applications. Discarding a viable source of information, or preventing a valuable
business partner from participating in business transactions just because of transient
faults will negatively impact the level of accuracy of the collected information in the
security case, and could jeopardize potential financial gains in business-to-business
applications.

 Existing Approaches

We observed from the literature review that approaches to solve semantic interoperability
problem are somewhat different from each other. The existing works could be roughly
classified into to four different inter-related classes: Local Mapping and Query
Translation, Collaboratively Building Ontologies and Consensus Reaching, Pattern
Extraction or Structure Similarity and Tagging and Social Networks. The names are
related to the way each approach tries to reconcile the semantic differences among
different information source representations. Below is a short a description of each
approach.

Local Mapping and Query Translation

The underlying working environment for this approach is mostly a P2P network and a
common theme among systems belongs to this approach is the use of local mapping to
achieve some form of knowledge sharing and cooperation. In other words, peers have

their own local representations and local mappings, i.e. translations between local
information presentations are provided to enable information exchange among
communicating peers. Examples of systems that use this approach include Chatty Web
(Aberer, 2003), OBSERVER (Mena, 2000), Piazza (Halevy, 2003), H-Match (Castano,
2003), KEx (Bonifacio, 2002), Bibsiter (Haase, 2004) and SomeWhere (Rousset, 2006).
For a short survey about these systems, the reader is encouraged to see (Mawlood, 2007).

 Collaborative Building of Ontologies and Consensus Reaching

An engineering methodology for building ontology collaboratively and reaching
consensus on concept definition and domain conceptualization has been suggested by
Tempich (2004, 2005). The procedure starts by building general core ontology then,
individual users extend the core ontology and adapt it to their local needs. After using
the core ontology, users are asked to send feedback to a centralized authority regarding
what should and should not be part of the core ontology. The centralized authority will
look after user’s suggestions and updates the core ontology accordingly. Authors of the
methodology assert that after several iterations, a stable and shared common ontology
will emerge.

 Pattern Extraction or Structure Similarity

Distributed Emergence System (DistES) (Fergus, 2003) and Constructing consensus
ontologies for semantic web (Stephens, 2001) are examples of the systems which use
structure similarity among distributed ontologies to solve the interoperability problem.
DistES protocol is based on the evolutionary algorithm for discovering and merging
knowledge in P2P environment. Each peer owns local ontology represented in
hierarchical structure. Peers extend their knowledge by querying other peers, selecting
best result among the query answers and merging the selected result with local ontology.
The process of selecting foreign concepts and forging concept relations for integration
with local data is based on their frequency of occurrence in the query answers. Concepts
and concept relation with high occurrence, i.e., appeared in multiple query answers; will
be selected for merging with local data, those with fewer occurrences are ignored. Thus,
the end result information source structure, i.e. emerging ontology, manifests the general
consensus among peers who participated in the interaction. Similarly, Stephens (2001)
uses the occurrence rate of concepts and concept relations among multiple, small and
related ontologies used for web annotation to construct a merged ontology on the fly. The
newly constructed ontology is then presented to the user for further refining.

 Tagging and Social Networks

The launch of the social book marking Web site "del.icio.us" 5, the photo sharing service
"Flickr"6 and others opened-up a new way of categorizing Web information sources, i.e.
building ontologies collaboratively by large numbers of Web users.

5 http://del.icio.us/

A network of English words made of numerous tags used by independent users for
labeling the same online document forms the basis for ontology creation by this strategy.
Similarly, using same tag by numerous independent users to refer to some resource is the
basis for creation of online communities around using common resources, i.e. share
common interest (Mika, 2005). Currently, serious discussion and interest have been
devoted to social networking and collaborative building ontologies in academia. Several
works following this strategy have been surveyed in Staab (2005).

We will extend or build upon these existing techniques by eliminating/ reducing the
effect of the temporal mapping faults which confronts the semantic information flow. In
our system we will try to overcome two fundamental problems of the existing systems:
the lack of fault tolerance and the inability to distinguish permanent from non-permanent
semantic mapping faults. The ability to resist semantic mapping fault helps in building a
robust system. It also prevents peer's unwarranted removal from future participation on
further collaboration events. This implies an intelligent use of peer's past collaboration to
determine future decision on further collaboration in a best possible way.

SEMANTIC MAPPING FAULTS

In this section we define what we mean by a semantic mapping fault, and identify
different types of faults based on notions from fault tolerance literature.

Faults
A fault is an incorrect semantic mapping, or the failure to map between concepts from
different ontologies. We say that a fault occurs when (i) a concept in one ontology is
mapped to a semantically unrelated concept in a different ontology, or (ii) a concept in
one ontology cannot be mapped to an existing semantically related concept in a different
ontology.

Formally we can express this definition as follows. Assume we have two ontologies O1 =
{C, P, R} and O2 = {C\, P\, R\} where C and C\ are sets of concepts, P and P\ are sets of
concept properties and R and R\ are sets of relations between concepts. Given two
semantically equivalent concepts or their instances7 c∈C and c\∈C\ such that c≡c\ we
say that a fault occurs if either one of the following is true:

• c is mapped to a semantically unrelated concept x∈C\ such that x ≠ c.
• c cannot be mapped to a semantically related concept c\∈C, i.e. the mapping

process incorrectly leads to nil.

6 http://www.flickr.com
7 For information on instance data and schemas, we refer interested readers to
(http://jena.sourceforge.net/ontology/common-problems.html#aBox-tBox;
http://www.w3.org/TR/owl-guide/).

The fault-tolerance literature classifies faults based on their duration. Accordingly, we
distinguish between permanent, transient and intermittent faults.

Permanent Faults
A permanent fault is a fault that continues to exist, unless some outside action takes place
to remove its underlying cause.

For example, any attempt to map between two concepts from two unrelated ontologies,
i.e., two ontologies from different domains, will result in a permanent fault. This situation
will continue indefinitely, unless, e.g., a change is made in the mapping semantics linking
the ontologies.

Transient Faults
A transient fault is a type of fault that appears once, and remains in place for a short
period of the time.

A transient fault may corrupt the data of a system, but the system will remain operational.
It is a statistical fault, and it is hard to predict when exactly it will happen. For example,
the change of a company's stock symbol can result in a transient semantic mapping fault,
if either the propagation of the change notification to related peers or applications is
delayed, or the related peers or applications are unable to incorporate the change
immediately.

Intermittent Faults
An intermittent fault is a fault that occurs periodically. It appears for a short period of
time, disappears, and then reappears repeatedly.

For example, in a situation where ontology modification is not a full substitution of one
ontology by another, it is possible for semantically related peers to continue operating. In
the described scenario, there can be intermittent faults. Faults will occur, because there
are situations, when related peers are unable to interpret the meaning of concepts in the
modified ontologies.

Although transient and intermittent faults manifest very similarly, they are quite different.
While the first one is generated from temporal condition, the second one is the result of
unstable system. Also, the intermittent fault could be fixed by removing the unstable
component from the system, but transient faults cannot be eliminated.

The diagram in Figure 1 is one way that the three types of errors can be visualized. A
semantic mapping can either be correct (no fault) or incorrect (faulty). In the case of a
permanent fault, once the status of the mapping changes from no fault to faulty, it
remains faulty. For a transient fault, the mapping will be faulty for some time interval. In
the case of an intermittent fault, the status of the mapping repeatedly changes between no
fault and faulty.

Figure 1 Fault types

4. CAUSES OF NON-PERMANENT SEMANTIC MAPPING FAULTS

In this section, we discuss situations that can cause non-permanent (transient or
intermittent) semantic mapping faults. Our intention is not to be comprehensive, but to
illustrate the need for handling (either by tolerating or guarding against) temporary
mapping faults. The causes of faults discussed below include ontology evolution, query
context and static mapping, temporal nature of data, unavailability of data sources, and
misbehavior of peers.

 Ontology Evolution

Ontologies evolve as existing components/elements are replaced with new components,
or components are modified. The evolution of software and its consequences on system
functionality has received much attention in the software engineering and database design
communities (Roddick, 1995). Observations about software evolution can also be applied
to the evolution of ontologies. Noy (2004a) has studied the effect of ontology evolution
on Web applications and concludes that it strongly impacts system operability and the
interpretation of data 8.

8 (Noy, 2004b) argues that the issue of versioning and evolving are same in the context of ontology
mapping. What we see as important is that both versioning and evolving introduce modifications to the
existing ontology.

t0

No Fault

Fault
Permanent

t0 t1

No Fault

Fault
Transient

Intermittent

Fault

No Fault

t0 t1 t3 t4

There are several scenarios in which different types of semantic mapping faults could
occur as a result of ontology evolution. For instance, they could occur as a result of either
one or all of the following factors:

• Adding new concepts to an existing ontology, e.g. adding a newly discovered
class or type of drug to existing relevant ontologies.

• Deleting concepts from an existing ontology. Outdated concepts or concepts that
are no longer used or useful may be deleted from the ontology.

• Changes in concept meaning. A changed meaning can result in the removal or
addition of a concept relation or property.

An example of a change in ontology by adding new properties is attaching a concept for
hydrogen as a new type of fuel to the concept car. Removing a relation that links the
concept floppy drive to the concept PC is another example of a change in ontology, e.g.
for a PC maker who no longer supports floppy drives in its product configurations

 Query Contexts and Static Mapping

Static mapping is a mapping without consideration of the context in which a concept is
used, i.e. the relations and properties of a concept. It is a term-by-term association. For
example, if a concept x is mapped statically to another concept y; mapping will always
produce the same results no matter the context of x.
Static mapping may generate faulty answers to queries when used in different contexts.
This can explained by way of the following example.

Take two concepts (shown in Figs. 2 and 3) from different ontologies that represent
information about Students at a University and Members of a Research Institute. Assume
the following relations between the two ontologies:

• Some Members of a Research Institute are Students of a University, and the
Employer concept represents this relation.

• The relationship of the Research Institute to the Institute and the relationship of
Educational Institute to Institute from the two ontologies were as depicted in
Figure 4.

One can see that the University concept from the first ontology and the Research Institute
concept from the second ontology become semantically equivalent, i.e.

University≡Research Institute.

This is possible, because the Institute concept from both ontologies can be declared in the
mapping table as equivalent concepts.

Consider the effect of the static mapping from Institute to Institute on the following two
queries:

Q1: List the Names of all Members of Institutes

When this query is posed on both ontologies, it asserts that University ≡ Institute.
However, consider the second query:

Q2 List the Names of all Members of Educational Institutes

The relation University ≡ Institute no longer holds, and its assumption will result in a
fault.
That is, while the semantic correspondance between the concepts resulted in a correct
answer to the first query, it resulted in fault for the second query. This scenario is a good
example of an intermittent fault. Every time the static mapping between University and
Research Institute is used, a fault will occur, but not if it is not used. The work of
(Ouksel, 1999) further elaborates on the effect of context and static mapping on faults.

affiliated withhas ID

Student

Name

StudentID

has name

University

Figure 2: Representation of the concept Student at a University

Figure 3: Representation of the concept Member of a Research Institute

InstituteInstitute

Research InstituteEduicational Institute

University

is-a

is-a

is-a

Figure 4: Two Different Institute Concept Representations

 Temporal Nature of Data

While in pervious examples we talked about concept mapping faults, concept instances
could also lead to transient or intermittent faults. Even though different researchers have
different views on whether instances should be part of ontology or not (e.g. Lacy, 2005;
McGuiness, 2003)9, an important source of faults during query answer evaluation, not
directly in mapping, involves changes over time in the concept instances. This is true
whether instances are part of ontology or not

The issue of temporal data is of high importance in situations where data are changing
continuously such as stock prices or weather temperature. Both price in the stock
ontology and temperature in the weather ontology are properties of concepts whose
instances change over time. A query answer evaluator that compares temperature values
or stock prices represented in two different ontologies may produce different results at
different points in time. Not accounting for time dependency can lead to faulty query
answer assessments.

Assume that there is a network of peers that provide weather information for different
cities, each with weather ontology similar to that shown in Figure 5. Also assume that we
want to find the coldest city in the network. One way to achieve this is by running a
query similar to the following over all related cities and subsequently compare the
results:

Q: Find the Location with the lowest temperature
If query propagation is delayed for some reason, or queries were posed at different times
to each peer, the result will not reflect the correct weather temperature. This fault is not
the result of differences in semantic representation (all peers use the same ontology), but
rather due to the temporal nature of the temperature concept. This fault could be
temporary or permanent, based on whether temporal concepts are accounted for or not in
the ontology. Something similar could be said about a query to find the cheapest stock

9 see these following links as well: http://www.w3.org/TR/owl-guide/,
http://jena.sourceforge.net/ontology/common-problems.html#aBox-tBox

price. Other examples related to temporal changes of ontology concepts are presented in
(Zhu, 2004).

The temporal issue is not limited to the concept instances. Similar issues also apply to
temporal ontologies. However, while the issues relevant to the temporal schemas have
extensively been studied in Database, the temporal issue is still an open area of research
for ontologies (Gutierrez, 2005, Hurtado, 2006).

Location Time

Weather

City State Float String

String String

has time
has temperature

Temperature

has location

has city has state

Figure 5: Partial Weather Ontology 10

 Unavailability of Data Sources

It has been pointed out by (Gal, 2001) that the design of the conceptual schema for
information services possesses special properties. These include (1) a rapid change of
data sources and metadata, and (2) instability, since there is no control over the
information sources. The availability of information sources is solely dependent upon
information source providers. A possible scenario is the temporary unavailability of
information when such information is needed. This possibility is particularly acute
during query execution.

 Misbehavior of Peers

Correctness of semantic mapping depends on the honest conduct of peers. A peer could
be dishonest or biased in his interaction with other peers during the mapping process for
reasons such as selfishness and greed. There are various ways through which a peer
could influence the mapping process. These ways include (1) not forwarding a query to
other peers during transitive mapping process, or, (2) not forwarding answers to the other
peers during mapping, and, (3) altering or delaying queries (results) before forwarding
them to other peers. In all of these situations the mapping will be incorrect.

10 Note that this weather ontology is a partial ontology with instances

Working in a hostile or uncooperative environment gives rise to situations where peers
are permanently hostile or uncooperative. This may lead to permanent faults. However, in
the case of unintentional misinterpretation or incorrect implementation of mappings,
faults are produced from “noise-like” actions, and it will be correct to assume that they
are non-permanent.

There is some similarity between the information source unavailability described in the
subsection 4.4 and peers misbehavior, but they are not quite the same. While the former
is caused by information unavailability, the latter results in the information unavailability.
Thus, we decided to present them separately.

In the above scenarios we need to differentiate between permanent and temporary
mapping faults. The knowledge about different types of faults along the temporal
dimension will help us determine when peers should be excluded from further
interaction. This helps in better consensus formation, which in turn contributes to solving
the semantic interoperability problem.

5. CLASSIFICATION OF TEMPORAL MAPPING FAULTS

In this section, we will re-examine the different fault causes that have been listed in
previous section to find out under what circumstances each individual fault cause could
result in transient, intermittent or permanent faults, and classify them along two
dimensions:

• Type. As described in Section 3, we distinguish three types of faults: permanent,
transient and intermittent faults.

• Cause. Fault causes were identified in Section 4. Below, we describe when they
occur and identify their associated fault types.

Since we assume that local mappings between ontologies already exist, our classification
will focus on what faults may occur during mapping execution, rather than on faults that
may occur because of errors in the mapping logic, e.g. substituting a concept by its
hypernyms or hyponyms. Hence, mapping faults caused by meaning and representations
of concepts are not included in this classification. For this type of fault we refer reader
to (Naiman, 1995; Ram, 2004; Glushko, 2005). Also, In order to simplify the analysis we
sometimes refer to both intermittent and transient type errors as non-permanent faults.

 Permanent Mapping Faults

The following situations could result in permanent mapping faults:

• Mapping temporal concepts without a representation of time constraints in the
ontology leads to permanent faults. This is because temporal ontology concepts

are continuously changing with time. Even if the mapping process produces (by
accident) some correct mappings without consideration for time constraints,
eventually the system will fail completely.

• The degree of ontology modification (versioning and evolution), and whether or
not the modified concepts will be used in the mapping process, will determine the
mapping result. A high degree of modification and the frequent use of the
modified concepts may prevent semantically related applications or peers from
working with the modified ontology.

• If the system is unavailable, the mapping process cannot be performed.
Unavailability may be the result of a network or peer failure.

• Working in a hostile or uncooperative environment can create conditions where
peers are permanently hostile or uncooperative. 11

We would like to point out that query context and static mapping will less likely lead to
permanent faults. If this were not the case, it would indicate that the existing mapping is
incomplete. Hence, a better concept mapping would be required.

 Non-permanent Mapping Faults

Except from those situations identified in the first case, all other situations will result in
non-permanent faults. These situations include:

• A change in query context which can give rise to intermittent faults. This is
because every time an existing correspondence between two concepts, i.e. an
existing static mapping, is used when mapping for contexts other than the
contexts for which the relation was defined for, an error may occur.

• A denial of service request due to temporary server crashes or the disappearance
and reappearance of peers which will result in a non-permanent fault.

• time constraints represented in temporal ontology concepts: e.g., if a delay is
experienced during transitive query rewritten, i.e. q_start + q_delivary > d_time ,
where q_start refers to the time when the query is submitted to other peers,
q_delivary refers to the length of time a query takes to propagate from a peer A to a
peer B, and d_time refers a point in time where the information on the remote site
is correct, query result evaluator could falsely concludes that the query result is
unavailable or nil. Depending on the frequency of query propagation delays this
will lead to intermittent or transient faults.

• Circumstances where ontology evolution is not a complete substitution of the
previous ontology, it is possible for related peers or applications to continue
operating. In this scenario there can be intermittent faults. Faults will occur,
because there are situations, where semantically related peers are unable to
interpret the meanings of concepts in a modified ontology.

11 If multiple peers cooperate and misbehave intentionally, this will create a different type of
fault known as Byzantine fault, which is not considered in this chapter.

Moreover, the ontology modification procedure also has an impact on the fault type.
Modification procedure could result in either (1) the unavailability of the information
source for a short period of time, if the ontology is locked for updating or (2) a race
condition between the information source provider and information user, if the ontology
user is informed about the change after the modification. That is, the modification
problem becomes an instance of the unavailability or temporal problems described above.
From this observation we may conclude that every ontology modification can lead to a
non-permanent fault.

• Unintentional misinterpretation or incorrect implementation of mappings gives
rise to an incorrect mapping. Since the faults are produced from “noise-like
“actions, it will be correct to assume that they are non-permanent.

The observations about ontology modification, unavailability and temporal ontology
concepts can be generalized as follows:

• The effect of an ontology modification is not as severe as the effect of
unavailability. This is because we assume that modifications to ontologies are less
frequent than an information source becoming unavailable.

• The probability of transient faults may be higher than that for intermittent faults.
Again, this is for the same reason.

It is important to note that, in this section, we have looked at causes of faults one cause at
a time. For example, we studied the effect of query context, temporal aspects, and
ontology modification separately. It will be interesting to explore whether a fault can be
the result of multiple causes, and whether we need to distinguish between different fault
causes, when a fault occurs. However, the approach that we will take in the next section
to detect and remedy faults does not require knowledge of the underlying cause. Table 1
summarizes this classification.

 Transient Fault Intermittent Fault Permanent Fault
Temporal
Semantic Conflict

One-time message
delay

Frequent message
delays

Unsupported time
constraint

Versioning and
Evolution

During changes During changes Unsupported change
management

Query Context and
Static Mapping

Unsupported Query
Context

Unsupported Query
Context

Disqualify

Unavailability of
Data Sources

Unavailability >
Timeout

Frequent
unavailability

Unavailability =
infinity

Peers Misbehavior Misbehavior for
short period of time

Repeated
misbehavior

Permanent
misbehavior

Table 1: Classification of Temporal Faults

6. CRITICAL REVIEW OF EMERGENT SEMANTICS

This section starts by describing the steps used by current methods to emergent semantic
as documented in the literature (Aberer, 2003, 2004; Larry, 2006; Staab, 2002). These
steps (shown in Figure 6) are:

1. Peers join a network after finding the first peer with a compatible knowledge
representation. That is, peers establish mappings to the semantically related
peers12. Subsequently, peers submit queries to their neighboring peers using
concepts in their own personalized local ontologies.

2. Upon receiving a query, each peer starts processing the query locally, if the
concepts used to formulate the query are compatible with concepts in its local
ontology, and sends back query results to the querying peer. Otherwise, it
forwards the query to other peers for which they have a direct mapping, after
invoking the translation facilitator. Query forwarding will continue, until either
(1) the query reaches the query initiator13, (2) the query exceeds a specified
number of query forwards (“hops”), or (3) the time to live for the query message
expires.

3. The querying peer (query initiator) collects all answers returned, and evaluates
them. If the answers were satisfactory, the query initiator will inform the
neighbors involved about the result. Thus, the entire translation paths will be
informed of the result of a successful query14.

4. By comparing (mapping) list of query concepts to the list of concepts from the
query result, the querying peer could conclude if the semantic relation along the
translation path has been preserved. The semantic preservation is used to increase
(decrease) peers confidence in their immediately connected peers. For mapping
query concepts to the concepts of query answer, semantic affinity between
concepts should be defined and used by mapping process. For example, the
semantic affinity of {⊂ ,⊃ , ≡ , ⊥ } between two concepts could be defined as
{0.5, 0.5, 1, 0} respectively. Similarly, peers could use satisfaction
(dissatisfaction) of the query answers to reward (punish) their directly connected
peers. The latter case is more appropriate for situation where emergent semantics
is not the issue of the concern. Combing both described methods also possible.
Query semantic would be considered preserved if (i) key concepts in the query
did not drop during semantic mapping chain, and (ii) the average value of the
semantic preservation were greater than or equal to some threshold. The value of
the threshold could be set by system administrator, where higher value means that
higher semantic affinity between concepts of query and query answer is required.
Query answers could be considered satisfactory if they meet query constraints.

12 Peers join the network by crafting their own mappings. Thus, it is reasonable to assume
that they start with correct mappings. It is when ontologies change or evolve, mapping
faults become a serious issue. Similar assumption is made by (Robert, 2005).
13 The query must stop here, otherwise an infinite forwarding loop would be possible.
14 A successful query result implies a successful series of mappings.

and Forwarding

Join the network

Query Translation

Answer Evaluations

2.

3.

(Mapping Establishment)
1.

Figure 6 Main Steps of the Current Emergent Semantic Process

The described steps could be conceived as a process of constructing a directed graph,
where anytime a local peer P encounters another peer P` that provides a correct answer to
its query, i.e. a peer with a comparable semantic representation, the existing semantic
mapping between these peers will be further reinforced. That is, semantically related
peers are discovered and linked to each other during the normal operation of the system --
- search and query forwarding. Figure 7 depicts such a graph. In the Figure, the
highlighted peer is the query initiator, labels on the links represent a mapping from
source to target and semantically related peers are connected by a link. The graph will be
used by peers for future collaboration, e.g. when initiating or forwarding a similar query.

the Initiator peer

p2

p3

p4

p5

p6 p7

p8

p9

p11

P10

p12

p13

p14

p15
p16

p17

p19

20

21

22

23 24

25

26

27

28

29 30

31

32
33

34

35

M 2,5

M5,6

M6,8

M8,9
M9,14

M14,16

M16,21
M21,10

M10, 17

M17,18

18

p36

M8,3
p1

M3,1

M1,2

M21,22

Figure 7 Semantically Related Peers Without Temporal Fault Handling

The graph is a snapshot of a network where peers are connected by semantic mappings.
The whole graph is not stored at any peer in the network, it is a distributed graph. Each
peer in the network has knowledge through the confidence value of its out-going
mapping links to semantically relevant peers. However, peers could store the whole graph
locally, if they decided to do so, by integrating foreign concepts into their local
knowledge repositories. Example of integrating foreign concepts into local knowledge
representation is described in (Castano, 2003).

A fundamental prerequisite for the creation of the described semantic graph is the
existence of local mappings between peers with different ontologies and the correctness
of those local mappings. Thus, when peers are unable to answer queries or provide
correct answers to them, how this failure is handled can become a source of problems.
We need to make a subtle distinction between permanent and non-permanent semantic
mapping faults or risk the erroneous labeling of peers as having incompatible knowledge
representations.

To give an idea of the consequences of erroneously labeling peers as incompatible we
consider the effect on the number of outgoing mapping links each peer has to other peers
in the network. We will consider two cases:

Case 1 In this case, one of the peers on the mapping path used to answer the query has
only one outgoing link. By mapping path we mean the chain of translations used to
produce the query result. Figure 8 represents this case, where peer P1 is the query
initiator, peer Pk the peer with one outgoing link Mk, and all links from peer Pk+1 from
different paths participating in query answers returned to the initiator peer P1. Small
circles on the edges of the graph indicate that multiple peers participated in forming the
results.

It should be clear from Figure 8 that unless the system can distinguish between transient
and permanent mapping faults, if the mapping Mk between Peer Pk and peer Pk+1 is not
successful, even only for a short period of time, peer P1 will conclude that the outgoing
mapping link M1 is not entirely reliable, that is, its confidence in the outgoing mapping
link M1 will be reduced.

P1 Pk Pk+1M1 Mk

PM1

MP2

MP3

Mp4
Figure 8 A Peer on the Mapping Path with One Outgoing Link

This is because even a temporary failure of a mapping link, Mk, results in incorrectness
of all paths MP1, MP2, MP3 and MP4, following that mapping link. That is, mapping
faults are dependent. Hence, all the results originated from peer Pk will be considered
incorrect for a particular query. Based on (1) the current state of the link M, i.e., its
prior value, and (2) the rate of fault occurrence, peer Pk and all other peers on the
mapping paths going through peer Pk could be excluded from participation in emerging
shared semantics.

Case 2 In this case, we are considering a situation when peers have k outgoing mapping
links and k > 1. Figure 9 represents this case. It shows that Pk has three outgoing
mapping links {Mk1, Mk2 ,Mk3}. Hence, the decision on the reliability or trustworthiness
of the outgoing link M1 does not depend entirely on the outgoing link Mk1, as it was the
situation in case 1. Nonetheless, not distinguishing between transient and permanent
mapping faults, i.e., treating the mapping link Mk as permanently faulty, will have an
impact on the perception about the correctness of the outgoing mapping link M1.

P1 Pk Pk+1M1 Mk1

Mk2

Mk3

Px

M2

Figure 9 Peers on the Mapping Path Have Multiple Outgoing Links

The wrong perception about any outgoing mapping link, when peers have k outgoing
links, could impact the way subsequent queries will be routed. Consider the situation
shown in Figure 9. If the original trust in the outgoing links M1 and M2 were X and Y
respectively and X-Y = d, then, if a transient fault on the mapping link Mk1 downgrades
the trust value of M1 by a value Z, where Z > d, the peer Pk will favor M2 over M1 the
next time it needs to forward a query. This, could, in turn, isolate other peers from
participating in future collaborations, and lower the precision and recall of query results
because of a lower number of peers participating in answering the query.

These cases lead us to believe that a complete semantic emergence between independent
and heterogeneous ontologies is not possible without tolerating temporary semantic
mapping faults. In the next section, we will propose a solution to non-permanent
semantic mapping faults for emergent semantics.

7. Fault-tolerant Emergent Semantics

Not all existing fault recovery techniques, e.g. checkpoints, rollback, and error log
analysis are appropriate for P2P networks. Some of the existing solutions are difficult to
implement and others are not appropriate for the context of semantic mapping.

We propose a solution to detect and correct non-permanent semantic mapping faults. Our
solution is simple in concept and easy to apply. It is based on the time redundancy
technique, which is well-known in the fault tolerance literature (Anghel, 2000; Avizienis
1995; Dupont 2002; Paradhan , 1996).

In this context, we refer to the replication of a query and checking for the query answer
consistency as time redundancy.

Time Redundancy

Software fault-tolerance can be accomplished through various methods including
information, component and time redundancy. The choice of time redundancy is more
applicable than component redundancy (N-version programming) and information
redundancy in the semantic mapping context. This is because peers are autonomous, and
no peer has control over another peer's fault handling mechanism. More importantly, in
the context of semantic mapping, we are talking about peers sending queries to other
peers and not getting correct responses. Hence, the most appropriate way to determine
whether a fault is permanent in such a setting is to resend the query.

The time-redundancy technique can be used to add fault-tolerance capabilities to
semantic mapping-based systems in at least two ways: (1) querying the peer service
provider more than once at different times and comparing the obtained results, and (2)
preparing a test query for which the querying peer knows the answer. In both of these

cases, the query initiator can directly verify whether the related peers executed correctly
(Papalilo, 2005).

 Proposed Algorithm

The procedure of our proposed algorithm for tolerating non-permanent semantic mapping
faults comprises of two main parts: fault detection and fault recovery. The algorithms
steps are:

1) To detect faults, peers will be tested with a repeated query as follows:

a) Submit K sequential queries in place of one query every time query
submission or query forwarding is performed. Queries are separated from
each other by a time δ. For instance, if K is set to 2 then the origin query
and its clone will be separated by δ time. That is, the second query will be
posed at t0 + δ, where t0 is the time for initial query and δ is the delay time
between the two sequential queries. The system designer determines the
maximum transient-pulse duration δ that the system must tolerate. It is a
system variable, and characterizes the length of the time which system is
guarded against the negative impact of the transient fault. That is, faults
occurring during the transient-pulse period will have no impact on the
system operational.

b) Query answers from replicated queries are compared for consistency. The
inconsistency among answers for the same query is a deciding criterion for
the transient fault occurrences. The consistency checking leads to the
following two cases:

(i) If query answers were consistent and incorrect then

querying peer concludes that the queried peer is incapable
of providing an answer to the query. Hence, it is
permanently faulty relative to the posed query.

(ii) If query answers were inconsistent, then a transient fault
must have occurred, and an action should take place to
eliminate its negative impact.

The consistency relation is a system-defined relation. An example of consistency
relations between two answers As1 and As2 is { ⊂ , ⊃ , ≡ } where answers As1 ⊂
As2 means that As1 is less general than As2, As1 ⊃ As2 means that As1 is more
general than As2 and As1 ≡ As2 means that As1 and As2 are identical.

 2) A transient fault recovery action comprises two steps:

a) Query answer cancellation. If a transient fault is detected, the infected query
impact on the semantic relation between peers should be ignored. This is
achieved by sending a cancel signal to the peer that originally initiated the
query. This signal indicates that answers resulting from the query should be

ignored. The cancel signal has one parameter, a query-id. The query-id
identifies the query for the semantic mapping under investigation. As each
peer returns the cancel signal to the peer it received the query from, the signal
reaches the query initiator and the result of a query with the query-id in the
cancel signal will be ignored. The result of query will be ineffective on
grounds of the trust peers have in their outgoing links.

b) Query re-submission. In order for queries to recover from the impact of the
transient faults, query re-submission needs to take place. This happens after
waiting for ∆2 length of the time from the last time a transient fault is detected
and query re-submission could take place. The query re-submission can be
repeated up to K times. The ∆2 value and the number of query retry are
system parameters. These values will be set by system administration in such
a way that a system will maximize the recall for the least additional queries.
These values could be determined experimentally. Further, Yinglong et at. (2007),
suggests that ontology update notification in distributed systems should be
enforced and performed within a time window. In the latter case the ∆2 value
will be set equal to time constraint.

We can make the following observations about this algorithm:

• Query consistency checking could be accomplished in two different ways: Central
Checking and Distributed Checking.

(i) Distributed Checking: when peers receive identical queries separated
from each other by ∆ time, they can use this knowledge for testing their
immediate neighbors on the mapping path. This will be done by
comparing query answer results. An inconsistency among query answers
would be an indication of transient faults.
(ii) Centralized Checking: the querying peer will receive all answers for
repeated identical queries. That is, the querying peer will receive a number
of answer sets of different size and checks for consistency by comparing
the answer sets. An inconsistency among answer sets would be used for
transient fault detection.

There are tradeoffs for each approach. In the distributed fault detection

approach, peers are required to perform some extra functionality, and send an extra
message once a fault has been detected. In the centralized approach, a new policy for
query re-submission and out-going mapping link reward (punishment) could be
adapted. For example, queries could re-submit only when the all answers of the first
query were wrong resulting in a reduced number of messages exchanged. However,
the heavy computation that has to be done on querying peer and computation
capabilities of existing peers will not be used.

• The impact of submitting multiple queries in place of one query on the level of

the confidence peers have in their out-going mapping links has to eliminate. This
could be done by assigning unique IDs to queries. Multiple queries with the same
ID will be treated as one query. A querying peer will reward (punish) an out-

going mapping link only once for receiving multiple answers from multiple
queries with same query ID.

• Re-submitting queries in working environment with frequent transient faults

could end-up repeating queries forever. To cope with this situation, our proposed
solution will tolerate up to x transient faults, where x is a system variable whose
value is determined as a ratio of queries to transient faults. Peers need to do some
extra computation and book keeping works in order to determine the value of x.

• All peers run the same algorithm, and they update their confidence value in out-

going mapping links based on the results they obtain from their own queries. The
updating policy could be changed by requesting querying peers to propagate their
acceptance (rejection) to query answers along the mapping path(s). This will help
peers along the mapping path to update their confidence value in their out-going
mapping links, based on the use by other peers.

Figure 10 shows a diagram of our proposed solution, where K = 2 and the delay between
queries is δ. The two arrows, As1 and As2 represent the query answers. In a case when
there is no answer to a query, the arrow represents the time-out signal from the system
clock. Having each peer check and capture transient mapping faults, we will build a
robust system where the chances for expelling peers for non-permanent semantic
mapping faults are minimized.

Q Q1t = t0

R

a. Peer1 sends two queries to Peer2 seperated by & time.

As2

Q2

b. Peer 1 receives an answer from Peer2; compares
 anaswers and take actions accordingly.

Query evaluator component

As1

Q1

Peer n−k

Peer n−k+1

Peer n−k+1Peer n−k

Fail

cancel(query−id)

2

1

t0 + 1

Figure 10 Query Replication and Answer Consistency Checking Steps

The algorithm is valuable, not only because it is simple in concept and easy to apply, but
also because it is capable of detecting a range of faults without the need for knowing the
causes of the faults. However, the algorithm will increase in the number of messages
exchanged, could increase in computation time and will not detect all faults (e.g. faults
caused by static mapping and context will not be detected).

 Alternative Approaches

A key element for fault-tolerance is redundancy. That is, additional resources to provide
capability for detecting/tolerating faults which will not be used if the fault-tolerant were
not required (Laura, 2001). In the following we discuss briefly some alternatives to the
described time redundancy technique.

Inspired by hardware redundancy, Software Redundancy techniques have emerged to
tolerate software faults. It encompasses additional software programs, components,
modules or codes in the system to support fault tolerance. Software redundancy could be
used for tolerating software faults originating from requirement specification, design
and/or coding errors. Different versions of the same software with the same functionality
would be developed by different teams and possibly in different programming languages.
Each software version would run on a separate machine, with same input. The program
outputs are then compared for consistency.

Performing multiple computations in a dynamic environment such as P2P semantic
knowledge sharing systems is difficult and subject to termination, thus depriving peers
from opportunities to produce responses. A reasonable alternative would be the
duplication of critical variables and/or blocks of code and comparing the output of these
code blocks and variables at different stages of the execution of the same program.

Information or data redundancy, some times grouped with software redundancy, utilizes
diverse data, i.e., variations in the input format or structure, to assist in fault tolerance.
A data re-expression algorithm could be used to generate multiple formats of data with
same content but different representations. The generated data, multiple identical queries
in the context of P2P semantic knowledge sharing systems, is then used as input into
different versions of the same programs or, software component, for detecting and
tolerating faults.

One more way to enable P2P semantic knowledge sharing systems to be fault-tolerant is
by using the majority voting technique, a well-known technique used for determining
consensus outcome from the results delivered by multiple computation sources. Consider
the P2P semantic knowledge sharing system presented in Figure 11, where nodes
represent peers, links represent mapping among peers and directed paths represented
query answers to the query Q initiated by peer A.

A

B
C

D E

F
G

H

Q

Figure 11 Multiple Answers Use Voting for Consensus

The selection (de-selection) of a query result among multiple results returned from
different translation paths by query initiator could by done using simple majority voting
technique. The voting technique here would serve three purposes: (i) reduces number of
answers to one answer, (ii) increase the confidence in the query result since it is been
asserted by the majority of mapping paths, and (iii) increases the trust in the decision
that will be made about correctness of the out-going mapping links.

In summary, there are various techniques for improving system fault-tolerance capability.
Some of these techniques are well-known for handling faults in certain situations. As
discussed above, the time redundancy, software block redundancy and voting techniques
are more suitable than others for adding fault-tolerance to the P2P semantic knowledge
sharing systems. Developing software, time and information redundancy based
algorithms for tolerating faults in P2P semantic knowledge sharing systems, and carrying
out empirical studies in order to determine the best possible usage of redundancy
techniques for tolerating faults is a significant contribution to the science.

CONCLUSION

In this chapter, we identified one of the shortcomings of existing research on emergent
semantics: current approaches fail to distinguish between permanent and transient
semantic mapping faults. Instead, they treat all faults as permanent.

We identified a list of different situations that could cause non-permanent semantic
mapping faults and classified them along temporal dimension.

We demonstrated that it is difficult to reach a complete state of emergent semantics
among independent, heterogeneous and distributed local ontologies, unless the system
can eliminate or reduce the impact of temporary semantic mapping faults. The reason is
that treating all faults as permanent may result in the erroneous labeling of peers as

having incompatible knowledge representations, which reduces the number of peers that
can participate in emerging shared semantics.

We proposed to solve the lack of fault-tolerance problem using standard techniques from
fault-tolerant discipline. The proposed solution improves the opportunities for emerging
more agreeable semantics, as a higher number of peers will be available to participate in
emerging shared semantics. Teaming up more semantically related peers with one
another also could enable query answers with higher precision (recall).

9. FUTURE RESEACH DIRECTION

In addition to the demand for augmenting fault-tolerance capability, we believe that
having more intelligent peers than those used in current emergent semantics system is
another viable and open research area. Peers participating in the emergent semantic
could be equipped with learning capability. They could make use of the discovered
semantic affinity between their own concepts and concept from other peers’ ontologies
for better query routing answering.

Storing network locations of foreign concepts that are identified, during query processing
and answering, as complementary concepts or properties to the peers’ own concepts,
constitute the learning capability peers lack today. Another important learning issue
would be aligning or integrating semantically related foreign concepts into local
ontologies. Peers should preserve their state. State maintenance refers to the endowment
of peers with the ability to preserve the knowledge they acquire from the interaction with
other peers in the network between sessions, i.e. between peers disconnection and
reconnection to the network.

Investigating emergent semantics system performance would be another important issue
to be considered in future research. This includes further study on query answer caching,
overcoming point-to-point semantic mapping limitation without the need for query
broadcasting.

Studying the effect of non-permanent semantic mapping faults in areas such as consensus
formation, semantic Web services and semantic negotiation is an important matter worth
investigating.

We consider the above-mentioned issues to be viable and open research subjects which
need further study and attention from research communities.

Acknowledgement

I would like to thank Dr. Abdulghany Mohamed from Sprott School of
Business, Carleton University for his valuable time, thoughts and discussions we had
throughout writing this chapter.

QUESTION FOR DISCUSSION

Basic:

1. Define the semantic heterogeneity and semantic interoperability problems.
2. Define the concept of semantic reconciliation.
3. What are semantic mapping faults?
4. What is the difference between a semantic mapping fault and a temporal semantic

mapping fault?
5. What are advantages/disadvantages of common upper ontologies?
6. What are advantages/disadvantages of local ontologies?
7. Why do some researchers prefer simple, less expressive ontologies over complex

ontologies for open and dynamic environments?

Intermediate:

1. Name two consequences of failing to tolerate temporal semantic mapping faults.
2. How could peers extend their local ontologies using the proposed fault-tolerant

emergent semantics?
3. Can you think of causes of temporal semantic mapping faults other than those

described in the chapter?

Advanced:

1. Can you describe a technique, other than time redundancy, to solve temporal
semantic mapping faults?

2. Using the provided algorithm, is it possible to identify precisely the cause of
temporal faults any time a fault occurs? How important is that?

3. Should we design a set of criteria for selecting query answers, and what are they?
4. How would you measure the effect of non-permanent semantic mapping faults on

emergent semantics?
5. Create a simulation model for transient semantic mapping faults?

SUGGEGESTED ADDITIONAL READING

Antoniou G. and Harmelen F. V. (2004). A Semantic Web Primer. Cambridge,
Massachusetts, The MIT Press, USA.

Berners-Lee T. (2000) Weaving the Web: The Original Design and Ultimate Destiny of
the World Wide Web. Collins Publishing, New York, USA.

Bonifacio M., Bouquet P., et al. (2004). Peer-Mediated Distributed Knowledge
Management. Abecker A., Dignum, V & Elst L. v. (Ed.), Agent-Mediated Knowledge
Management: International sysmposium Amkm, Springer, 31-47.

Cardoso J. & Sheth A. P. (Eds.) (2006). Semantic Web Services, Processes and
Applications, Springer publication, USA.

Elmagarmid A. Rusinkiewicz M. & Sheth A. (1999). Management of Heterogeneous
Autonomous Database Systems, Morgan Kaufmann publication, San Francisco,
California.

Klein M., Kiryakov A. et al (2002). Finding and Characterizing Changes in Ontologies.
In Conceptual Modeling – ER, 21st International Conference on Conceptual Modeling
Proceedings, 79-89.

Lacy L. W. (2005). OWL: Representing Information Using the Web Ontology
Language, Victoria, BC, Canada.

Mawlood-Yunis A-R., Weiss W. & Santoro N. (2006). Issues for Robust Consensus
Building in P2P Networks. In Intl. Workshop on Ontology Content and Evaluation in
Enterprise (OnToContent), LNCS 4278, 1020-1028.

Mena E., Kashyap V. et al (2000). Imprecise Answers in Distributed Environments:
Estimation of Information Loss for Multi-Ontology Based Query Processing. Journal of
Cooperative Information Systems, 9(4), 403-25.

Stuckenschmidt H. & Harmelen F. V. (2005), Information Sharing on the Semantic Web,
Springer publication, Germany.

Spaccapietra Stefano (Ed.). Journal on Data Semantics Vol. I, II, III, IV, V, VI, VII.
Springer Publishing.

REFERENCES

Aberer K., Cudre-Mauroux P. & M. Hauswirth (2003). Start Making Sense: The Chatty
Web Approach for Global Semantic Agreements. Journal of Web Semantics, 1(1), 89-
114.

Aberer K., Catarci T. et al. (2004). Emergent Semantics Systems. In Lecture Notes in
Computer Science Vol.3226, p 14-43.

Anghel L., Alexandrescu D. & Nicolaidis M.(2000). Evaluation of a Soft Error
Tolerance Technique Based on Time and/or Space Redundancy. In Proceedings of 13th
Symposium on Integrated Circuits and Systems Design, IEEE Computer Society, 237 –
242.

Avizienis A. (1995). The Methodology of N-Version Programming. In M. R. Lyu (ed.),
Software Fault Tolerance, Wiley, 23-46.

Axelrod R. (1997). The Complexity of Cooperation. Princeton University Press.

Bahceci E., Soysal O. & Sahin E. (2003). A Review: Pattern Formation and Adaptation
in Multi-Robot Systems. Report CMU-RI-TR-03-43, Robotics Institute, Carnegie Mellon
University.

Bondavalli A., Giandomenico F. D & Grandoni F. (2000). Threshold-based Mechanisms
to Discriminate Transient from Intermittent Faults. IEEE Trans. on Computers, 49(3),
230-45.

Bondavalli A., Chiaradonna S. et al (1997). Discriminating Fault Rate and Persistency to
Improve Fault Treatment. In Digest of Papers. Twenty-Seventh Annual Intl. Symposium
on Fault-Tolerant Computing, 354-62.

Bonifacio M., Bouquet P., et al. (2002). KEx: a Peer-to-Peer Solution for Distributed
Knowledge Management. In Karagiannis D. & Reimer U.(Eds.) Practical Aspects of
Knowledge Management, 4th International Conference, LCNS, Springer, 490-500.

Bouquet P., Giunchiglia F. et al (2003). C-OWL: Contextualizing Ontologies. In 2nd Intl.
Semantic Web Conf., Springer. LNCS vol. 2870, 164-179.

Castano S., Ferrara A. & Montanelli S. (2003). H-Match: an Algorithm for Dynamically
Matching Ontologies in Peer-based Systems. In the 1st VLDB Int. Workshop on
Semantic Web and Databases (SWDB), 231-250.

Dupont E., Nicolaidis M. & Rohr P. (2002). Embedded Robustness IPs for Transient-
Error-Free ICs. IEEE Design & Test, 19(3), 56 - 70.

Fergus P., Mingkhwan A. et al.(2003). Distributed Emergent Semantics in P2P
Networks. In Second IASTED Intl. Conf. on Information and Knowledge Sharing,75-82.

McGuinees D. L. (2003) Ontologies come of Age . Book chapter in Spinning the
Semantic Web: Bringing the World Wide Web to its Full Potential, Fensel D. Hendler J.
Lieberman H. et al. (eds). The MIT Press.

Gal A. (2001) Semantic Interoperability in Information Services: Experiencing with
CoopWARE. SIGMOD Record, 28(1),68-75.

Ghidini C. & Giunchiglia F. (2001). Local Models Semantics, or Contextual Reasoning
= Locality + Compatibility. Artificial Intelligence Archive, 127(2), 221-259.

Glushko R. J. & McGrath T. (2005). Document Engineering, Cambridge, Massachusetts,
The MIT Press.

Gomez-Perez A., Fernandez-Lopez M. and Corcho O. (2003). Ontological Engineering.
Springer publishing, London.

Gruber T. R. (1993). A Translation Approach to Portable Ontology Specifications,
Knowledge Acquisition Archive, 5(2), 199-220.

Guarino N. (1998). Formal ontology and information systems. Proceedings of Formal
Ontology in Information Systems, pp. 3-15, 1998.

Gutierrez, C., Hurtado and C. Vaisman, A. (2005) Temporal RDF. The Semantic Web:
Research and Applications. Second European Semantic Web Conference, ESWC 2005.
Proceedings (Lecture Notes in Computer Science Vol. 3532), p 93-107

Haase P., Broekstra J. et al. (2004). Bibster -- A Semantics-based Bibliographic Peer-to-
Peer System. In Third Intl. Semantic Web Conf. (ISWC)}, 122-136.

Halevy A., Ives Z. et al. (2003). Piazza: Mediation and Integration Infrastructure for
Semantic Web Data. In the Intl. Worldwide Web Conf. WWW-03.

Hurtado, C.and Vaisman, A. (2006) Reasoning with temporal constraints in RDF.
Principles and Practice of Semantic Web Reasoning. 4th International Workshop,
PPSWR 2006. Revised Selected Papers (Lecture Notes in Computer Science Vol. 4187),
p 164-78

Larry K. Hanjo J. & Wooju K (2006). Emergent Semantics in Knowledge Sifter: An
Evolutionary Search Agent Based on Semantic Web Services. Journal on Data Semantics
VI, 187-209.

Laura L. P. (2001). Software Fault Tolerance Techniques and Implementation.
 Norwood, Mass. Publication.

Mawlood-Yunis A-R., Weiss M. and Santoro N. (2007). Fault Classification in P2P
Semantic Mapping. In Workshop on Semantic Web for Collaborative Knowledge
Acquisition (SWeCKa)} at Intl. Conf. on Artificial Intelligence (IJCAI).

Mena E., Illarramendi A. et al (2000). OBSERVER: An Approach for Query Processing
in Global Information Systems Based on Interpretation Across Pre-existing Ontologies.
Distributed and Parallel Databases, 8(2), 223-71, 2000.

Mika P. (2005). Ontologies are Us: A Unified Model of Social Networks and Semantics.
In 4th Intl. Semantic Web Conference, 522-36.

Naiman C. F. & Ouskel A.M (1995) A Classification of Semantic Conflicts in
Heterogeneous Database Systems. Journal of Organizational Computing, 5(2),167-193.

Noy N. F. & Musen M. A. (2004a). Ontology Versioning in an Ontology Management
Framework. IEEE Intelligent Systems, 19(4), 6-13.

Noy N. F. & Klein M. (2004b). Ontology Evolution: Not the Same as Schema Evolution.
Knowledge and Information Systems, 6(4), 428-440.

Ouksel A.M (1999). Ontologies are Not the Panacea in Data Integration: A Flexible
Coordinator to Mediate Context Construction. Distributed and Parallel Databases, 15(1),
7-35.

Paradhan D. K. (1996). Fault-Tolerant Computing System Design. Prentice-Hall PTR
publication.

Papalilo E., Friese et al (2005). Trust Shaping: Adapting Trust Establishment and
Management to Application Requirements in a Service-Oriented Grid Environment. In
Proc. 4th Intl. Conf. on Grid and Cooperative Computing (GCC), LNCS 3795, pp. 47-58,

Pizza M., Strigini L. et al. (1998) Optimal Discrimination between Transient and
Permanent Faults. In Third IEEE Intl. High-Assurance Systems Engineering Symposium,
214-23,.

Ram S. & Park J. (2004) Semantic Conflict Resolution Ontology (SCROL): An Ontology
for Detecting and Resolving Data and Schema-Level Semantic Conflicts. IEEE
Transactions on Knowledge and Data Engineering, 16(2), 189-202.

Robert. Mc et al. (2005)Mapping maintenance for data integration systems. In
Proceedings of the 31st international conference on VLDB, Pages: 1018-1029.

Roddick J. F. (1995). A Survey of Schema Versioning Issues for Database Systems.
Information and Software Technology, 37(7), 383-393.

Rousset M. C. (2004). Small Can Be Beautiful in the Semantic Web.
In Third Intl. Semantic Web Conf., p 6-16.

Rousset, P. Chatalic et al. (2006) SomeWhere: A Scalable P2P Infrastructure for
Querying Distributed Ontologies. 5th Intl. Conf. on Ontologies Databases and
Applications of Semantics, 698-703.

Staab S. (2002) Emergent Semantics. IEEE Intelligent Systems, 17(1), 78-86.

Staab S.(2005) Social Networks Applied. IEEE Intelligent Systems, 20(1),80-93.

Staab S. & Stuckenschmidt S. (2006). Semantic Web and Peer-to-Peer, Springer-Verlag,
Berlin Heidelberg, Germany.

Stephens L.M. and Huhns M.N.(2001) Consensus Ontologies. Reconciling the
Semantics of Web Pages and Agents. In IEEE Internet Computing, 5(5), 92-95.

Tempich C., Staab S. Wranik A.(2004). REMINDIN': Semantic Query Routing in Peer-
to-Peer Networks Based on Social Metaphors. In 13th Intl. Conf. on the World Wide Web,
640-649.

Tempich C., Pinto H.S. et al. (2005). An Argumentation Ontology for Distributed,
Loosely-controlled and Evolving Engineering Processes of Ontologies (DILIGENT).In
Second European Semantic Web Conf. (ESWC), LNCS 3532, 241-56.

Wu J. and Axelrod R.(1995). How to Cope with Noise in the Iterated Prisoner's
Dilemma. Journal of Conflict Resolution, 39(1),183-189.

Yinglong M. , et al. (2007) A Timing Analysis Model for Ontology Evolutions Based
on Distributed Environments. In (Zhi-Hua Zhou, Hang Li, Qiang Yang (Eds.):
Advances in Knowledge Discovery and Data Mining, 11th Pacific-Asia Conference,
PAKDD, LNCS 4426, pages 183-192.

Zhu H., Madnick S. E. & M. D. Siegel (2004). Effective Data Integration in the Presence
of Temporal Semantic Conflicts. In 11th Intl. Symposium on Temporal Representation
and Reasoning, 109-114.

