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Abstract

Unlike their static counterpart, mobile sensors can self-deploy in a purely decentral-
ized and distributed fashion, so to reach in finite time a state of static equilibrium in
which they cover uniformly the environment. We consider the self-deployment prob-
lem in a ring (e.g., a circular rim); in particular we investigate under what conditions
the problem is solvable by a collection of identical sensors without a global coordinate
system, however capable of determining the location (in their local coordinate system)
of the other sensors within a fixed distance (called visibility radius). A self-deployment
is exact if within finite time the distance between any two consecutive sensors along
the ring is the same, d; it is ǫ-approximate if within finite time the distance between
two consecutive sensors is between d − ǫ and d + ǫ.

We first of all prove that exact self-deployment is impossible if the sensors do not
share a common orientation of the ring. This impossibility result holds even if the
sensors have unlimited memory of the past, their visibility radius is unlimited, and all
their actions, when active, are instantaneous.

We thus consider the problem in an oriented ring. We prove that if the sensors
know the desired final distance d, then exact self-deployment is possible. If the desired
final distance d is not known, we prove that ǫ-approximate self-deployment is possible

for any chosen ǫ > 0. The proofs of these results are constructive. In each case
we present a simple protocol that allows the sensors to achieve the claimed level of
self-deployment. These positive results hold even if sensors are oblivious (i.e., have
no memory of past actions and computations), asynchronous (i.e., a sensor becomes
active at unpredictable times and the duration of its actions is unpredictable), and
have limited visibility radius. Our protocols can be employed, without modifications,
on the perimeter of any convex region.
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1 Introduction

1.1 The Framework

We consider a collection of micro-robots or sensors, each capable of limited (sensing, com-
putational) activities, to be deployed in a region ensuring that the area is covered uniformly,
so to satisfy some optimization criteria (e.g., to maximize sensing coverage). If the sensors
are mobile, i.e., capable of moving in the region, they can self-deploy without external (e.g.,
human) assistance.

Some of the initial proposals on the deployment of mobile sensors were still based on
centralized approaches, e.g. employing a powerful cluster head to collect the initial location
of the mobile sensors and determine their target location [32]. However the current research
efforts are on the development of local protocols that allow the sensors to move from an initial
random configuration to a uniform one acting in a purely local, decentralized, distributed
fashion. An essential requirement is clearly that the sensors will reach a state of static
equilibrium, that is the self-deployment will be completed within finite time. How this task
can be efficiently accomplished continues to be the subject of extensive research (e.g., see
[11, 12, 13, 14, 18, 19, 23, 30, 31]). Similar questions have been posed in terms of scattering
or coverage in cooperative mobile robotics and swarm robotics (e.g., [2, 15]), as well as in
terms of the formation problem for those entities (e.g. [3, 5, 6, 8, 9, 17, 25, 27, 28, 29]). The
two key differences are that (1) usually these robots are more powerful (both memory-wise
and computationally) than sensors, and (2) typically there is no requirement for the robots
to reach a state of static equilibrium (e.g., in most cases the swarm just converges towards
a desired formation or pattern). The existing self-deployment protocols differ greatly from
each other depending on the assumptions they make; for example some require the sensors
to be deployed one at a time [13, 15], while others requires prespecified destinations for the
sensors [19]. However, sensors are usually dispersed in the environment all together, more
or less at the same time, with no a-priori knowledge of where their final location should be.
Actually, unlike the case of ad-hoc networks, for small sensors localization is very hard, so
it can not be generally assumed that the sensors know where they are.

The micro-robots we consider here are autonomous (i.e., without a central control),
anonymous (i.e., indistinguishable by their appearance), randomly dispersed in the envi-
ronment, and without a common coordinate system. They are however capable of determin-
ing the location (in their local coordinate system) of the other sensors within a fixed radius
(called visibility radius). Under these general conditions, none of the existing self-deployment
proposals is capable of providing a complete uniform coverage. This impossibility is hardly
surprising since those protocols are generic, that is they must work in any environment
regardless of its topology or structure.

This fact opens a series of interesting questions, first of all whether it is possible for the
sensors to self-deploy achieving uniform coverage in specific environments (e.g., corridors,
grids, rims). The next important question is on the capabilities and a priori knowledge
needed by the sensors to achieve this goal; in other words, how ”weak” the sensors can be
and still be able to uniformly self-deploy.
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Some partial answers have been recently found. In particular, a self-deployment algorithm
has recently been developed for the line (e.g., a rectilinear corridor) [5], and several have
been designed for the ring as part of more complex protocols for uniform circle formation
[3, 6, 17, 25, 29]. All these protocols yield however only approximate solutions; interestingly,
they operate even with very weak sensors: anonymous, oblivious, asynchronous, and without
a common coordinate system. To date, no exact solution exists for these types of sensors.

In this paper we consider precisely these questions and provide a complete answer for
these types of sensors in the case of ring, that is when the environment where the sensors
must be deployed is a circular rim. This situation occurs for example when the the sensors
have to surround a dangerous (convex) area and can only move along its outer perimeter.

1.2 Our Results

We study the uniform self-deployment problem in a ring: starting from an initial random
placement on the ring, the sensors must within finite time position themselves along the ring
at (approximately) equal distance; see Figure 1. The sensors are autonomous (i.e., without a
central control) and anonymous (i.e., indistinguishable by their appearance). Furthermore,
they do not necessarily have a common coordinate system. We assume that each sensor is
capable of determining, in its own coordinate system, the position of the sensors within a
fixed limited radius, called visibility radius.
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Figure 1: Starting from an initial arbitrary placement (a), the sensors must move to a
uniform cover of the ring (b).

A self-deployment algorithm, the same for all sensors, will specify which operations a
sensor must perform whenever it is active. We say that a self-deployment algorithm is exact
if within finite time the sensors reach a uniform configuration: the distance between any two
consecutive sensors along the ring is the same, d. We say that a self-deployment algorithm
is ǫ-approximate if the distance between two consecutive sensors is between d − ǫ and d + ǫ.

We first of all establish a strong negative result. In fact, we prove that exact self-
deployment is actually impossible if the sensors do not share a common orientation of the
ring; notice that this is much less a requirement than having global coordinates or sharing
a common coordinate system. This impossibility result holds even if the sensors (1) have
unlimited memory of the past computations and actions, (2) all their actions, when active,
are instantaneous and (3) their visibility radius is unlimited.
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Faced with this strong negative result, the interesting question becomes under what
restrictions the self-deployment problem can be solved with an exact algorithm. Since the
impossibility result holds in absence of common orientation of the ring, we consider the
problem in oriented rings.

We prove that, in an oriented ring, if the sensors know the desired final distance d, then
exact self-deployment is possible. In fact we present a simple protocol and prove that it
allows the sensors to deploy themselves uniformly along the ring in finite time. This positive
result holds even for very weak sensors: (1) oblivious (i.e., each sensor has no memory
of past actions and computations), (2) asynchronous (i.e., each sensor becomes active at
unpredictable times and the duration of its actions is finite but unpredictable), and (3)
every sensor has only a fixed visibility radius v > 2d.

Finally we turn to the case of an oriented ring when the desired final distance d is
unknown. We present another protocol based on a very simple strategy and prove that it is
ǫ-approximate for any fixed ǫ > 0. As in [4, 5], the difficulty is not in the protocol but in the
proof of its correctness. Also in this case, the protocol works even for the weakest sensors:,
oblivious, asynchronous, with only a fixed visibility radius v ≥ 2d.

Our protocols can be employed not only on a circular rim but also, without modifications,
on the perimeter of any convex region.

1.3 Related work

The self-deployment problem has been investigated with the goal to cover the area so to
satisfy some optimization criteria, typically to maximize the coverage (e.g., [11, 13, 14, 19,
31]). Typically, distributed self-deployment protocols first discover the existence of coverage
holes (the area not covered by any sensor) in the target area based on the sensing service
required by the application. After discovering a coverage hole, the protocols calculate the
target positions of these sensors, that is the positions where they should move. Loo et
al. [19] consider a system consisting of a number of cooperating mobile nodes that move
toward a set of prioritized destinations under sensing and communication constraints; unlike
them, we do not require prespecified destinations for the sensors. Howard et al. [13] address
the problem of incremental deployment, where sensors are deployed one-at-a-time into an
unknown environment, and each sensor uses information gathered by previously deployed
sensors to determine its deployment location.

The self-deployment problem is related to a well studied problem in the field of swarm
robotics: that of the pattern formation (e.g., [8, 28]); in particular to the one of uniform circle
formation [3, 6, 17, 25, 29]. In this problem, very simple robots are required to uniformly
place themselves on the circumference of a circle not determined in advance (i.e., the sensors
do not know the location of the circle to form). The main difference between these robotics
investigations and our self-deployment problem in the ring is that in those problems, the
robots can freely move on a two dimensional plane in which they have to form a ring; in
contrast, our sensors can move only on the ring, which is the entire environment.

A standard assumption in swarm robotics, and used in this paper, is that a sensor is
capable of determining the location of its neighbours within its visibility radius. In most
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investigations on micro-robots, the determination of one’s neighbours is done by sensing
capabilities (e.g., vision); in this case, any sensor in the sensing radius is detected even if
inactive (e.g. [3, 5, 6, 8, 10, 17, 25, 28]), and thus no other mechanisms are needed. In
most investigations on wireless sensor networks, determination of the neighbours within the
sensing radius is assumed to be achieved by radio communication (e.g., [26]); in this case,
since an inactive sensor does not participate in any communication, the simple activity of
determining one’s neighbours, to be completed, requires the use of randomization or the
presence of sophisticated synchronization and scheduling mechanisms, such as the Virtual
Node Layer (e.g., [20, 21, 24]).

In our protocol for unknown d, the strategy we use is go-to-half. Interestingly it was
shown by Dijkstra [7] that in an unoriented ring go-to-half does not converge, and hence can
not be used even for approximate self-deployment. It does however converge in a line as
recently proved [5]. Convergence in the unoriented ring has been recently announced for the
go-to-half-half strategy [6, 25].

2 Terminology and Model

We use the model commonly employed for micro-robots (e.g., [3, 4, 5, 6, 8, 10, 17, 25, 28, 29]).
In particular, a sensor (or micro-robot) is viewed as a point and modeled as a computational
unit capable of determining the positions of other sensors in its surrounding (within a fixed
radius), performing local computations on the determined data, and moving towards the
computed destination.

Each sensor has its own local coordinate system and there is no a priori agreement among
them; there is however agreement on the unit of distance. The sensors are autonomous (i.e.,
without a central control) and anonymous, meaning that they are a priori indistinguish-
able by their appearance, and they might not have identifiers that can be used during the
computation.

Each sensor operates in a Look - Compute - Move - Wait cycle: At any point in time, a
sensor is either active or inactive. When active, a sensor performs the following operations:

1. (Locate) It determines, in its own coordinate system, the positions of the other sensors
within its radius of visibility; this constitutes its view of the world.

2. (Compute) It performs a local computation, according to an algorithm (the same for
all sensors) that takes in input its view of the world and returns a destination point.

3. (Move) It moves towards the computed destination point; if the destination point is
the current location, the sensor stays still.

A move may stop before the robot reaches its destination, e.g. because of limits to the
sensor’s motion energy. When inactive a sensor

4. (Wait) It is idle and does not perform any operation.
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There are two limiting assumptions in the model:

(A1) The amount of time required by a sensor to complete a cycle is not infinite,
nor infinitesimally small. Note that, as a consequence, each sensor will become active
infinitely often.

(A2) The distance traveled by a sensor in a cycle is not infinite, nor infinitesimally
small (unless it brings the sensor to the destination point).

Different settings arise from different assumptions that are made on the sensors’ capabil-
ities, and on the amount of synchronization among the cycles of the sensors. In particular,

• Synchronization. Depending on the amount of synchronization existing among the
cycles of the different sensors, two main sub-models are defined, the semi-synchronous
model (Ssync), and the asynchronous model (Async).

In the semi-synchronous model (Ssync), the cycles of all sensors are fully synchronized:
there is a global clock tick reaching all sensors simultaneously, and a sensor’s cycle is
an instantaneous event that starts at a clock tick and ends by the next; the only
unpredictability is given by the fact that at each clock tick, every sensor is either
active or inactive, and only active sensors perform their cycle. The unpredictability is
restricted by the fact that at least one sensor is active at every time instant, and every
sensor becomes active at infinitely many unpredictable time instants. This model is
used e.g. in [1, 3, 4, 5, 6, 28].

In the asynchronous model (Async), no assumptions on time exist: the amount of
time spent in each state of a cycle is finite but otherwise unpredictable. In particular,
the sensors do not have a common notion of time. As a result, sensors can be seen
by other sensors while moving, and thus computations can be made based on obsolete
observations. This (more realistic but more difficult) model is used e.g. in [3, 8, 9, 10,
16, 17, 22].

• Visibility. Depending on the location capabilities, two main submodels can be iden-
tified, the limited visibility model, and the unnlimited visibility model.

In the unlimited visibility model, the sensors are capable of determining the location of
all sensors regardless of their position in the region. This model is the most commonly
used for micro-robots, e.g. in [1, 3, 4, 6, 8, 16, 17, 22, 25, 27, 28].

In the limited visibility model, each sensor can only determine the location of sensors
only up to a fixed distance v > 0 from it. This (more realistic but more difficult) model
is used less often for micro-robots, e.g. in [5, 10, 15], while is most common for wireless
sensor networks e.g. in [18, 21, 26].

• Memory. In addition to its programs, each sensor has a local memory, or workspace,
used for computations and to store different amount of information (e.g., regarding
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the location of its neighbours) obtained during the cycles. Two submodels have been
identified, depending on whether or not this workspace is persistent.

In the persistent memory model, all the information contained in the workspace is
legacy: unless explicitly erased by the sensor, it will persist thoughout the sensor’s
cycles. This model is commonly used for both wireless sensor networks and micro-
robots. A particular case of persistent memory, sometimes employed for micro-robots,
is the unbounded memory, where no information is ever erased; hence sensors can
remember all past computations and actions (e.g., see [27, 28]).

In the oblivious model, model, all the information contained in the workspace is cleared
at the end of each cycle. In other words, the sensors have no memory of past actions
and computations, and the computation is based solely on what determined in the
current cycle. The importance of obliviousness comes from its link to self-stabilization
and fault-tolerance. This model is used e.g. in [3, 4, 5, 6, 8, 10, 17].

Let S = {s1, . . . , sn} be the n sensors initially randomly placed on the ring C (see Fig-
ure 1). We assume that initially no two sensors are placed at the same location; all our
algorithms will avoid having two sensors simultaneously occupying the same point.

Let di(t) be the distance between sensor si and sensor si+1 at time t; when no ambiguity
arises, we will omit the time and simply indicate the distance as di.

Let d = L/n, where L denotes the length of the ring C. We say that the sensors have
reached an exact self-deployment at time t if di(t) = d for all 1 ≤ i ≤ n. Given ǫ > 0, we say
that the sensors have reached an ǫ-approximate self-deployment at time t if d − ǫ ≤ di(t) ≤
d + ǫ for all 1 ≤ i ≤ n.

We say that an algorithm A correctly solves the exact (resp. ǫ-approximate) self-deployment
problem if, in any execution of A by the sensors in C, regardless of their initial position in
C, there exists a time t′ such that for all t ≥ t′, the sensors have reached an exact (resp.
ǫ-approximate) self-deployment at time t.

As mentioned in the introduction, we both prove impossibility results and present correct
solution protocols. The impossibility results are established even if the sensors are very strong
and powerful: they have unlimited memory and unlimited visibility, a situation we denote as
Unlim, and their cycles are semi-synchronous. Our self-deployment protocols are designed
and proven to work correctly even with very simple weak sensors: they are oblivious and
with limited visibility, a situation we denote as Limt, and the cycles are fully asynchronous.

3 Impossibility Without Orientation

In this section, we show that, if the sensors do not share a common orientation of the ring,
the exact self-deployment problem is unsolvable; that is, if the ring is not oriented, there is
no deterministic protocol that always allows the sensors to place themselves uniformly on
the ring in a finite number of cycles. This result holds even if the sensors are very powerful
and they are fully synchronized: the sensors’ capabilities are unlimited and the scheduling is
semi-synchronous.
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Figure 2: (a) An example of starting configuration for the proof of Theorem 1. The black
sensors are in S1, while the white ones in S2. (b) Theorem 1: the adversary moves only
sensors in S1.

Theorem 1. Let s1, . . . , sn be all on a ring C. In absence of common orientation of C,
there is no deterministic exact self-deployment algorithm even if the sensors’ capabilities are
Unlim and the scheduling is Ssync.

Proof. By contradiction, let us assume there exists a deterministic algorithm A that always
solves the problem in a finite number of cycles, regardless of the initial position of the sensors
in C, and of their individual orientation of the ring. Since the scheduling is Ssync, we can
consider each execution as occurring at discrete time steps t0, t1, . . ., and it is fully specified
once the (non-empty) set of sensors active at each time step is specified.

Let n be even; and let partition the sensors in two sets, S1 = {s1, . . . , sn/2} and S2 = S\
S1. The sensors in S1 and S2 are placed on the vertices of two regular n/2-gons, and the
two polygons are rotated of an angle α < 360◦/n. Furthermore, all sensors have their local
coordinate axes rotated so that they all have the same view of the world (refer to Figure 2.a
for an example). In other words, the sensors in S1 share the same orientation, while those in
S2 share the opposite orientation of C. Let us the denote a configuration with such properties
by Y(α). A key property of a Y(α) configuration is the following.

Claim 3.1. Let the system be in a configuration Y(α) at time step ti.

1. If activating only the sensors in S1, no exact self-deployment on C is reached at time
step ti+1, then also activating only the ones in S2 no exact self-deployment on C would
be reached at time step ti+1; furthermore, in either case the system would be in a
configuration Y(α′) for some α′ < 360◦/n

2. If activating only the sensors in S1 an exact self-deployment on C is reached at time
step ti+1, then also activating only the sensors in S2 an exact self-deployment on C
would be reached at time step ti+1.

3. If activating only the sensors in S1 an exact self-deployment on C is reached at time
step ti+1, then activating both sets no exact self-deployment on C would be reached at
time step ti+1, and the system would be in a configuration Y(α′) for some α′ < 360◦/n.
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Algorithm 1 The Adversary

(a) If activating only the sensors in S1 no exact self-deployment on C is reached: then
activate all sensors in S1, while all sensors in S2 are inactive; otherwise, activate all
sensors. Go to (b).

(b) If activating only the sensors in S2 no exact self-deployment on C is reached: then
activate all sensors in S2, while all sensors in S1 are inactive; otherwise, activate all
sensors. Goto (a).

Proof. Cases 1. and 2. immediately follow from the fact that all sensors in S1 have the
same view of the world and the same placement in C as those in S2, but with the opposite
orientation. Consider now Case 3. Let s1 be an arbitrary sensor in S1 (refer to Figure 3).
By construction, s1 has two neighbors on C, s′2 and s′′2, and both of them are in S2. Let
β = min(s1ĉs

′

2, s1ĉs
′′

2) (clearly, s1ĉs
′

2 cannot be equal to s1ĉs
′′

2, otherwise the sensors would
be uniformly placed on C). By hypothesis, by activating only the sensors in S1, the sensors
would reach an exact self-deployment on C. In other words, they would all rotate of an angle
γ so that, at time ti+1, β + γ = 360◦/n. Symmetrically, if only the sensors in S2 would be
activated, they would rotate of an angle δ so that, at time ti+1, β + δ = 360◦/n. Therefore,
since β + γ + δ 6= 360◦/n, by activating all sensors, an uniform placement on C will not be
reached at time ti+1. Furthermore, by activating all sensors, at time ti+1 the sensors in S1

and S2 would be placed on the vertices of two regular n/2-gons, the two polygons are rotated
of an angle α′ < 360◦/n, and all sensors still have the same view of the world.

Let now continue the proof of the theorem. In the following, we define an Adversary that
will force A to never succeed in solving the problem. Algorithm 1 describes the protocol
followed by the Adversary. The adversary will choose Y(α) as the initial configuration. By
Claim 3.1, if the configuration at time ti ≥ t0 is Y(α) for some α < 360◦/n, then regardless of
whether the Adversary executes step (a) or (b), the resulting configuration is Y(α′) for some
α′ < 360◦/n, and hence no exact self-deployment on C is reached at time step ti+1. Hence,
there exists an infinite execution of A in which no exact self-deployment will ever be reached.
The alternating between steps (a) and (b) by the Adversary ensures the feasibility of this
execution: every sensor will in fact become active infinitely often. Hence, a contradiction
with the correctness of A is obtained.

Since the impossibility result of Theorem 1 holds in absence of common orientation of
the ring, we will now focus on oriented rings; we will then consider two cases, depending on
whether or not the desired final distance d is known to the sensors.

4 Oriented Ring with Interdistance Known

Let the sensors share a common orientation of the ring. In this section we examine the case
when the desired final distance d is known or computable (e.g., both the number or sensors
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Figure 3: Theorem 1. (a) If only the sensors in S1 are activated at t, all sensors would be
uniformly placed at time t + 1, with β + γ = 45◦. (b) If only the sensors in S2 are activated
at t, all sensors would be uniformly placed at time t + 1, with β + γ = 45◦. (c) Therefore,
if all sensors would be activated at t, they would not be in an exact self-deployment on C,
having γ + β + δ 6= 2π/n = 45◦. In all figures, the squares represent the destination of the
active sensors.
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and the length of the ring are known). We prove that, in this case, exact self-deployment is
indeed possible. This positive result holds even with weak asynchronous sensors, provided
their visibility radius is at least 2d.

Theorem 2. Let s1, . . . , sn share a common orientation of the ring C, and be able to locate
to distance 2d. If they know d, then exact self-deployment is possible even if the sensors’
capabilities are Limt and the scheduling is Async.

The proof of Theorem 2 is constructive: we present a simple protocol and prove that,
under the theorem hypothesis, allows asynchronous sensors with limited capabilities to deploy
themselves uniformly along the ring in finite time.

4.1 The Algorithm

The algorithm is very simple: sensors asynchronously and independently observe clockwise
at distance 2d, then they position themselves at distance d from the closest observed sensor
(if any).

Protocol Uniform Known (for sensor si)

• Locate clockwise at distance 2d. Let di be
the distance to si+1 (if visible, else di = 2d).

• If di ≤ d do not move.

• If di > d move clockwise and place yourself
at distance d from si+1 (if visible, else at dis-
tance d from current location).

4.2 Correctness

We say that a sensor is white if its distance to the clockwise neighbor is greater than or
equal to d. We say that a sensor is gray if such a distance is smaller than d. Moreover we say
that a white sensor is good if its distance to the clockwise neighbor is exactly d, it is large if
its distance is strictly greater than d.

To prove that the algorithm is correct, we must prove that, within finite time, all sensors
become good.

We call a white bubble a sequence of consecutive white sensors delimited by grey sensors.
Let W = si, si+1, . . . , si+m be a white bubble. Sensor si−1 is said to be the predecessor of the
bubble, sensor si+m+1 is the successor. Clearly predecessors and successors of a white bubble
are gray, unless the ring contains white sensors only; notice that in this case all sensors are
good. The size of W , indicated as |W | is the number of white sensors composing the bubble
(in this example m), its length, indicated by l(W ), is the length of the ring between the
predecessor of the white bubble and its successor (assuming not all sensors are white); i.e.,
l(W ) =

∑m
j=−1 di+j. Similarly, we define a gray bubble G = si, si+1, . . . , si+m as a sequence
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of consecutive gray sensors delimited by white sensors. Its size |G| is the number of gray
sensors in G; the length l(G) is defined as the length of the ring between the first and the
last gray sensor in G (note that this definition is different from l(W )).

The next two lemmas contain some simple facts.

Lemma 1. At each point in time, if there are gray sensors, then the number of white bubbles
equals the number of gray bubbles.

Lemma 2. At each point in time, if there are grey sensors there must be at least a bubble
(i.e., a large sensor).

Lemma 3. A white sensor cannot become gray.

Proof. In order for a white sensor sj to become gray, its distance to the next sensor sj+1

should become smaller than d. By definition, sensors move clockwise and move according to
the algorithm; so sensor sj+1 will never get closer to sj . On the other hand, by definition of
our algorithm, sensor sj will never move at a distance smaller than d to sj+1.

Lemma 4. Let W = si, si+1, . . . si+m be a white bubble in the ring at time t. If l(W ) ≥
d · (|W | + 1), in finite time, say at time t′, the size of the bubble increases.

Proof. We want to prove by induction on the sensors in W that, by time t′, all sensors in
the white bubble are good, and the predecessor si−1 is white (which means that the bubble
has become bigger).

By definition of our algorithm, in finite time, say at time t1, si+m becomes good placing
itself at distance d to the successor of W . Let us assume that at time tj < t′ all sensors
si+m, si+m−1 . . . , si+m−j are good. Let us consider now sensor si+m−j−1. If this sensor is not
already good, by definition of the algorithm and since by hypothesis the successor of W does
not become white, si+m−j−1 will move to place itself at distance d to si+m−j , thus becoming
good at time tj+1.

Thus, in finite time, say at t′, all sensors in the bubble are good, which means that
the distance between sensor si and sensor si+m+1 is equal to d · m = d · s(W ). Since, by
hypothesis, l(W ) ≥ d · (s(W ) + 1),it follows that the distance between si−1 and si becomes
greater than or equal to d, which means that si−1 has become white.

Lemma 5. Let W1, . . .Wz be the white bubbles present in the ring at time t. At least one of
these bubble Wk is such that l(Wk) ≥ d · |Wk| + 1.

Proof. By contradiction, let l(Wi) < d · (|Wi| + 1), for all Wi. The length L of the ring is
the sum of the lengths of all white bubbles and all gray bubbles. That is, from Lemma 1,
L =

∑z
i=1(l(Wi) + l(Gi)). By hypothesis,

∑z
i=1 l(Wi) < d

∑z
i=1 |Wi| + d · z. Moreover, by

definition of gray bubble,
∑z

i=1 l(Gi) < d
∑z

i=1(|Gi| − 1) = d
∑z

i=1 |Gi| − d · z. Summing up,
we have L < d

∑z
i=1(|Gi| + |Wi|) = d · n, a contradiction.

By Lemmas 4 and 5, we have that:

Lemma 6. The number of grey sensors decreases.

12



Finally, by Lemmas 3 and 6 the correctness of the algorithm follows.

Theorem 3. In finite time all sensors are good.

In other words, within finite time, the sensors have performed an exact self-deployment;
thus, observing that the algorithm operates within Limt and Async, the claim of Theorem
2 holds.

5 Oriented Ring with Interdistance Unknown

In this section we examine the case when the sensors share a common orientation of the ring,
but the desired final distance d is not known nor computable. We prove that, in this case,
ǫ-approximate self-deployment is indeed possible for any ǫ. This positive result holds even
with weak asynchronous sensors, provided their visibility radius is greater than 2d.

Theorem 4. Let s1, . . . , sn share a common orientation of the ring C, and be able to locate
to distance v > 2d. Then ǫ-approximate self-deployment is possible even if the sensors’
capabilities are Limt and the scheduling is Async.

Also in this case the proof is constructive: we present a simple protocol and prove that,
under the theorem hypothesis, allows asynchronous sensors with limited capabilities to deploy
themselves uniformly along the ring in finite time.

5.1 The Algorithm

Also this algorithm is very simple: sensors asynchronously and independently locate in both
directions at distance v, then they position themselves in the middle between the closest
observed sensor (if any).

Protocol Uniform Unknown (for sensor si)

• Locate around at distance v. Let di be the distance
to next sensor, di−1 the distance to the previous (if no
sensor is visible clockwise, di = v, analogously for coun-
terclockwise).

• If di ≤ di−1 do not move.

• If di > di−1 move to di+di−1

2
− di−1 clockwise.

5.2 Correctness

Let dmin(t) = Min{di(t)} and dmax(t) = Max{di(t)}. Let C be the length of the ring. First
observe the following simple fact:

13



Lemma 7. We have that: ∀t, dmin(t) ≤ d and dmax(t) ≥ d.

Proof. By contradiction. Let the minimum distance be greater than d. We would have that
C > k · d, which is impossible since by definition C = k · d. Same argument holds for
dmax.

The next lemma shows that if, at some point there is a unique minimum (resp. maximum)
interval, it will become bigger (resp. smaller).

Lemma 8. If at time t there is a unique minimum interval, we have that: ∀t, ∃t′ > t :
dmin(t′) > dmin(t). If at time t there is a unique maximum interval, we have that: ∀t, ∃t′ >
t : dmax(t

′) < dmax(t).

Proof. Let sj−1 and sj be the sensors that delimit the minimum interval [sj−1, sj ], whose
length is dj−1(t) = dmin(t) at time t. First observe that, since dj−2(t) > dj−1(t), by the
algorithm we know that sensor sj−1 does not move at time t; actually, it will not be able to
move as long as dj−2 remains greater than dj−1 (i.e., as long as sj does not move). Consider
now the first time t′ when sj is activated. Since sj−1 has not moved from time t to time
t′, we have that, at time t′, dj−2(t

′) is still greater than dj−1(t
′). At time t′, si then moves

following the rule of the algorithm and dj−1(t
′) =

dj−1(t)+dj (t′)

2
≥

dj−1(t)+dj (t)

2
> dj−1(t).

Similar argument holds for dmax.

We now show that if at some point there are several minimum (resp. maximum) intervals
of a certain length, their number will decrease.

Lemma 9. If at time t there are r > 1 minimum intervals of length dmin(t), either all
intervals have length d and the sensors are deployed, or there exists a time t′ > t when the
number of minimum intervals of length dmin(t) is r′ < r.

Proof. First notice that, if at time t a sensor sj delimiting a minimum interval [sj−1, sj] is
activated, it will not move if dmin(t) = dj−1(t) = dj(t) (i.e., if [sj , sj+1] is another minimum
interval), it will instead move if dj−1(t) < dj(t).

Consider the first time t′ when a sensor sj delimiting a minimum interval [sj−1, sj], which
is not followed by another minimum interval, is activated. Notice that such a sensor must
exist otherwise we would be in a situation when all sensors are deployed at distance d from
each other. In this case we know that at time t′ there are still at most s minimum intervals
and that dj−1(t

′) < dj(t
′). Sensor sj then moves and dj−1(t

′) =
dj−1(t)+dj (t′)

2
≥

dj−1(t)+dj (t)

2
>

dj−1(t), thus it is not minimum anymore and the number of minimum intervals is now strictly
smaller than r.

Analogously,

Lemma 10. If at time t there are r > 1 maximum intervals, either all intervals have length d
and the sensors are deployed, or there exists a time t′ when the number of maximum intervals
is r′ < r.
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We now show that the minimum intervals converge to a value A = d−γmin, with γmin ≥ 0,
and the maximum intervals converge to a value B = d + γmin, with γmax ≥ 0.

Lemma 11. Let dmin(t) (resp dmax(t)) be the distance of a minimum (resp. maximum)
interval at time t. We have that, for any arbitrary small ǫ > 0 there exists a time t′ > t such
that, ∀t′′ > t′: |dmin(t

′′) − A| ≤ ǫ, and, ∀t′′ > t′: |dmax(t
′′) − B| ≤ ǫ.

Proof. From Lemmas 8 and 9 the intervals must converge; from Lemma 7 the minimum
must converge to a value smaller than (or equal to) d, and the maximum must converge to
a value greater than (or equal to) d.

Let us call A-regular at time t an interval that, at time t is ǫ-close to A; that is an interval
whose length dj(t) is such that |dj(t) − A| ≤ ǫ. Analogously, we call B-regular an interval
that is ǫ-close to B. We call A-irregular at time t an interval that, at time t, is smaller than
d, but not ǫ-close to A; B-irregular one that is greater than d, but not ǫ-close to B.

The following lemma shows that there exists a time t, after the time when the previous
Lemma 11 holds, when any interval greater than the minimum (and smaller than d) is A-
regular, and any interval smaller than the maximum (and greater than d) is B-regular. In
other words, each interval is either ǫ-close to A or to B. Notice that this property is not
obvious; in fact, the only thing we know up to now is the convergence to A and B of the
minimum/maximum intervals over time, while nothing is known about the other intervals.

Lemma 12. Let ǫ > 0 be arbitrarily small, and let t′ǫ be a time when Lemma 11 holds. There
exists a time t′′ǫ > t′ǫ when: for all intervals [sj, sj+1] with dj(t

′′) ≤ d, |dj(t
′′

ǫ ) − A| ≤ ǫ; for
all intervals [si, si+1] with di(t

′′

ǫ ) ≥ d, |di(t
′′) − B| ≤ ǫ.

Proof. By contradiction, assume such a situation never happens. Then, there must exist a
time t when there are both A-irregular and B-irregular intervals.

Consider the following execution: 1) if there are A-regular intervals followed by B-regular
intervals, let the sensors between them move. Notice that whenever a sensor between a A-
regular and a B-regular intervals move, both intervals become irregular. Further notice that,
after this activation rule, we are guaranteed that a sequence of regular intervals delimited by
irregular intervals contains only intervals of the same type (A-regular or B-regular only). 2)
Consider any A-irregular interval [sj , sj+1]. Let it be preceded by k ≥ 0 A-regular intervals
(delimited by sensors sj−1 . . . sj−k) and followed by h ≥ 0 B-regular interval (delimited by
sensors sj+2 . . . sj+h−1). Activate sensors sj+1, sj+2 . . . sj+h−1, sj−1 . . . sj−k, in this order. It is
easy to see that their movement transforms all those interval in irregular intervals. 3) Apply
the same schedule to all B-irregular intervals (preceded by A-regular intervals and followed
by B-regular intervals).

Notice that, by the above activation rules, a sequence of A-regular intervals becomes
irregular if it is followed by B-irregular intervals or if it is preceded by A-regular intervals.
Thus, after the activation rules of 2) and 3) we are in a situation where all intervals (included
the minimum) are irregular and thus Lemma 11 is violated.

Lemma 13. Let t be a time when Lemma 12 holds. If at some time t′ > t at least an interval
becomes irregular, then there exists a time t′′ > t′ when all intervals are irregular.
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Proof. The argument is very similar to the one of Lemma 12.

We now show that, after a time when Lemma 12 holds, all intervals actually converge to
d (i.e., A = B = d).

Lemma 14. Let ǫ > 0 be arbitrarily small, and let t′ǫ be a time when Lemma 12 holds. If
B − A > 2ǫ, at least an interval becomes irregular.

Proof. Let t1 = t′ǫ. We will show that, under the conditions of the statement there exists a
movement of a sensor at time t1 that create an irregular interval.

Consider two consecutive intervals [si, si+1] and [si+1, si+2] such that di(t1) < d and
di+1(t1) > d. Such intervals must exist because otherwise all the sensors would be deployed
at precisely distance d from each other. By Lemma 12, we have that:

|di(t1) − A| ≤ ǫ (1)

|di+1(t1) − B| ≤ ǫ (2)

Let sensor si+1 move at time t1. As a result of the movement, at any time t2 > t1 before
any other movement of the sensors, we have that:

di(t2) =
di(t1) + di+1(t1)

2
= di+1(t2) (3)

We now consider several different cases.

Case 1. A + ǫ ≥ di(t1) > A and B + ǫ ≥ di+1(t1) > B. From Equation 3 and for the
assumption, we have that:

A + B

2
< di(t2) = di+1(t2) ≤

A + B + 2ǫ

2
(4)

We now consider the two case di(t2) > d and di(t2) < d and in both we will derive a
contradiction.

1.1) Let di(t2) > d. In this case we would have that A+B+2ǫ
2

≥ di(t2) > d. We now
consider the two cases: di(t2) > B, and di(t2) < B. If di(t2) > B it must be
that A+B+2ǫ

2
≥ B, which would imply A + 2ǫ > B, which is a contradiction with

the assumption that B − A > 2ǫ. It follows that d < di(t2) < B. However, from
Equation 2, we must have that B−di(t2) ≤ ǫ, which would imply B− A+B+2ǫ

2
≤ ǫ,

that is B − A ≤ ǫ, which is a contradiction.

1.2) Let di(t2) < d. In this case we would have to show that, by Equation 1, di(t2)−A ≤
ǫ. However, di(t2) − A > B

2
− A

2
, which is clearly greater than ǫ. Contradiction.
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Case 2. di(t1) < A and di+1(t1) < B. From Equation 3 and for the assumption, we have
that: di(t2) = di+1(t2) < A+B

2
.

By Equations 1 and 2 we must have that A− di(t1) ≤ ǫ and B − di+1(t1) ≤ ǫ. In other
words, di(t1) ≥ A− ǫ, and di+1(t1) ≥ B − ǫ. By Equation 3 and by the above, we have
that di(t2) ≥

A+B−2ǫ
2

(notice that, since B > A, this implies that di(t2) > A). Thus we
have:

A + B − 2ǫ

2
≤ di(t2) <

A + B

2
(5)

Consider now the two possibilities A < di(t2) < d and di(t2) > d: in both cases, we
will show a contradiction.

2.1) If A < di(t2) < d, Equation 1 must hold, that is di(t2) − A ≤ ǫ. However,
di(t2) − A ≥ B

2
− A

2
− ǫ, which is clearly greater than ǫ, since B − A > 2ǫ.

2.2) Consider now the case di(t2) > d, in this case, by Equation 2, we must have
|di(t2) − B| ≤ ǫ. Since A < B, and thus A+B

2
< B, we have that di(t2) < B, so,

by Equation 2 it must be: B − di(t2) ≤ ǫ, or, in other words, di(t2) ≥ B − ǫ.
However from Equation 5, we know that di(t2) < A

2
+ B

2
which is clearly smaller

than B − ǫ (because B − A > 2ǫ). Contradiction.

Case 3. A + ǫ ≥ di(t1) > A and di+1(t1) < B. We have di(t1) > A, and by definition we
have B − di+1(t1) ≤ ǫ; thus, from Equation 3 we obtain: di(t2) = di+1(t2) ≥ A+B−ǫ

2
.

Moreover, by the assumptions we get di(t2) = d ≤ A+B+ǫ
2

. Thus

A + B − ǫ

2
≤ di(t2) <

A + B + ǫ

2
(6)

3.1) If di(t2) < d we should have (by Equation 1) that di(t2) − A ≤ ǫ. However, by
Equation 6, we have di(t2) − A ≥ B−A−ǫ

2
≥ ǫ. Contradiction.

3.2) Let di(t2) > d. First observe that di(t2) cannot be greater than B because we
have di(t2) ≤

A+B+ǫ
2

< B); thus di(t2) < B. We should have (by Equation 2) that
B − di(t2) ≤ ǫ. However, from Equation 6 we know that di(t2)−B ≤ A+B+ǫ

2
< ǫ.

Contradiction.

Case 4. di(t1) < A and B + ǫ ≥ di+1(t1) > B. We have di(t1) < A and di+1(t1) ≤ B + ǫ;
thus, from Equation 3 we obtain: di(t2) = di+1(t2) < A+B+ǫ

2
. Moreover, by assumption

di+1(t1) ≤ B + ǫ ≥, and by definition A − di+1(t1) ≤ ǫ, so we get: di(t2) ≥ A+B−ǫ
2

.
Thus

A + B − ǫ

2
≤ di(t2) <

A + B + ǫ

2
(7)

The rest of the proof proceeds like for Case 3.
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Theorem 5. For any arbitrary small ǫ > 0 there exists a time t, such that ∀t′ > t, ∀i:
|di(t

′) − d| ≤ ǫ.

Proof. By contradiction. Let A 6= B. From Lemma 12, there is a time t when all intervals
are ǫ-close to A and B. From Lemma 14, at least one interval will become irregular at some
time t′ > t. However, by Lemma 13 there is a time t′′ > t′ when all intervals become irregular
(including the minimum and the maximum). This contradicts Lemma 11.

In other words, within finite time, the sensors have performed a ǫ-approximate self-
deployment; thus, observing that the algorithm operates within Limt and Async, the claim
of Theorem 4 holds.

6 Conclusions

In this paper we have provided a strong characterization of the self-deployment problem of
a mobile sensor network in a ring. In particular, we have shown that exact self-deployment
of powerful sensor is unsolvable even under a Ssync scheduler if the sensors do not share
a common orientation of the ring; and we have presented the first provably correct exact
self-deployment solution that works also when the sensors are limited and asynchronous,
provided the final distance d is known. In the case when the ring is oriented but d is not
known, we have presented a simple protocol that achieves ǫ-approximate self deployment for
any ǫ > 0.

From a theoretical point of view, the results of this paper, together with the existing
ones for the line [5], are the first steps in understanding the computational nature (i.e.,
limitations and properties) of the self-deployment problem for mobile sensor networks in
constrained environments. From a practical point of view, we have provided protocols that
are simple, provably correct, and easily implementable; they can be executed by very weak
sensors; and they can be employed along the border of any convex region.

Several research questions are still open. The foremost open problem is the determination
of whether knowledge of d is indeed necessary for exact self-deployment in an oriented ring.
Should this be the case, the natural open problem is to determine which is the ”weakest”
additional assumption (e.g., a priori knowledge, capability) that would make exact self-
deployment possible.

A more general and challenging open problem is to find additional sensors’ capabilities
that would enable the existence of an asynchronous exact self-deployment protocol in un-
oriented rings. Another important research direction is to identify meaningful efficiency
parameters and study the complexity as well the computability of the problem.

Acknowledgments. The authors would like to thank Vincenzo Gervasi, Toni Mesa, and
Linda Pagli for the many discussions. This work is supported in part by the Natural Sciences
and Engineering Research Council of Canada.

18



References

[1] N. Agmon, D. Peleg, Fault-tolerant gathering algorithms for autonomous mobile robots,
In Proc. of the 15th ACM-SIAM Symposium on Discrete Algorithms, pages 1070–1078,
2004.

[2] Y. U. Cao, A. S. Fukunaga, A. B. Kahng, and F. Meng. Cooperative Mobile Robotics:
Antecedents and Directions. In Proc. IEEE/TSJ International Conference on Intelligent
Robots and Systems, pages 226–234, 1995. Yokohama, Japan.

[3] I. Chatzigiannakis, M. Markou, and S. Nikoletseas. Distributed Circle Formation for
Anonymous Oblivious Robots. In Experimental and Efficient Algorithms: Third Inter-
national Workshop (WEA 2004), volume LNCS 3059, pages 159 –174, 2004.

[4] R. Cohen and D. Peleg. Convergence Properties of the Gravitational Algorithm in
Asynchronous Robot Systems. In Proc. of the 12th European Symposium on Algorithms,
volume LNCS 3221, pages 228–239, 2004.

[5] R. Cohen and D. Peleg. Local Algorithms for Autonomous Robot Systems. In Proc. of
the 13th Colloquium on Structural Information and Communication Complexity, volume
LNCS 4056, pages 29–43, 2006.
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