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Abstract

We give efficient algorithms for distributed computation on anony-
mous, labeled, asynchronous oriented hypercubes with possible faulty
components (i.e. processors and links) and deterministic processors.
Initially, the processors know only the size of the network and that
they are inter-connected in a hypercube topology. Faults may occur
only before the start of the computation (and that despite this the
hypercube remains a connected network). However, the processors do
not know where these faults are located. As a measure of complexity
we use the total number of bits transmitted during the execution of the
algorithm and we concentrate on giving algorithms that will minimize
this number of bits. The main result of this paper is an algorithm for
computing Boolean functions on anonymous hypercubes with bit cost
O(Nδn(γ)2λ2 log log N), where γ is the number of faulty components
(i.e. links plus processors), λ is the number of links which are either
faulty, or non-faulty but adjacent to faulty processors, and δn(γ) is
the diameter of the hypercube.
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1 Introduction

In this paper we consider algorithms which are appropriate for distributed
computation on anonymous, oriented, asynchronous, n-dimensional hyper-
cubes Qn with faulty components (i.e., processors and links).

The problem arising is to determine the computability and associated bit
cost (i.e. total number of bits transmitted) of Boolean functions on faulty
hypercubes. In the present paper we give efficient algorithms for computing
Boolean functions on such networks and also consider the related problem of
computing the automorphism group of the network.

1.1 Assumptions

The network we consider is the anonymous, asynchronous oriented hypercube
with possible faulty components. The number of faulty components may be
arbitrary as long as the hypercube remains connected. If a processor is faulty
then all the links adjacent to it are also interpreted as faulty. Faults may
occur only before the start of the computation.

We assume that the network links are FIFO, and that the processors
have a sense of direction. By this we mean that the hypercube is canonically
labeled (the label of link xy is i if and only if x, y differ at exactly the ith bit)
and that these labels are known to the processors concerned. In addition we
assume that the following assumptions hold:

• the processors know the network topology (in this instance hypercube),
and the size of the network, but they do not necessarily know where
the faulty components may be,

• the processors are anonymous (i.e., they do not know either the iden-
tities of themselves or of the other processors), they are deterministic
(i.e. they all run deterministic algorithms), and they all run the same
algorithm given the same data,

• the processors can distinguish the faulty links adjacent to it, as well as
non-faulty links adjacent to a faulty processor.

The processors occupy the nodes of a hypercube and want to compute
a given Boolean function f on ≤ N = 2n variables. Initially each non-
faulty processor p has an input bit bp. When the computation terminates all
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processors must output the same value f(< bp : p non-faulty >). A boolean
function is called computable if all the processors of the network compute
its value correctly on all inputs. (Our notation bp for the bit associated with
processor p does not mean that we assign names to processors. In addition,
the input < bp : p ∈ non-faulty > represents the assignment of bits to all
the non-faulty processors of the network, and it will be computed by all the
processors via an “input collection” algorithm.)

The assumptions listed above are meant to take “maximum” advantage
of network distributivity.

1.2 Related literature

For a discussion regarding the necessity of some of the above assumptions
see [?]. Routing algorithms on hypercubes have been studied in [?]. Faulty
hypercube networks have been examined in several papers under the much
stronger assumption of synchronous and/or non-identical processors. In such
networks it is possible to apply reconfiguring techniques [?] (nodes of an n−1-
dimensional hypercube are mapped into non-faulty nodes of an n-dimensional
hypercube with O(1) dilation) or even non-faulty subcube techniques [?] (for
a given k determine an n − k-dimensional subcube with no faulty links).
However such techniques are not applicable in our case since they require the
availability of processor identities.

1.3 Notation

Let γ denote the number of faulty components of the network, i.e. faulty links
plus faulty processors. Let π be the number of faulty processors and λ the
number of links which are either faulty, or non-faulty but adjacent to a faulty
processor. Since a hypercube has log N faulty links per faulty processor we
obtain at most π log N faulty links associated with these π faulty processors.
In general we have that γ ≤ λ + π and it is easy to see that equality may
not be true. Notice that our definition of λ suggests that in the complexity
results we encounter in Section ?? we interpret as faulty all the links which
are adjacent to a faulty processor.

Let Qn denote the n-dimensional hypercube on N = 2n nodes. xy is a
link of Qn, where x = x1 · · ·xn and y = y1 · · · yn, if xi 6= yi for a unique i; in
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addition, i is called the label of xy and we write ℓ(xy) = i.∗ Let Qn[l1, . . . , lλ]
denote the hypercube Qn with the links l1, . . . , lλ faulty. In general, the
hypercube always remains a connected graph if the number λ of faulty links
is less than log N . However it is important to note that the hypercube may
remain connected even if λ ≥ log N .

We define δn(λ) as the maximal possible diameter of a connected hyper-
cube with at most λ faulty links, i.e.

δn(λ) := max{diam(Qn[l1, . . . , lρ]) : ρ ≤ λ and Qn[l1, . . . , lρ] is connected}.

We define similarly δn(γ) for the more general case of hypercubes with at
most γ faulty components.

1.4 Results of the paper

The following table summarizes previous results on computing Boolean func-
tions on asynchronous, anonymous, labeled networks.

Network Bit Cost Paper
Rings O(N2) [?]

n-Tori, n constant O(N1+1/n) [?]

Hypercubes: γ = 0 O(N log4 N) [?]
Hypercubes: γ ≥ 1 O(Nλ2δn(γ)2 log log N) This paper

The result of [?] is valid both for oriented as well as unoriented rings. The
result of [?] is valid for n-dimensional tori, where n is a constant (independent
of the number of nodes). Moreover, the constant implicit in the bit cost
bound O(N1+1/n) depends on n [?]. Hence this result cannot apply to the
hypercube which has variable dimension n. Bit cost bounds for non-faulty
hypercubes are given in [?].

In this paper we give an algorithm for computing Boolean functions on
asynchronous, anonymous oriented hypercubes having bit cost

O(Nλ2δn(γ)2 log log N).

∗At this point it is necessary to emphasize that this global labeling is unknown to
the processors. The algorithm to be discussed in the sequel uses only the fact that the
processors know the labels of their adjacent links.
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Here N is the number of nodes and n = log N is the dimension of the
hypercube. Since a connected, n-dimensional hypercube with polylogarith-
mic (in N) number of faulty components has diameter O(log N) (see [?])
we have an O(Npolylog(N)) bit cost for n-dimensional hypercubes with
1 ≤ γ = polylog(N) faulty components.

Notice the different estimates on the bit cost implied by the algorithm
for hypercubes with exactly one faulty link versus hypercubes with exactly
one faulty processor; in the former case the bit cost is O(N log2 N log log N)
while in the latter O(N log4 N log log N). At first glance it may also come as
a surprise that the bit cost in a faulty hypercube can be lower than the bit
cost in a non-faulty hypercube (e.g. this can be the case when there are no
faulty processors and λ < log N/

√
log log N). This however can be explained

by the fact that in hypercubes with faulty links we can take advantage of
asymmetries in the network topology in order to design algorithms with
improved bit cost. Thus our main algorithm takes advantage of “symmetry
breaking” by distinguishing faulty links from non-faulty links.

2 Hypercubes with Non-faulty Processors

In this section we give algorithms for computing Boolean functions on a hy-
percube which does not have any faulty processors, i.e. π = 0. We indicate
later how to extend our results to hypercubes with arbitrary faulty compo-
nents. Our main theorem is the following.

Theorem 1 In a hypercube with at most λ faulty links, λ ≥ 1, every com-
putable Boolean function may be computed in O(Nλ2δn(λ)2 log log N) bits.

Proof. The proof of the theorem is carried out in Subsections ?? and
??. Before giving a detailed account of the algorithm achieving the desired
complexity we present a summary of the main steps of our construction.

Let f be a given Boolean function. Each processor p is given an input bit
bp and the Boolean function f . Let Input =< bp : p ∈ Qn >. In outline, and
under the assumptions of Subsection ?? each processor p concerned executes
the following algorithm:

1. determines whether or not the hypercube has a faulty link,
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2. uses a “path-generation” algorithm in order to determine the location
of the faulty links relative to itself,

3. uses an input collection mechanism in order to determine the entire
input configuration Inputp, where Inputp denotes p’s view of Input, (in
executing the algorithm, the processors collect input bits in a manner
specified by the protocol thus forming the view Inputp associated with
processor p),

4. determines whether or not the given function is computable on the
given input (this step is actually performed only locally and hence
does not contribute to the overall bit cost) by checking an invariance
condition on the given function f ,

5. if f is computable then processor p outputs f(Inputp).

Details of the proof will be given in the sequel.

2.1 Determining if there are any faulty links

The first step in our algorithm is to determine whether or not the hypercube
has any faulty links. This follows from the following lemma.

Lemma 2 There is an algorithm with bit cost O(N log2 N) which detects
whether or not the hypercube has any faulty links.

Proof. Let us use the abbreviation 0 = “I have no faulty links” and let
1 = “I have a faulty link”. Each processor initializes the variable value
locally. To determine whether there is a faulty link the processors execute
an algorithm for computing the Boolean function orN by using the Boolean
constants 0, 1 previously defined. If the output is 1 then there is a faulty
link else there is no faulty link. The algorithm they execute is as follows.

Faultylink
Algorithm for processor p:
Initialize: valuep ;
for i := 1, . . . , log N do

send valuep to all neighbors of p;
receive valueq from all neighbors q of p;
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compute valuep := or({valueq : q is neighbor of p}) ∨ valuep;
od;
output valuep.

There are log N iterations of the for loop and in each iteration at most log N
bits are transmitted by each processor. Hence the bit cost of the algorithm
is O(N · log2 N).

It remains to prove the correctness of the algorithm. We show that if
there is a faulty link then every processor of the hypercube is at distance at
most −1 + log N from some faulty link. Indeed, let x be an arbitrary node.
We show that there is a node y adjacent to a faulty link and such that x is
at distance at most −1 + log N from y. Let y be any node which is adjacent
to a faulty link and at a minimal distance to x in the non-faulty hypercube.
There is a path x0 = x, x1, . . . , xd = y of length d ≤ log N connecting x to y
in the non-faulty hypercube. Because all nodes of the path, but y, are closer
to x than y, it follows from the choice of y that they cannot be adjacent
to a faulty link. Since y is adjacent to a faulty link it is clear that x is at
distance at most −1 + log N from a faulty link. This completes the proof of
the lemma.

If it turns out there is no faulty link then (assuming that the given Boolean
function is computable in the network) the processors execute the algorithm
of [?] which has bit cost O(N log4 N). Else they proceed to the next phase
of our algorithm.

2.2 Path generation and input collection

The algorithm to be presented in this subsection requires the existence of
faulty links. Therefore this phase is executed only if it turns out from the
execution of the algorithm in Subsection ?? that λ ≥ 1. Let f be a Boolean
function known to all processors of the (faulty) hypercube. We present the
algorithm in three steps. The processors execute the following algorithm.
Main Algorithm (λ ≥ 1):
1. Path-generation:
The processors adjacent to faulty links become leaders and compute the
configuration of the hypercube as follows. Let M be the set of faulty links.
Let L be a processor adjacent to a faulty link. For each x ∈ Qn there are many
paths connecting L to x. However L can choose a set of paths (in a canonical
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way) {p(L, x) : x ∈ Qn} such that p(L, x) connects L to x, has length at most
δn(λ) and avoids the missing link(s). Each processor adjacent to a faulty link
generates a set of paths, one path for each processor of the hypercube. In
generating paths the processor takes into account its current knowledge of
the position of the set of faulty links (which is only a subset of the set of all
faulty links). Each such path is transmitted to its destination node along the
sequence of links determined by this path. If during transmission of this path
a faulty link is encountered then the corresponding processor adjacent to this
faulty link sends back (along this same path but in the reverse direction) to
the originating processor a complete list of its missing links. Based on this
information each processor adjacent to a link in M updates its current list
of faulty links and generates a new set of paths which avoid the previously
encountered faulty links. Now iteration of this procedure continues as long
as new faulty links are found. (Notice that nowhere in this algorithm do the
processors need to know an upper bound on the number of faulty links. The
iterated procedure terminates execution when no new faulty links are found.)
After execution of this algorithm all processors receive a complete path from
each processor adjacent to a link in M .

Since each iteration of this algorithm generates a new collection of paths
by “eliminating” newly encountered faulty links and since there are at most λ
faulty links it is clear that after at most λ iterations all processors will receive
paths from all processors adjacent to processors with faulty links. The bit
cost of this algorithm depends on the length of the paths which are created
during the execution of the λ iterations of this algorithm (in this instance the
paths have maximal possible length δn(λ)) and can be computed as before.
There are ≤ 2λ processors adjacent to the λ faulty links. Paths can be coded
with δn(λ) log log N bits (all that is needed is the sequence of labels traversed
by the path). Each path is transmitted at a distance ≤ δn(λ). Each iteration
of the algorithm involves ≤ 2λ processors adjacent to a faulty link in M .
Hence each iteration of the algorithm involves the transmission of at most
O(Nλδn(λ)2 log log N) bits. Since the number of iterations is ≤ λ the actual
bit cost of this step will be O(Nλ2δn(λ)2 log log N) bits.
2. Input-collection:
For each x, and each L adjacent to a link in M , processor x sends its input
bit bx together with its “identity” p(L, x) to L in the reverse direction along
path p(L, x) (p(L, x) is the path computed in step 1). Now L has a view
of the entire input configuration of the hypercube, say IL, and can compute
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f(IL). The bit cost of this step is O(Nλδn(λ) log log N).
3. Computing the Output:

Let F be the set of processors which are adjacent to faulty links. By executing
the above algorithm each processor L ∈ F computes its “view” IL of the given
input configuration. In particular, each L ∈ F will know the view IL′ of all
processors L′ ∈ F . Hence all processors L ∈ F may execute the invariance
test

f(IL) = f(IL′), for all L, L′ ∈ F. (1)

If (??) is true each processor L ∈ F computes f(IL) and transmits it to all
processors of the hypercube along the paths previously specified. Finally,
f(IL) is the output bit of each processor of the hypercube. If on the other
hand (??) is false then the processors L ∈ F will transmit to all processors
of the hypercube that f is not computable on the given input. Clearly, test
(??) is local to the processors and does not contribute to the overall bit cost
of the algorithm. The bit cost of this step is O(Nλδn(λ) log log N).

Notice that nowhere in this algorithm did we have to assume that the
processors have identities. All identities used there were generated by the
algorithm and were relative to a particular leader. In addition the processors
execute identical algorithms given identical input data. This completes the
proof of Theorem ??.

An interesting observation concerns the size of the input data of a proces-
sor. In computing Boolean functions the input to a processor was assumed
to be a bit. However, if the size of the input data of a processor is ≤ s bits
then the contribution to the overall bit cost of the input collection step is at
most O(Nsλδn(λ) log log N). In particular, the bit cost stated in Theorem
?? remains valid, even if the size of the input data is up to O(λδn(λ) bits.

2.3 Estimates depending on the number of faults

Theorem ?? raises the problem of studying δn(λ) as a function of λ. Results of
B. Aiello and T. Leighton in [?] show that an n-dimensional hypercube with
nO(1) worst-case faults can simulate the fault-free n-dimensional hypercube
Qn with only constant slowdown. In particular, this implies that δn(λ) =
O(n), for λ = nO(1). As a consequence we obtain the following result for
hypercubes with polylogarithmic number of faulty links.
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Theorem 3 The bit cost of computing Boolean functions on a hypercube
with polylogarithmic number of faulty links (i.e. λ = (log N)O(1)) is

{

O(N log4 N) if λ = 0
O(Nλ2 log2 N log log N) if λ > 0.

Proof. If λ = 0 then by [?] the bit cost of computing the function f is
O(N log4 N). If λ ≥ 1 then applying Theorem ?? we see that the bit cost of
computing a Boolean function is O(Nλ2δn(λ)2 log log N). Since the number
of faulty links is nO(1) we have that δn(λ) = O(n). Hence the combined bit
cost is

O(Nλ2 log2 N log log N),

as desired.
Thus we see that log N/

√
log log N is the threshold number of faulty links

for which the bit cost of computing Boolean functions on an N node hyper-
cube using our algorithm exceeds the bit cost of the algorithm in [?] for a
non-faulty hypercube.

3 Hypercubes with Faulty Components

So far we have considered the case of hypercubes having only faulty links.
However, it is straightforward how to adapt the Path-generation and Input-
collection algorithms presented in Section ?? to the case of hypercubes whose
faulty components may be links and/or nodes. If a node is faulty then all
its adjacent links are interpreted as faulty. The Path-generation algorithm
is initiated by non-faulty processors which are adjacent to faulty links (there
are ≤ 2λ such processors) and the iterated procedure is repeated ≤ λ times.
Thus we can prove the following theorem.

Theorem 4 In a hypercube with γ faulty components exactly λ of which are
faulty links, λ ≥ 1, the bit cost of computing Boolean functions is

O(Nδn(γ)2λ2 log log N).
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4 Conclusion and Further Research

We have presented algorithms for distributed computation on oriented anony-
mous asynchronous hypercubes with faulty components. Our algorithms rely
on the possibility of distinguishing faulty links from non-faulty ones and are
based on broadcasting and path generation.

Looking at tradeoffs and algorithms with improved performance is an
interesting problem for further research. As pointed out by an anonymous
referee, potential improvements to the bit cost of computing Boolean func-
tions may be achieved by using sequential probing techniques that reduce
the total number of probes used in the algorithm presented in Subsection ??
from λN to N . However, the analysis of the number of steps needed is a more
complicated combinatorial problem which is worthy of future investigations.

In our present analysis, the hypercubes may be faulty but the faults
can occur only before the start of the computation. An interesting problem
would be to design more “adaptive” algorithms that allow for faults to occur
at different parts of the computation. In addition, very little is known on the
optimality of the algorithms presented.
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