
Efficient Token-Based Control in Rings ∗†

Esteban Feuerstein‡ Stefano Leonardi§

Alberto Marchetti-Spaccamela‡ Nicola Santoro¶

July 1997

Abstract

In this paper we deal with the efficiency of token-based strategies

for the basic problem of controlling the allocation of a shared resource

in a ring of n processing entities. We propose new protocols that allow

a bounded number of exchanged messages per access request to the

resource, while this amount is unbounded for classical solutions. We

also guarantee all the requests to be served within a maximum delay.

The new proposed protocols are request-message-based strategies, in

that a process entity sends a message to “inform” the token of the

access request.

Keywords: distributed computing, amortized analysis.

∗A short abstract of this paper appears in the Proceedings of the 15th Annual ACM

Symposium on Principles of Distributed Computing, 1996.
†Work partially supported by EU ESPRIT Long Term Research Project ALCOM-IT

under contract n 20244, and by Italian Ministry of Scientific Research Project 40% “Al-
goritmi, Modelli di Calcolo e Strutture Informative,” EEC project KIT-DYNDATA, by

Natural Science and Engineering Research Council Research Grant A2415 and by Univer-

sity of Buenos Aires’ program “‘Programa Investigadores Jóvenes”.
‡Departamento de Computación, FCEyN, Universidad de Buenos Aires and Instituto

de Ciencias, Universidad de General Sarmiento, Argentina. efeuerst@dc.uba.ar.
§Dipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza”, Italy.

{leon,alberto}@dis.uniroma1.it.
¶School of Computer Science, Carleton University, Ottawa, Canada.

santoro@scs.carleton.ca.

1



1 Introduction

Consider the problem of controlling the allocation of a shared resource in a
ring of n processing entities.

A common solution to this problem is by means of a permission (control)
token: a free token is passed from one entity to the next in the ring according
to a pre-defined set of rules (protocol) understood and adhered by all the
entities; to access the resource, an entity must first obtain a free token and
convert it into a busy token; once the use of the resource is terminated, the
busy token is destroyed and a new free token is created.

This mechanism, which we shall here call circular token-based control,
was the primary motivation for the study of the election problem [10], and
it is obviously used to solve the mutual exclusion problem [13] .

Circular token-based control is used in a wide variety of communication
problems other than ring networks. For example, data transmission in token
rings [1, 14] and access to transmission medium in bus networks [3] are
solved by arranging the entities in a “logical ring” and then applying the
above described mechanism; a conceptually similar situation is found in hub
polling systems [3]. It is interesting to note that all these different situations
use exactly the same “hot-potato” solution: an entity holding the token will
pass it along the ring as soon as it no longer needs it (e.g., see [2, 7, 13]).

An extensive amount of literature exists on the performance of the re-
sulting system when circular token-based control is used in token rings, bus
networks and hub polling systems (e.g., [3, 5, 12]). On the other hand,
surprisingly little is known about the efficiency of the use of this mechanism.
In fact, within the context of distributed computing, the research has mostly
focused on detection of token loss [10, 11] and on self-stabilization aspects
(e.g., [4, 6, 8, 9]).

In this paper we are concerned with the very basic question of how effi-
ciently can token-based control be implemented in a ring network.

We consider the case of a single resource and a single token in a fault-free
ring. Requests for the resource are generated by the entities in an “on-line”
fashion: each entity can generate a request for the resource at any time,
and neither the location nor the time of the requests is known a priori. To
use the resource, an entity needs a special message, the token T , which the
processors hand from one to the other around the ring.

The goal is that of minimizing the number of messages per request nec-

1



essary to allocate the resource to a given set of requests. The solution must
be fair, every request will be granted within finite time.

As mentioned above, the solution used in literature is the obvious one,
characterized by the following rule: an entity holding the token will pass it
along the ring as soon as it no longer needs it. According to this rule, if an
entity which did not request the token receives it, it will immediately forward
it. An important drawback of this solution is that the token is circulating
even if no processes ask the resource. In this case the number of messages
exchanged may be unbounded even for a finite set of requests. This fact has
immediate negative practical consequences: an exceedingly large amount of
communication might be spent to manage a seldomly used resource.

We present two new protocols, that we call Q and D, for circular token-
based control. Both algorithms guarantee a bounded number of messages per
request, by implementing a request-message-based strategy that let the token
circulate only if it is informed of a process entity asking the resource. Our
proposals do not require to piggyback any information about the processors
identifiers on token messages.

The analysis of the efficiency of the proposed protocols uses two distinct
measures.

The first measure is the average number of messages-per-request necessary
to satisfy a sequence of requests or, equivalently, the worst case ratio between
the total number of (token and request) messages and the number of requests
in the sequence. We will use amortized analysis techniques [17] for this first
measure.

The second measure is the service traffic, that is the worst case number
of messages that are exchanged in the network between the time in which
a processor sends the request message and the time in which a processor
receives the token. The service traffic must be bounded in order to prevent
starvation.

Results of this paper Let n be the number of processing entities (or
processors) in the ring.

We first prove the existence of a n − 1 lower bound on both average
number of messages per request and service traffic.

We then propose and analyze two algorithms. The first solution, protocol
Q, requires only n messages per request, and the service traffic is bounded

2



by 3
2
n2, for which this protocol is almost optimal with respect to the number

of messages per request.
The second solution, algorithm D, allows a lower service traffic, namely

3n − 3, at the expenses of a slight increase in the number of messages per
request that is 2n. This protocol achieves optimality, up to a constant factor,
with respect to both measures.

2 Definitions and Preliminary Results

The n processors are assumed to be logically structured in a ring in which
the communication takes place in a single direction, say clockwise. Let
p0, p1, . . . , pn−1 be the set of processors. For i = 0, . . . , n − 2 processor pi

may communicate directly with processor pi+1 and processor pn−1 is con-
nected to processor p0.

We assume that the requests messages are anonymous, i.e. they carry
no information about the processor that generated them. W.l.o.g., we also
assume that a processor can ask again the resource only after that the pre-
vious request has been satisfied. Processors have neither shared memory nor
a common clock, and their speeds are unrelated.

The easy classical strategy [13], that we call S, prescribes that a processor
receiving the token from the previous processor in the ring can either enter
the critical section, or pass the token to the next processor in the ring. The
following theorem, whose trivial proof is left to the reader, motivates our
search for request-message-based protocols.

Theorem 2.1 For every set of requests algorithm S may require an un-
bounded number of messages.

We first show the following lower bounds on the number of messages per
request and service traffic.

Theorem 2.2 Any algorithm for the token distribution problem in a uni-
directional ring with anonymous requests messages requires at least n − 1
messages per request and the service traffic is at least n − 1.

Proof: Assume the token at position pi when no request is pending. A
request at processor pi−1 (pn−1 if i = 0) is then issued. Any algorithm must

3



exchange at least n − 1 messages to bring the token to the pending request,
and the service delay is also at least n − 1. The process can be continued
with a new request at pi−2 (pn−1 if i = 2) once the token has been brought
to the previous request, and so on. 2

In the sequel of this paper we describe and analyze our algorithms Q and
D.

3 Algorithm Q

The idea of this algorithm is that every processor willing the token sends a re-
quest through the ring. When the token receives a request message, it moves
to search a processor that made a request. The resource token T contains
a counter that is increased when a new request message is received, while it
is decreased when a request is served. The token “searches” processors with
pending requests while the counter is positive. The behavior of a processor
p is formally described as follows:

1. When p needs the resource then

• If p has T then it enters the critical section.

• If p has not T then it sends a request message to the next proces-
sor.

2. When p receives a request message then:

• If p has T then it increases the counter and passes T to the next
processor.

• If p has not T then the request message is passed to the next
processor.

3. When p receives T then:

• If p has a pending request then it enters the critical section in
which the token counter is decreased by 1; at the exit of the critical
section p passes T to the next processor if the token counter is
greater than 0.

4



• If p has not a pending request then T is passed to the next pro-
cessor in the ring.

We show that Q serves all the requests with an almost optimal number
of messages per request, and with bounded service traffic.

Theorem 3.1 Algorithm Q serves all the requests. It requires at most n

messages per request and the service traffic is bounded by 3
2
n2.

Proof: A request message is circulating for each request not yet registered
in the token counter. The token stops moving when the counter is 0, so every
request message will eventually reach the token and “push” it till the next
processor with a pending request. The first part of the claim is then proved.

To prove the bound on the number of messages per request we define R

to be the set of pending requests and M to be the set of request messages
circulating in the network. We abuse of notation and indicate with R and
M also the number of requests of R and M .

For each pending request r ∈ R we denote by d1(r) the clockwise distance
from the processor currently storing T to the processor with pending request
r, while for each request message m ∈ M we denote with d2(m) the clockwise
distance from the processor currently holding m to the processor currently
storing T . Moreover, let C be the current value of the token counter. Clearly,
R = M +C. Let Φ =

∑
r∈R d1(r)+

∑
m∈M d2(m) be a potential function. The

amortized cost of a message is defined as 1 + ∆Φ, where 1 is the cost of the
message to the algorithm and ∆Φ is the variation of the potential function
due to the exchange of the message. We study the amortized cost of any
exchanged message:

• The token is passed to the next processor. In this case, by definition of
Q, the value of the token counter is C ≥ 1. The potential function is
increased for each request message in the network and it is decreased
for each pending request. Then, the variation of the potential function
is ∆Φ = +M − R = −C ≤ −1 and the amortized cost is at most 0.

• A request message is passed to the next processor. The potential func-
tion decreases by 1 since the distance between the exchanged request
message and the token is decreased by 1. Therefore the amortized cost
is 0.

5



On the other hand, each new request increments Φ exactly by n. As
Φ ≥ 0, the total variation in the potential for a sequence of k requests cannot
be less than −kn, and therefore we get that the total number of messages
cannot exceed the maximum value of the potential function, which gives an
average of at most n messages per request.

The service traffic measures the maximum number of request messages
exchanged in the networks between the time at which a processor, say px,
sends a request message, and the time at which the processor receives T .

W.l.o.g., we can assume that all the messages are originated by requests
coming after the request of px.

Consider a pending request r ∈ R issued by a processor whose position
is between px and the position of T . We are only interested in the messages
that are exchanged until token T reaches position px, so we define d′(r) to be
the clockwise distance between T and px rather than the clockwise distance
between T and the processor that issued request r. Therefore, we define a
different potential function Φ′ =

∑
r∈R d′

1(r) +
∑

m∈M d2(m).
With the same analysis as before, we can show that the amortized cost

of evry message is smaller or equal than 0.
Let us now consider the maximum variation of the potential function.

Requests issued by processors with position between T and px (including
px), give a contribution of n to the potential function; and there may be
at most n − 1 of those requests. Requests issued by processors between px

and T contribute exactly with their distance to px (by definition of Φ′ their
contribution is given by their distance to T plus the distance from T to px).
There are at most n − 2 of these requests.

Overall, the maximum variation of Φ′ (and therefore the service delay, is

bounded by n(n−1)+ (n−2)(n−1)
2

= 3
2
n2− 5

2
n+1. Actually, this bound is also

tight. Following the proof it is possible to construct a worst case example
that achieves precisely that value. 2

4 Algorithm D

The second algorithm we propose is called D. It allows a lower service traffic
with a slight increase of the number of messages per request. D is also a
request-message-based strategy but, differently from Q, the request message

6



is stopped when it is recognized that the processor issuing the request will
receive the token anyway.

In this algorithm the resource token T contains a bit that memorizes one
of two possible states: active and check. In the active state the resource token
T is searching for a request in the ring. In the check state the resource token
makes an extra tour in the ring to check if it is aware of all the requests (this
extra tour is called the check-tour). For this purpose, T contains a counter
to establish whether the tour in the ring has been completed.

Each processor p contains a local variable Mp whose value is 1 if a request
message has passed through the processor after that T has passed for the last
time, and 0 otherwise.

The behavior of a processor p that executes algorithm D is as follows:

1. When p needs the resource there are two possibilities:

• If p has T then it enters the critical section.

• If p has not T then

– If Mp = 0 then it sends a request message to the next proces-
sor and sets Mp = 1.

– If Mp = 1 then no message is sent.

2. If p receives a request message while it has T then Mp is set to 0, the
token state to active and T is passed to the next processor.

3. If p receives a request message while it has not T then:

• If Mp = 0 then the request message is passed to the next processor
in the ring and Mp is set to 1.

• If Mp = 1 then nothing is done (the request message is stopped).

4. If p receives T with state active then:

• If p has a pending request then it enters the critical section in
which it sets Mp to 0, the token counter to n − 1 and the token
state to check. At the end of the critical section T is passed to the
next processor.

7



• If p has not a pending request then Mp is set to 0 and T is passed
to the next processor.

5. If a processor p receives T with state check then:

• If p has a pending request then it enters the critical section in
which Mp is set to 0 and the token counter is decremented by 1.
Once the critical section is terminated, T is passed to the next
processor if the token counter is bigger than 0.

• If p has no pending request then Mp is set to 0, the token counter
is decremented by 1 and, if it is greater than 0, T is passed to the
next processor.

The following theorem proves that the performance of D is only a constant
factor away from the optimum, both for the number of messages per request
and for the service traffic. The constant-factor increase in the number of
messages required by D with respect to Q is due to the additional check tour
necessary to prevent starvation.

Theorem 4.1 Algorithm D serves all the requests. It requires at most m =
2n messages per request and the service traffic is at most 3n − 3.

Proof:

We first prove that D serves all the requests. When a process p needs
the token, T ’s state may be active or check. In the first case, T will arrive
to p before it finishes the check-tour. If the state is check then there are two
possibilities: either T will pass through p before ending the check- tour, in
which case we are done, or it has already passed through p (this includes the
case in which the token has finished the check-tour and it is idle). But then
a request message will eventually reach T and produce at least one complete
tour on the ring.

Let’s turn now to the amortized number of messages per request. A
request message will traverse at most n edges before it is stopped or it reaches
the token; after that only the token must move. Every check tour requires
n additional messages. In the worst case a check tour may be done for each
request, and therefore at most 2n messages are sent.

As for the service traffic, three different types of messages may be sent
between the time a processor, say px, generates a request and the time it is

8



served. The first type is determined by requests generated from processors
between px and the token position, following the clockwise order. The number
of this kind of messages is at most n − 1. The second type of messages is
determined by requests generated by processors whose position is between
the token position and px, following the clockwise order. The number of this
second kind of messages is also bounded by by n − 1 since each edge of the
ring will be traversed by at most one of them. Finally, we have to count at
most n − 1 token messages, which gives alltogether a maximum of 3n − 3
messages.

2

References

[1] D. Andrews, G. Schulz, “A token-ring architecture for local area networks:
An update”, Proc. IEEE COMPCON, Fall 1982.

[2] ANSI/IEEE Standards 802.2-1985, 802.3-1985, 802.4-1985, 802.5-1985.

[3] D. Bertsekas, R. Gallager, Data Networks, Prentice Hall, 2nd Edition,
1992.

[4] J.E. Burns, J. Pachl, “Uniform self-stabilizing rings”, . ACM Transac-
tions on Programming Languages and Systems, 11, 2, pp. 330-344, 1989.

[5] W. Bux, “Performance issues in local area networks”, IBM Journal, 23,
4, 1984.

[6] E.W. Dijkstra, “Self-stabilizing systems in spite of distributed control”,
Communications of the ACM, 17, 11, pp. 643-644, 1974.

[7] F. Halsall, Data Communications, Computer Networks and Open Sys-
tems, 3rd Ed., Addison-Wesley, 1992.

[8] A. Israeli, M. Jalfon, “Token management schemes and random walks
yield self-stabilizing mutual exclusion”, Proc. 9th ACM Symposium on
Principles of Distributed Computing, pp. 119-129, 1990.

9



[9] H. Kakugawa, M. Yamashita, “Uniform randomized self-stabilizing mu-
tual exclusion on unidirectional ring under unfair c-deamon”, Proc. 2nd
Workshop on Self-Stabilizing Systems, pp. 14.1-14.13, 1995.

[10] G. Le Lann, “Distributed systems - Towards a formal approach”, Infor-
mation Processing 77, B. Gilchrist (Editor), North Holland, pp. 155-160,
1977.

[11] J. Misra, “Detecting termination of distributed computations using
markers”, Proc. 2nd ACM Symposium on Principles of Distributed Com-
puting, pp. 290-294, 1983.

[12] V. Rego, L.M. Ni, “Analytic models of cyclic service systems and
their application to token-passing local networks”, IEEE Transactions
on Computers, C-37, 10, pp. 1224-1234, 1988.

[13] M. Raynal, Distributed algorithms and protocols, John Wiley & Sons,
1988.

[14] F.E. Ross, “FDDI - A tutorial”, IEEE Commun. Mag. 24, pp. 10-17,
1986.

[15] M. Singhal, “A taxonomy of distributed mutual exclusion”, Journal of
Parallel and Distributed Computing 18, pp. 94-101, 1993.

[16] I. Suzuki, T. Kasami, “A distributed mutual exclusion algorithm”, ACM
Transaction on Computer Systems, 3-4, pp. 344-349, 1985.

[17] R.E. Tarjan, “Amortized computational complexity”, Siam J. Alg. Disc.
Meth. 6(2), 1985, pp. 306-318.

10


