
TIME-MESSAGE TRADE-OFFS FOR THE

WEAK UNISON PROBLEM
∗

Amos Israeli§¶

(amos@ee.technion.ac.il)

Evangelos Kranakis∗†

(kranakis@scs.carleton.ca)

Danny Krizanc∗†

(krizanc@scs.carleton.ca)

Nicola Santoro∗†

(santoro@scs.carleton.ca)

Abstract

A set of anonymous processors is interconnected forming a complete
synchronous network with sense of direction. Weak unison is the problem
where all processors want to enter the same state (in our case “wakeup”
state) in the absence of a global start-up signal. As measure of complexity
of the protocols considered we use the “bits” times “lag” measure, i.e. the
total number of (wakeup) messages transmitted throughout the execution
of the protocol times the number of steps which are sufficient in order
for all the processors to wakeup. We study trade-offs in the complexity of
such algorithms under several conditions on the behavior of the processors
(oblivious, non-oblivious, balanced, etc) and provide tight upper and lower
bounds on the time×#messages measure.

Key Words and Phrases: Anonymous network, Balanced, Chordal
rings, t-step protocol, Non-oblivious, Oblivious, Time-message complex-
ity, Unbalanced, Unison, Wakeup protocol, Weak unison.

1980 Mathematics Subject Classification: 68Q99

CR Categories: C.2.1

∗A preliminary version of this paper has appeared in the proceedings of CIAC 94, Vol.
778, Springer Verlag Lecture Notes in Computer Science

§Technion, Department of Electrical Engineering, Haifa, 32000, Israel
¶Partially supported by NWO through NFI Project ALADDIN under contract number NF

62-376
∗Carleton University, School of Computer Science, Ottawa, ON, K1S 5B6, Canada
†Research supported in part by NSERC (Natural Sciences and Engineering Research Coun-

cil of Canada) grant.

1



1 Introduction

An important problem in the current distributed computing literature is the
study of the performance of networks when the processors may awaken sponta-
neously. We are interested in reaching a state where all processors are awaken
by exchanging messages. In such networks the processors are programmed alike
and there is a global clock. A solution to this problem might be useful in re-
covering the operation of the network after a crash or malicious attack. Our
present study provides a qualititative measure of the performance of wakeup
protocols in distributed systems.

This paper is concerned with achieving weak unison for all the processors of
a synchronous complete network with a sense of direction [12] in the absence
of a global start-up signal. The processors have no distinct identities, but the
links of the complete network are labeled. Any set of these processors may wake
up at any time during the execution of the algorithm. The time initiators (i.e.
processors initiating wakeup calls) may wake up is arbitrary but they must all
wake up at the same time. By executing identical protocols and transmitting
messages via the network links these “awakened” processors must wake up the
entire network. The set of initial processors is arbitrary and may range in size
from a single processor to the set of all processors. However, the important
point is that the wakeup protocol sought should be such that

• regardless of the set of processors which are awakened by themselves,
eventually all the processors in the network should wake up, and

• the number of messages times the number of steps required for the com-
pletion of the algorithm should be optimal.

A weak-unison protocol will specify what the action of each processor will
be based on the previous history and the given data at that processor. This
means that during the execution of the protocol a set of processors is speci-
fied to whom an arbitrary processor, say p, (which already has received wakeup
message) should send wakeup messages. Assume that a set of processors is ini-
tially awakened. These processors will initiate wakeup messages and will each
transmit them to a specified set of processors; in turn the recipient processors re-
transmit wakeup messages to a new set of processors, and so on until eventually
all processors in the network wakeup.

In measuring the quality of the resulting protocol we see an interesting inter-
play between time required to wake up all the processors in the network and the
total number of messages transmitted throughout the execution of the protocol.
Thus, a protocol that is time- and message-efficient when many processors ini-
tiate wakeup messages may fail to be efficient when there is a single initiator.
For example, consider the following protocol in an oriented N -node ring: an
initiator sends wakeup message to its left and dies; if a processor is awakened
by another processor then it sends wakeup message to its left and dies. It is

2



easy to see that if there is a single initiator the time required to wakeup the
whole network is N and the total number of messages is N . However, if all
processors are initiators then it takes one time unit for the algorithm to execute
and the total number of messages is N . It appears that a fair measure of com-
plexity of this protocol is the time required for all processors to wakeup times
the number of bits transmitted throughout the execution of the protocol. Thus
the complexity for the former schedule is Θ(N2) and for the latter is Θ(N). In
general, we are interested in protocols that have the optimal overall complexity
performance regardless of the schedule of initiators.

1.1 Definitions and notations

The set of processors is denoted by {0, 1, . . . , N−1}. The network is synchronous
and the processors anonymous. The links are labeled, i.e. for any pair {x, y}
of nodes we associate a label ℓ({x, y}) such that for any x, if y 6= y′ then
ℓ({x, y}) 6= ℓ({x, y′}). The orientation we will assume in this paper is the
following: for x, y < N , the label of the edge {x, y} is the integer y − xmod N .
This orientation is called in the literature [12] sense of direction.

The processors are divided into initiators (those awakened by the adversary)
and non-initiators. The former are initiated by themselves, while the latter are
awakened.

The number of steps of a wakeup protocol on a given set of initiators is the
difference between the time that all processors are awakened and the time the
first processor wakes up. The number of messages transmitted in this proto-
col for a given set of initiators is the number of messages transmitted during
this time interval. A protocol is called t-step if this difference never exceeds t
regardless of the set of initiators.

An important property of a (correct) wakeup protocol is that all processors
must eventually wake up regardless of the schedule (i.e. the configuration of
processors which initiate wakeup messages). The nature of a protocol may be
such that during its execution a processor may receive, for example, more than
one message. In this case the action of the processor involved may or may not
depend on its current state. We call the protocol oblivious if the action of each
processor does not depend on its current state, but rather it is a function of
a predetermined protocol. If for a given protocol, the size of the set to whom
each processor transmits messages (during the execution of the protocol) is
independent of the processor then the protocol is called balanced.

We are interested in protocols P which minimize the time × #messages
complexity measure. More precisely, the problem we investigate is the follow-
ing: “Determine the time×#messages complexity for various kinds of wakeup
protocols, e.g. oblivious, non-oblivious, balanced, etc.”

3



1.2 Results of the paper

The following table summarizes our bounds for protocols with arbitrary number
of steps.

Type of Protocol Complexity
Arbitrary Ω(N log log N)
Balanced Ω(N log N)

Oblivious Ω(N log2 N)

Oblivious O(N log2 N)

Clearly, lower bounds valid for arbitrary (respectively, balanced) protocols are
also valid for balanced (respectively, oblivious) protocols. Thus our bounds are
tight for oblivious protocols (Theorems 12, 11 and Corollary 13) with arbitrary
number of steps. Moreover for such protocols the optimal wakeup algorithms
are obtained on the hyper-ring architecture (see Example 8).

We also make a detailed analysis of the complexity of t-step protocols and
prove the following bounds.

Type of Protocol # of Steps Complexity

Arbitrary t Ω(tN2t/(2t−1))

Balanced t Ω(tN (t+1)/t)

Oblivious t = dN1/d/m O(mdtN)

The first column describes the type of protocol, the second column gives the
number of steps needed by the protocol, and the last column gives the corre-
sponding time×#messages, complexity (henceforth refered to as complexity).
As before we see that our bounds are tight for balanced protocols when the
number of steps is a constant t = O(1) independent of N . The denominator
m in the number of steps of the oblivious case may be any integer ≤ N1/d,
moreover it is easy to see that O(mdtN) = O(d2N (d+1)/d).

1.3 Related work

Even and Rajsbaum [5, 6] have studied the problem of initialization of com-
putation in (synchronous as well as asynchronous) distributed networks in the
absence of a global start-up signal. They consider the unison problem and study
the number of beats it takes for all the processors to be in “unison” (as if they all
started the computation at the same time) from the time some processor wakes
up. They have shown that a synchronous network of N processors can reach
unison within 2N beats of the clock [5]. They also show how to achieve unison in
2N bits when the network is asynchronous by use of Awerbuch’s synchronizer,
provided that all local clocks have the same rate [6] (see also [7]). Gouda and
Herman [9] present a solution to the unison problem for synchronous systems
which is also stabilizing, i.e. the system is guaranteed to reach unison starting

4



from any state. Arora, Dolev and Gouda [1] give a stabilizing solution which for
an N -node system uses N registers of 2 log N bits and is guaranteed to converge
within N2 triggers. Covreur, Francez and Gouda [3] give bounded as well as
unbounded solutions to unison for asynchronous systems.

Attiya, Snir and Warmuth [2] consider the “processor synchronization prob-
lem” on anonymous, synchronous rings in order to reduce input collection and
orientation algorithms to the case where all processors start simultaneously
and solve this problem in O(N log N) messages. Fischer, Moran, Rudich and
Taubenfeld [8] consider implementations of a related problem, the wakeup prob-
lem on a shared register. They give upper and lower bounds on the number of
values of the shared register under various assumptions characterizing the re-
silience of the protocol.

2 Lower Bounds for Arbitrary Protocols

First we consider arbitrary t-step protocols. Usually it is more difficult to prove
lower bounds on such protocols because the transmission set of a processor
may depend on the input (e.g. the number of wakeup messages received by
the processor). Before discussing the general lower bound we present a simpler
result for 2-step protocols that better illustrates our proof technique.

2.1 2-step protocols

We will prove an N4/3 lower bound for arbitrary 2-step protocols. Throughout
K + x denotes the set {y + xmod N : y ∈ K}, where K ⊆ {0, 1, . . . , N − 1} and
x ∈ {0, 1, . . . , N − 1}. First we prove the following lemma.

Lemma 1 Assume that K ⊆ {0, 1, . . . , N − 1} is a set of size k. There exists a
set I of size ≥ ⌊N/k2⌋ such that the sets K +x, for x ∈ I, are pairwise disjoint.

Proof We construct the set I by induction. Assume we have constructed the
first s elements x0 = 0, x1, x2, . . . , xs−1 such that the disjointness condition is
satisfied. We show how to find the s-th element xs. We prove that there exists
an x ≤ sk2 + 1 such that ∀i < s(K + x ∩ K + xi = ∅). Assume on the contrary
that for all x ≤ sk2 + 1,

∃i < s(K + x ∩ K + xi 6= ∅).

Then for all x ≤ sk2 + 1 there exists an i < s and ki, k
′
i ∈ K such that

x = ki − k′
i + xi. Clearly, there are ≤ k2 possible differences of elements of K.

Hence, the number of elements represented by these last equations is ≤ sk2,
which is a contradiction. It follows that there exists an x ≤ sk2 + 1 (call this x,
xs) such that

∀i < s(K + xs ∩ K + xi = ∅),

5



as desired.
A set I of processors satisfying the disjointness condition for a set K is called

a set of independent initiators for K.
Now we are ready to prove an N4/3 lower bound on arbitrary 2-step proto-

cols. We have the following theorem.

Theorem 2 Ω(N4/3) is a lower bound on the complexity of any 2-step wakeup
protocol.

Proof Let us consider a 2-step wakeup protocol. Assume that the protocol
is such that it wakes up the whole system under any schedule. By anonymity
of the network all initiator processors must execute precisely the same instruc-
tion. Hence without loss of generality we may assume that processors initiating
wakeup messages transmit to a set K of processors of size k. Now we consider
several schedules for waking up the network and study their corresponding com-
plexity.
If only one processor wakes up:

The processor reaches a set K of k other processors. All these k processors are
in the same state and must wake up the remaining N−k−1 processors. Assume
that each of them transmits to a set K ′ of size k′ (it must be the same set for
all processors since all processors are in the same state). Since all processors
must wakeup following this schedule we obtain

kk′ ≥ N − k − 1. (1)

If all processors wake up:

The total number of messages transmitted will be

≥ Nk. (2)

If ⌊N/k2⌋ independent initiators wake up:

Using the same argument as before, each (independent) initiator reaches k other
processors. This wakes up a total of N

k2 k = N
k processors. Since the initiators

are independent all these N
k processors are in the same state and will therefore

each transmit k′ wakeup messages. It follows from (1) that the total number of
messages transmitted is

N

k2
kk′ ≥ N(N − k − 1)

k2
. (3)

The maximum of the quantities in (2), (3) represents a lower bound on the
number of messages, namely

max

{

Nk,
N(N − k − 1)

k2

}

≥ N4/3.

This proves the desired lower bound.

6



Remark We note that the result of Theorem 2 is valid even when initiators
send k different messages. For example, let fi = the number of messages sent
upon receipt of message Mi by the initiator. Then inequality (1) becomes

k
∑

i=1

fi ≥ N − k − 1,

while inequality (3) becomes

N

k2

(

k
∑

i=1

fi

)

≥ N(N − k − 1)

k2
.

The rest of the proof is exactly as above.

2.2 t-step protocols

Next we give a result on the more general case of multistep protocols. This
result will require a generaliztion of Lemma 1 regarding the number of inde-
pendent initiators in an arbitrary wakeup protocol. For K1, K2, . . . , Kt−1 ⊆
{0, 1, . . . , N−1} define K = K1+K2+· · ·+Kt−1 to be the set {y1+y2+· · ·+yt−1 :
yi ∈ Ki, for i = 1, . . . , t − 1}. As before we can prove the following result.

Lemma 3 Assume that K1, K2, . . . , Kt−1 ⊆ {0, 1, . . . , N − 1} are sets of cor-
responding sizes k1, k2, . . . , kt−1. Then there exists a set I ⊆ {0, 1, . . . , N − 1}
of size ≥ ⌊N/(k1 · · · kt−1)

2⌋ such that the sets K + x, for x ∈ I, are pairwise
disjoint, where K = K1 + K2 + · · · + Kt−1.

Proof Consider the sum set K1 + K2 + · · · + Kt−1 which has size at most
k1k2 · · · kd and apply Lemma 1.

This lemma has important implications for the complexity of arbitrary t-step
wakeup protocols. We can prove the following theorem.

Theorem 4 Ω(tN2t/(2t−1)) is a lower bound on the complexity of any t-step
wakeup protocol.

Proof Consider the case where only one processor is initiator of a wakeup mes-
sage. Recall that the network is synchronous and the processors are anonymous.
It follows that for each i = 1, . . . , t there is a set Ki ⊆ {0, 1, . . . , N − 1} such
that processors awakened at step i − 1 transmit wakeup messages to all their
neighbors labeled with labels in the set Ki. Let ki be the size of the set Ki.
However the initiator processor must wake up the whole network. This implies
that

k1k2 · · ·kt ≥ N. (4)

Let i = 1, . . . , t be fixed and Ii be a set of independent initiators “for the
first i steps of the protocol” of size N

(k1···ki−1)2 . Such a set exists by Lemma 3

7



(applied to the sets K1, . . . , Ki−1). If this set of initiators transmits messages
following the protocol we obtain the lower bound

N

(k1 · · · ki−1)2
k1 · · · ki−1ki =

N

k1 · · ·ki−1
ki. (5)

We claim that inequalities (4) and (5) imply a lower bound N2t/(2t−1) on the
number of messages. To prove this we argue as follows. If for some i = 1, 2, . . . , t,

ki

k1 · · · ki−1
≥ N1/(2t−1)

then the claim is proved. Assume on the contrary that for all i = 1, 2, . . . , t we
have that

ki

k1 · · · ki−1
< N1/(2t−1).

Using induction we show that ki < N2i−1/(2t−1). Indeed,

ki < N1/(2t−1)k1 · · · ki−1

< N1/(2t−1)N1/(2t−1)+2/(2t−1)+···+2i−2/(2t−1)

= N2i−1/(2t−1).

However this easily contradicts inequality (4). Indeed,

k1 · · · kt < N (20+21+···+2t−1)/(2t−1−1) = N2t/(2t−1−1) < N.

The previous proof rests on the fact that for all i = 1, . . . , t we have that
N

(k1···ki−1)2 ≥ 1. If this is not true then we need to make some trivial adjuste-

ments to the proof. Let i be minimal such that (k1 · · · ki−1)
2 > N . It follows

that (k1 · · ·kj)
2 < N , for j = 1, . . . , i−2. For j ≤ i−2 consider a set of N

(k1···kj)2

independent initiators. As in the previous proof, the theorem would be proved
if for some j ≤ i − 2,

kj+1

k1···kj
≥ N1/(2t−1). Hence, without loss of generality

we may assume that for all j ≤ i − 2,
kj+1

k1···kj
< N1/(2t−1). It follows as be-

fore that k1 · · · ki−1 < N2i−1/(2t−1), kj+1 < N1/(2t−1)k1 · · · kj ≤ N2j/(2t−1).

This implies that k1 · · · ki−1 ≤ N (2i−1−1)/(2t−1) < N1/2, which contradicts
(k1 · · ·ki−1)

2 > N .
As a corollary we obtain the following result.

Theorem 5 The complexity of any wakeup protocol is Ω(N log log N).

3 Lower Bounds for Balanced Protocols

In this section we give lower bounds which are valid only for balanced protocols.
These are protocols for which each processor broadcasts wakeup messages to a

8



set of fixed size. First we consider the case of balanced protocols with fixed
number of steps. Note that since oblivious protocols are balanced the lower
bound of Theorem 6 is also valid for oblivious protocols. By taking advantage
of the the limitations imposed on the problem by the topology we can prove the
following lower bound on the complexity of arbitrary balanced protocols.

Theorem 6 The complexity of every t-step, balanced wakeup protocol is Ω(tN (t+1)/t).

Proof Consider an arbitrary (non-oblivious) balanced t-step protocol such that
in each iteration of the algorithm processors wake up exactly k other processors.
If only one processor is initiator then the whole network must also wake up.
Hence

N ≤ k + k2 + · · · + kt ≤ 2kt.

It follows that k ≥ 1
21/t N

1/t. If all processors are initiators then a lower bound

on the number of wakeup messages is Ω(Nk) = Ω(N (t+1)/t). Since the time
required is t the required complexity is Ω(tN (t+1)/t). This proves the theorem.

As a corollary we obtain the following result.

Theorem 7 Ω(N log N) is a lower bound on the complexity of any balanced,
wakeup protocol.

4 Lower Bounds for Oblivious Protocols

Here we derive a tight lower bound for the special class of oblivious protocols
(of arbitrary number of steps). Many of the results on wakeup protocols can be
described very naturally within the framework of chordal rings. For this reason
next we give some useful notation and definitions on chordal rings.

4.1 Chordal rings

Let ZN be the set of integers modulo N . Let S be an arbitrary subset of ZN .
The circulant graph ZN [S] has the nodes 0, 1, . . . , N − 1 and an edge between
the nodes x, y if and only if x− y mod N ∈ S. The name “circulant” arises from
the fact that the adjacency matrix of ZN [S] is a circulant matrix.

A related class of graphs are the so-called chordal rings. These are the rings
RN on N nodes, say, such that the set of vertices is {0, 1, . . . , N − 1} and there
exists a set S such that two nodes x, y are adjacent if and only if x−y mod N ∈ S.
We denote such a chordal ring by RN [S]. We observe that the well-known ring
RN itself is the chordal ring RN [∅] and that in general RN [S] = ZN [S ∪ {1}]
(this is because the ring structure of RN assumes the generator 1). Here are
two examples of chordal rings [4, 10].

9



Example 8 For N ≤ kn the chordal ring RN [k, k2, . . . , kn−1] has diameter
≤ k logk N (use the fact that every x < N can be represented in the basis k) and
degree logk N . If k = 2 we call this network the hyper-ring.

Example 9 For N < n! the chordal ring RN [2!, 3!, . . . , (n − 1)!] has diameter
O(n2) (use the fact that every x < N can be represented in the mixed basis
1!, 2!, . . . , (n − 1)! as x = x1 + x22! + · · · + xn−1(n − 1)!, with 0 ≤ xi ≤ i, for
i ≥ 1) and degree n ≤ log N/ log log N .

4.2 Lower bound

Our result is based on the following lemma which gives an Ω(log2 N) lower
bound on the product of the diameter times the degree of arbitrary chordal
rings. More precisely we have the following result.

Lemma 10 If the chordal ring RN [k1, k2, . . . , kd−1, kd] has diameter δ then

d · δ = Ω
(

log2 N
)

. (6)

Proof Let x < N and suppose that s is the distance of x from 0 in the given
chordal ring. A minimal length path connecting x to 0 consists of ai edges each
labeled with ki, i = 0, 1, . . . , d, where s = a0 +a1+ · · ·+ad. It follows that every
vertex x < N of the chordal ring corresponds to a partition s = a0+a1+ · · ·+ad

of an integer s ≤ δ into ≤ d + 1 parts; hence the number N of vertices of the
chordal ring cannot exceed the number of partitions of an integer s ≤ δ into
t + 1 parts. This latter number is majorized by

δ
∑

s=0

(

s + d
d

)

.

To see this, notice that the mapping

(a0, a1, a2, . . . , ad) → 1a001a101a20 · · · 01ad

is a 1− 1 correspondence between “partitions of i into d parts” and “d-element
subsets of a set with i + d elements”. Using the well-known identity [11]

m
∑

r=0

(

m + r
r

)

=

(

n + m + 1
m

)

it follows that

N ≤
(

δ + d + 1
δ

)

. (7)

However the right-hand side of (7) can be majorized using the inequality
(

x + y
x

)

≤ 4
√

xy. (8)

10



This is is proved by induction on x, for all y ≤ x. Indeed, it is trivially true for
x = 0. Assume it is true for x. To prove it for x + 1 ≤ y we note that by the
induction hypothesis

(

y + x + 1
x + 1

)

=
y + x + 1

x + 1

(

y + x
x

)

≤ y + x + 1

x + 1
· 4

√
xy.

The right-hand side of this last inequality is easily shown to be ≤ 4
√

(x+1)y.

Indeed, since 2
√

y/(x+1) ≤ 4
√

(x+1)y−
√

xy it is enough to show that

1 +
y

x + 1
=

y + x + 1

x + 1
≤ 2

√
y/(x+1).

This is equivalent to showing that 1 + t ≤ 2
√

t, for 0 < t ≤ 1, which in turn is
equivalent to proving that (1 + t)

√
t ≤ 2t. But this is trivial since 0 < t ≤ 1.

Hence inequality (8) is proved.
It is now clear that inequalities (7) and (8) imply (δ + 1)d = Ω(⌊log N⌋2),

which in turn implies the lower bound stated in inequality (6). This proves the
lemma.

Theorem 11 Ω(N log2 N) is a lower bound on the complexity of any oblivious,
wakeup protocol.

Proof This follows easily from Theorem 10. Since the protocol is oblivious and
balanced every processor transmits a fixed number of messages in each iteration
of the wakeup protocol, say d. The graph resulting from such a protocol is
the chordal ring RN [K], where K is a set of size d. The time required for
the wakeup message to reach all the processors is at least the diameter δ of
the chordal ring RN [K]. Eventually all N processors are awakened. Since
the protocol is oblivious every processor that receives a wakeup message must
transmit to all its d neighbors. Hence the number of messages transmitted
during the execution of the protocol is Nd. It follows that the complexity is at
least Ndδ = Ω(N log2 N).

5 Upper Bounds

In this section we give wakeup algorithms and prove the upper bounds discussed
in subsection 1.2. The protocols we consider here are oblivious. The main
theorem is the following.

Theorem 12

1. For any d, if N = kd, for some k, then there is an oblivious d-step wakeup
protocol whose complexity is O(d2N (d+1)/d).

11



2. More generally, for any d and any m ≤ N1/d, if N = kd, for some k, then
there is an oblivious dN1/d/m-step wakeup protocol whose complexity is
O(mdtN) = O(d2N (d+1)/d).

Proof To prove the theorem we observe that we can view the d-dimensional
mesh as a chordal ring RN [K], for some set K of links. For example, the 2-
dimensional mesh can be viewed as the chordal ring

RN [
√

N ],

while the d-dimensional mesh can be viewed as the chordal ring

RN [N1/d, N2/d, . . . , N (d−1)/d].

This indicates that wakeup algorithms can be implemented as follows.
First we consider the case of a d-step protocol. For each processor p =

(p1, p2, . . . , pd) let

Ki
p = {(p1, . . . , pi−1, xi, pi+1, . . . , pd) : xi < N1/d}.

If we define Ki = {(0, . . . , 0, xi, 0, . . . , 0) : 0 ≤ xi < N1/d} then we see easily
that Ki

p = p + Ki. Let Kp = K1
p ∪ · · · ∪ Kd

p , and K = K1 ∪ · · · ∪ Kd. The
protocol is such that processor p transmits wakeup messages to all processors
in the set p + K. Formally the d-step protocol is as follows.

d-step Wakeup Algorithm

Algorithm for processor p:

1. If p is an initiator then it sends a wakeup message to all its
neighbors in the set p + K and dies.

2. If p receives a wakeup message from another processor and is
not dead then it sends wakeup messages to all processors in the
set p + K and dies.

The size of each broadcast is dN1/d. By definition of the protocol a broad-
cast from processor p = (p1, . . . , pd) will reach all processors of the form p′ =
(p1, . . . , pi−1, p

′
i, pi+1, . . . , pd), where 0 ≤ p′i < N, i = 1, 2, . . . , d. Therefore it is

clear that every processor will be reached after d steps. The complexity is easily
seen to be as in the statement of the theorem.

The t = dN1/d/m-step protocol is exactly as before. Each processor p
transmits to the set p + K, where K = K1 ∪ · · · ∪ Kd and

Ki = {(0, . . . , 0, xi, 0, . . . , 0) : 0 ≤ xi < m}.

Details are left to the reader.
As an immediate corollary we obtain the special case of the hyper-ring. This

is the chordal ring RN [2, 22, . . . , 2n−1] described in Example 8 for N = 2n.

12



Corollary 13 There is an oblivious log N -step wakeup protocol (implemented
on the hyper-ring) whose complexity is O(N log2 N).

We observe that in view of the lower bound for oblivious protocols the re-
sult of Corollary 13 is optimal. In addition, Theorem 6 shows that the result
of Theorem 12 is also optimal for balanced wakeup protocols with a constant
number of steps.

6 Conclusion

We have considered the problem of constructing efficient wakeup protocols on
an anonymous, synchronous, complete network. We have constructed oblivi-
ous protocols with arbitrary number of steps and shown their optimality, i.e.
complexity Θ(N log2 N). For balanced protocols we have given an Ω(N log N)
lower bound, while for arbitrary protocols an Ω(N log log N) lower bound. This
leaves a log N (respectively, log2 N/ log log N) gap for balanced (respectively,
arbitrary) protocols from the optimal value for oblivious protocols.

Another interesting question concerns the gap between the Ω(N4/3) lower
bound on the complexity of arbitrary 2-step wakeup protocols and the O(N3/2)
upper bound for oblivious 2-step protocols. A similar question applies to the
corresponding lower bound Ω(tN2t/(2t−1)) for arbitrary t-step protocols and the
upper bound O(t2N (t+1)/t) for oblivious t-step protocols.

Acknowledgements

Many thanks to J. D. Dixon for suggesting inequality (8), B. Mans and R. B.
Tan for useful conversations, and the anonymous referee for useful suggestions
that improved the presentation.

References

[1] A. Arora, S. Dolev and M. Gouda, “Maintaining Digital Clocks in Step”,
preprint.

[2] H. Attiya and M. Snir and M. Warmuth, “Computing on an Anonymous
Ring”, Journal of the ACM, 35 (4), 1988. (Short version has appeared
in proceedings of the 4th Annual ACM Symposium on Principles of Dis-
tributed Computation, 1985, 845 - 875.)

[3] J.-M. Couvreur, N. Francez and M. Gouda, “Asynchronous Unison”,
preprint.

[4] P. J. Davis, “Circulant Matrices”, John Wiley and Sons, 1979.

13



[5] S. Even and S. Rajsbaum, “Unison in Distributed Networks”, in “Se-
quences, Combinatorics, Compression, Security and Transmission”, R. M.
Capocelli, ed., Advanced Workshop held in Naples, Italy, June 6 - 11,
1988, Springer Verlag.

[6] S. Even and S. Rajsbaum, “Lack of a Global Clock Does Not Slow Down
the Computation in Distributed Networks”, TR522, Computer Science
Department, Technion, 1988.

[7] S. Even and S. Rajsbaum, “The Use of Synchronizer Yields Maximum
Computation Rate in Distributed Networks”, STOC 1990, pages 95 - 105.

[8] M. J. Fischer, S. Moran, S. Rudich and G. Taubenfeld, “The Wakeup
Problem”, STOC 1990, pages 106 - 116.

[9] M. Gouda and T. Herman, “Stabilizing Unison”, Information Processing
Letters, Vol. 35, No. 4, pages 171 - 175, 1990.

[10] Ki Hang Kim, “Boolean Matrix Theory and Applications”, Marcel Dekker
Inc., New York, 1982.

[11] D. Knuth, “The Art Computer Programming: Fundamental Algorithms”,
Addison Wesley, 1973.

[12] N. Santoro, “Sense of Direction, Topological Awareness and Communica-
tion Complexity”, ACM SIGACT News, Number 16, pages 50 - 56, 1984.

14


