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Abstract 

A distributed algorithm f o r  finding an ear decom- 
position of an asynchronous communication network 
with n nodes and m links is presented in this paper. 
At the completion of the algorithm either the ears are 
correctly labeled o r  the nodes are informed that there 
exists no ear decomposition. First we present a novel 
algorithm to check the existence of an ear decompo- 
sition which uses O(m) messages. W e  also present 
two other algorithms, one which is time-optimal and 
the other which is message-optimal to  determine the 
actual ears and their corresponding numbers after de- 
termining the existence of an ear decomposition. 

1 Introduction 

A distributed system consists of a set of computers 
(nodes) connected by a communication network. Each 
node communicates with their neighbors by sending 
messages to  them. A distributed algorithm is a col- 
lection of automata, where one automata is associated 
with each node in the system. Given an instance I of 
input size n of a problem, and an algorithm A which 
solves the problem, the message complexity, C, of A 
on I is the total number of messages generated by 
all nodes during that execution of A; the worst-case 
message complexity of A on instances of size n is the 
maximum among the message complexities of A on all 
instances I of size n. 

Our interest in distributed algorithms is motivated 
by the number of papers which have appeared in 
the literature related networks and distributed al- 
gorithms. These recent distributed algorithms fall 
into two classes; the class of algorithms for perform- 
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ing computations using networks and the class of al- 
gorithms for performing computations on networks. 
Among the papers related to computations using net- 
works include Rajanarayanan and Iyenger [ll] on set 
intersection and Zaks [17] on sorting and ranking. 
Among the papers related to computations on net- 
works include Gallager [6] on minimum weight span- 
ning trees, Korach, et. al. [SI on finding centers 
and medians in networks, Awerbuch, et. al. [3], on 
breadth first search, Romarao [14] on network recog- 
nition, Sharma et. al. [15] on depth first search, and 
Awerbuch [2] on Max-Flow. 

Ear decomposition is a technique of decomposing a 
given network into simpler parts such that computa- 
tion on the simpler parts corresponds to the compu- 
tation on the entire network. This technique of ear 
decompositon was first introducted in the parallel en- 
vironment by Lovkz [9]. This technique has been suc- 
cessfully used for connectivity testing [13, 10, 12, 161, 
planarity testing and finding planar embeddings [7]. 
We feel that a distributed algorithm for ear decom- 
position is an important step towards solving many 
problems on distributed networks. In the following we 
present a formal definition for the ear decomposition 
of graph. 
Definition: An (open) ear decomposition of a graph 
G = (V, E) is a sequence Po, PI, ... , P, of simple, edge- 
disjoint paths, with PO a cycle and only the endpoints 
of Pi, i > 0 ,  are on earlier paths. In an open ear 
decomposition, the endpoints of each Pi, i 2 1, have 
to be distinct. 

2 Distributed Algorithm 

We assume the following model of computation on 
the class of connected and undirected graphs which is 
essentially same as that in [5]. The model assumes 
that: 
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The nodes of the graphs correspond to the pro- 
cessing nodes and the undirected edges corre- 
spond to the duplex communication links between 
the processors. 

Every node only knows its neighbors. 

Nodes and the communication links are fully re- 
liable. 

Along a link the messages arrive at the destina- 
tion in the order they are sent. 

The only mode of communication between the 
processors is message-passing via the communi- 
cation links. 

I t  takes unit step for the house-keeping and send- 
ing the messages to the neighbors. 

The processors communicate asynchronously, 
that is, the sender always hands over the mes- 
sage to the communication subsystem and pro- 
ceeds with other communications or local compu- 
tations if any. 

Further, we assume that the algorithm is triggered at 
a single node, called the trigger-node or the root. The 
algorithm essentially consists of the following three 
phases: 

1. A rooted spanning tree is built for the graph using 
a depth first search. The root of the tree is the 
trigger-node. While building the spanning tree 
the existence of an ear decomposition or an open 
ear decomposition is checked. The existence can 
be checked using O(m) messages in O(m) time. 
We omit the details due to  space limitations. This 
determines the feasibility-status of the graph. 

2. The feasibility-status of the graph regarding the 
absence of an ear decomposition or an open ear 
decomposition is broadcast to all the nodes from 
the root via the tree edges. This step is not exe- 
cuted if the graph is biconnected, i.e., if an open 
ear decomposition exists. This can be done us- 
ing O(n) messages in O(n) time by traversing the 
spanning tree constructed above. 

3. Each edge in the graph is assigned a label denot- 
ing the ear it belongs to. The labeling starts with 
0. The labels are stored at the adjacent nodes. 
Every node records the labels of all the edges in- 
cident on it. 

After the algorithm terminates, every processing node 
knows the feasibility-status of the graph. If there ex- 
ists an ear decomposition for the graph every node 
knows the labels of all the edges incident on it. Oth- 
erwise every node knows that there exists no ear de- 
composition. If G = (VI E) is a connected graph, 
we write an edge e = ( U  v) iff e E E and 
Preorder( u)<Preorder( v). 

3 Ear labeling - Phase 3 

For clarity of presentation, in the following we will 
give the sequential version of the distributed algorithm 
for the phase 3, i.e., the ear-labeling, given later. 
Seauential version 

SeqBar-Label(r: Vertex) 
Forall edge (U U) E E 

ear-label(u,v) - 00 

cur-ear-num 6 0 
For-all U E V in increasing preorder numbers 

Use-New-Ear( U) 

Use_New-Ear( U: Vertex) 

Preorder(u) < Preorder(v) 
For-allv suchthat ( U  v) E nontree AND 

ear-label(u v) + cur-ear-num 
La bel( v) 
cur-ear-num + cur-ear-num + 1 

Label(u: Vertex) 

cur-ear-num) 
if (parent(u) # U) AND (ear-label(parent(u) U) > 

ear-label(parent(u) U) + cur-ear-num 
Label(parent( U)) 

We scan the vertices in the increasing order of their 
Preorder numbers and a t  every node U, look for an 
adjacent nontree edge connecting U to a descendant 
v. For each such nontree edge (in arbitrary order), we 
label that edge with the cur-ear-num. Let TP(,,,) be 
the unique path of tree edges from v to  U. We follow 
TP(,,,) while labeling the edges with cur-ear-num un- 
til we encounter an edge with an ear-label lower than 
cur-ear-num. We then increment the cur-ear-num 
variable. For the distributed version, the For loop 
in the Seq-Ear-Label routine is simulated by sending 
one by one, a Use-New-Ear message to the children in 
the increasing Preorder number of the children syn- 
chronized by a Used message from the children. A 
Used message is sent to the parent if all the children 
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are exhausted. We will now present the distributed 
version. 
Distributed version 
We present two distributed algorithms for the ear- 
labeling, viz. message-optimal and time-efficient. We 
will present them in the order listed. We will add the 
suffix M after the message names to denote message- 
optimal and the suffix T to denote the time-optimal 
algorithm. 

3.0.1 Message-Optimal algorithm 

In the following we present the message-optimal dis- 
tributed algorithm for the ear-labeling phase. This is 
essentially the simulation of the sequential algorithm 
stated above in a distributed setting. All nodes are 
scanned in the increasing order of their Preorder num- 
bers. Every node being scanned looks for an adjacent 
nontree edge connecting to a descendant and sends a 
Label-M message on it. This Label-M message perco- 
lates up back towards the initiator via the unique path 
of tree edges. Every edge in the path is labeled by 
the same ear-label embedded in the Label-M message. 
The message retracts back in the form of Labeled-M 
message when it encounters an already labeled edge 
or reaches the initiator. When the initiator receives 
the Labeled-M message it looks for next adjacent non- 
tree edge to send next Label-M message. If it does 
not find one it looks for next unscanned child to send 
a Use-New-Ear-M message. Again if it doesn’t finds 
one, it sends a Used-M message to its parent. The al- 
gorithm terminates when the root receives a Used-M 
message from all of its children. To send the Labeled-M 
message which retraces the path created by the cor- 
responding Label-M message, every node maintains a 
variable back- n ode. 

Messages 

Use-New_Ear-M( cur-ear-num) 
Used-M( cur-ear-num) 
LabeLM(sender-id, initiatorid, ear-label) 
Labeled-M( initiatorid, ear-label) 

Process at node i on the receDtion of: 

Use-New-Ear-M(e): 
current-ear-numberi t e 

Send to  c 
Use-New-Ear-M( current-ear-numberi) 

else if Parenti # i send to Parenti 
Used-M( current-ear-numberi) 0 

Label-M(j, initiator, e): 
ear-label(j) c e 
back-node t j 
if (initiator # i) AND (ear-label(Parenti) > e) 

ear-label( Parenti) e e 
Send to Parenti Label-M(i,initiator,e) 

else send to back-node Labeled-M(initiator,e) 0 

Labeled-M(initiator, e): 
if (initiator # i) 
send to back-node Labeled-M(initiator,e) 
else send to i Use-New-Ear-M(e+l) 

Used-M(e): 
if 3 c in Childreni 

delete c from Childreni 
Send to  c Use-New-Ear-M(e) 

else if Parenti # i send to Parent; Used-M(e) 0 

We will discuss the correctness of the algorithm after 
presenting the time-optimal version of the algorithm. 
Communication and Time Complexity: 
The communication and time complexity can be easily 
shown to be O(m). 
Now we present the time-efficient algorithm for the 
ear-labeling . 

3.0.2 Time-Efficient Algorithm 

We will first describe the algorithm and then state 
it formally. This phase of the ear decomposition 
algorithm starts with the reception of the message 
Use-New-Ear-T by the root. The message is sent by 
the root to itself in one of the previous phases de- 
pending on the feasibility-status of the graph. Node i 
receiving a Use-New-Ear-T message checks the Pre- 
order numbers of all the neighbors connected to  it 
by a nontree edge. I t  then compares them with its 
own Preorder and sends a LabeLTmessage to  all those 
neighbors whose Preorder is higher than its own Pre- 
order (a descendant). A distinct ear-label is sent on 
each such edge starting from the current lowest ear- 

if 3 c E nontreei suchthat Preorder, > Preorderi 
Send to c Label-M(i,i,current-ear-numberi) 
delete c from nontree 

delete c from Childreni 

label available incremeked by l for each such edge. 
For example if the current highest label used is e and 
node i has k adjacent nontree edges connecting it to 
k descendants, then those edges are labeled as e + 1 
through e + k in arbitrary order. After the node i does 

else if 3 c in Childreni 



the above or it doesn't find any candidate to send the 
Label-T message to, it sends a Use-New-Ear-T mes- 
sage to one of its unscanned children along with the 
current highest ear-label used. When all the children 
are scanned , it sends back a Used-T message to its 
parent which in turns looks for one of its unscanned 
children and so on. On receiving a Label-T, message 
node i first records the ear-label of the edge on which 
the message came and then checks its own id against 
the id of the initiator of the Label-Tmessage. It passes 
on the message to its parent if node i itself is not the 
initiator and ear-label of the parent edge is greater 
than the ear-label embedded in the Label-T message. 
In this entire process we basically scan the spanning 
tree of the graph following the preorder numbering. 
At every node we check for nontree edges going to a 
descendant, and send a label message on each of them 
which percolates up towards the initiator via the chain 
of parents and stops when it reaches the initiator or it 
encounters an edge labeled by a lower ear-label. In a 
distributed environment it is possible that a tree edge 
is labeled many times with a different ear-label until it  
finally gets the lowest ear-label among all the Label-T 
messages that pass through it. A higher ear-label is 
always overridden by a lower one and never the re- 
verse. We will refer to  the set of edges with ear-label 
e as P,. There are two facts worth noting: 
Observation 3.1: Exactly one Label-T message is 
sent on every nontree edge with a unique ear-label. 
This implies that for every e, P, has exactly one non- 
tree edge belonging to  it. 
Observation 3.2: After the algorithm terminates, 
any P, is of the form: 

where (20 21) is the unique nontree edge in P,, Xk 
is the parent of Xk-1, 1 < i 5 k, and all nodes are 
distinct with the exception that when kk > 1, Xk may 
be same as 20. 

We will now state the distributed algorithm in a more 
formal manner: 
We will give the prototypes of the messages and the 
action taken by node i on the reception of each mes- 
sage. 

(20 Z l ) ,  (a 221,  ' * . I  (Zk-1 Xk), k 2 1 

Messages 

Use-New-Ear- Tcurrent-ear-num) 
Label-7(sender_idl initiatorid, ear-label) 
Used- T(current-ear-num) 

current-ear-number; e 
For-all c where c E nontree; AND Preorder, > 

Preorder; 
Send to c LabeLT(i,i,current-ear-number;) 
current-ear-number; current-ear-number; + 

1 
if 3 c in  Children, 

delete c from Children; 
Send to  c 

Use-New-Ear- qcurrent-ear-number;) 
else if Parent; # i send to Parent, 

Used- qcurrent-ear-number;) 0 

Label-T(j,init iat or, e): 
ear-label(j) + e 
if (initiator # i) AND (ear-label(Parent;) > e) 

ear-label(Parent;) + e 
Send to Parent; Label- nilinitiator ,e) 0 

Used-T(e): 
if 3 c in Children; 

delete c from Children, 
Send to c Use-New-Ear-T(e) 

else if Parenti # i send to Parent; Used-T(e) 0 

In the following, we will discuss the correctness of 
the proposed distributed algorithm. We will restrict 
our discussion to the third phase i.e., the ear labeling 
phase. The first phase simply does feasibility check- 
ing which is a straightforward implementation of the 
algorithm in [l]. To show the correctness we will first 
discuss the relevant facts. 
Lemma 3.3: The root of DFS spanning tree of a 
bridgeless graph has atleast 1 nontree edge adjacent 
to it. 0 
Lemma 3.4: Let U and v be distinct nodes initiat- 
ing Label-Tmessages with ear-labels e,, and e, respec- 
tively. e,, < e, iff Preorder,, < Preorder,. 0 
Theorem 3.5: Given a bridgeless graph along with 
a rooted DFS spanning tree, phase 3 of the algorithm 
gives an ear decomposition of the graph. o 
Lemma 3.6: If the graph is biconnected then the 
algorithm gives an open ear decomposition. - - 
Communication and Time Complexity: 
Since the Use-New-Ear-T and Used-T messages are 
sent exactly once along each tree edge, the number of 
these messages is in O(n). Now, consider the node U 

with preorder number k. Let the number of adjacent 
nontree edges connecting U to its descendants be dk. - - 

Process at node i on the reception of: 

Use-Ne w-Ear-T(e): 

Any Label-T message initiated by U can go through 
(n - k) edges at the most (It cannot involve a node 
with lower preorder than the initiator). So the max- 
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imum number of LabeLT messages generated in the 
network due an initiation by U can be (n - k). Hence 
the total number of Label-T message generated due to 
U can be dk * (n - k ) .  This gives us the upper bound 
on the number of LabeLT messages as: 

dt * (n - k )  
Also,  c ; r , ' d k  = m - n +  1 
The complexity simplifies to: 
m * n - n2 + n - k * dk 
As evident, the message complexity will be O(m * n) 
in the worst case but will be linear for more practical 
purposes. 
The algorithm terminates as soon as all the edges are 
labeled. Consider the node U with preorder number 
I C .  It receives a Use-New-Ear-T message after k steps 
from the start of the phase 3. After it receives the 
message, it will take atmost (ra - k )  time steps to la- 
bel any ear starting at U following the same arguments 
as for message complexity. So the time for completion 
of any ear labeling is bounded by (k + n - k ) ,  i . e . ,  
exactly n. 
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