
A Distributed Algorithm for Ear Decomposition

S. Hannenhalli, K. Perumalla, N. Chandrasekharan *
R. Sridhart:

Department of Computer Science
University of Central Florida

Orlando, FL 32816

Abstract

A distributed algorithm f o r finding an ear decom-
position of an asynchronous communication network
with n nodes and m links is presented in this paper.
At the completion of the algorithm either the ears are
correctly labeled o r the nodes are informed that there
exists no ear decomposition. First we present a novel
algorithm to check the existence of an ear decompo-
sition which uses O(m) messages. W e also present
two other algorithms, one which is time-optimal and
the other which is message-optimal to determine the
actual ears and their corresponding numbers after de-
termining the existence of an ear decomposition.

1 Introduction

A distributed system consists of a set of computers
(nodes) connected by a communication network. Each
node communicates with their neighbors by sending
messages to them. A distributed algorithm is a col-
lection of automata, where one automata is associated
with each node in the system. Given an instance I of
input size n of a problem, and an algorithm A which
solves the problem, the message complexity, C, of A
on I is the total number of messages generated by
all nodes during that execution of A; the worst-case
message complexity of A on instances of size n is the
maximum among the message complexities of A on all
instances I of size n.

Our interest in distributed algorithms is motivated
by the number of papers which have appeared in
the literature related networks and distributed al-
gorithms. These recent distributed algorithms fall
into two classes; the class of algorithms for perform-

"Research supported in part by a National Science Founda-
tion Grant No. NSF-CCR-9110159

$School of Computer Science
University of Oklahoma

Norman, OK 73019

ing computations using networks and the class of al-
gorithms for performing computations on networks.
Among the papers related to computations using net-
works include Rajanarayanan and Iyenger [ll] on set
intersection and Zaks [17] on sorting and ranking.
Among the papers related to computations on net-
works include Gallager [6] on minimum weight span-
ning trees, Korach, et. al. [SI on finding centers
and medians in networks, Awerbuch, et. al. [3], on
breadth first search, Romarao [14] on network recog-
nition, Sharma et. al. [15] on depth first search, and
Awerbuch [2] on Max-Flow.

Ear decomposition is a technique of decomposing a
given network into simpler parts such that computa-
tion on the simpler parts corresponds to the compu-
tation on the entire network. This technique of ear
decompositon was first introducted in the parallel en-
vironment by Lovkz [9]. This technique has been suc-
cessfully used for connectivity testing [13, 10, 12, 161,
planarity testing and finding planar embeddings [7].
We feel that a distributed algorithm for ear decom-
position is an important step towards solving many
problems on distributed networks. In the following we
present a formal definition for the ear decomposition
of graph.
Definition: An (open) ear decomposition of a graph
G = (V, E) is a sequence Po, PI, ... , P, of simple, edge-
disjoint paths, with PO a cycle and only the endpoints
of Pi, i > 0 , are on earlier paths. In an open ear
decomposition, the endpoints of each Pi, i 2 1, have
to be distinct.

2 Distributed Algorithm

We assume the following model of computation on
the class of connected and undirected graphs which is
essentially same as that in [5]. The model assumes
that:

180
0-8186-4212-2'93 $03.00 0 1993 IEEE

1.

2.

3.

4.

5 .

6.

7.

The nodes of the graphs correspond to the pro-
cessing nodes and the undirected edges corre-
spond to the duplex communication links between
the processors.

Every node only knows its neighbors.

Nodes and the communication links are fully re-
liable.

Along a link the messages arrive at the destina-
tion in the order they are sent.

The only mode of communication between the
processors is message-passing via the communi-
cation links.

I t takes unit step for the house-keeping and send-
ing the messages to the neighbors.

The processors communicate asynchronously,
that is, the sender always hands over the mes-
sage to the communication subsystem and pro-
ceeds with other communications or local compu-
tations if any.

Further, we assume that the algorithm is triggered at
a single node, called the trigger-node or the root. The
algorithm essentially consists of the following three
phases:

1. A rooted spanning tree is built for the graph using
a depth first search. The root of the tree is the
trigger-node. While building the spanning tree
the existence of an ear decomposition or an open
ear decomposition is checked. The existence can
be checked using O(m) messages in O(m) time.
We omit the details due to space limitations. This
determines the feasibility-status of the graph.

2. The feasibility-status of the graph regarding the
absence of an ear decomposition or an open ear
decomposition is broadcast to all the nodes from
the root via the tree edges. This step is not exe-
cuted if the graph is biconnected, i.e., if an open
ear decomposition exists. This can be done us-
ing O(n) messages in O(n) time by traversing the
spanning tree constructed above.

3. Each edge in the graph is assigned a label denot-
ing the ear it belongs to. The labeling starts with
0. The labels are stored at the adjacent nodes.
Every node records the labels of all the edges in-
cident on it.

After the algorithm terminates, every processing node
knows the feasibility-status of the graph. If there ex-
ists an ear decomposition for the graph every node
knows the labels of all the edges incident on it. Oth-
erwise every node knows that there exists no ear de-
composition. If G = (VI E) is a connected graph,
we write an edge e = (U v) iff e E E and
Preorder(u)<Preorder(v).

3 Ear labeling - Phase 3

For clarity of presentation, in the following we will
give the sequential version of the distributed algorithm
for the phase 3, i.e., the ear-labeling, given later.
Seauential version

SeqBar-Label(r: Vertex)
Forall edge (U U) E E

ear-label(u,v) - 00

cur-ear-num 6 0
For-all U E V in increasing preorder numbers

Use-New-Ear(U)

Use_New-Ear(U: Vertex)

Preorder(u) < Preorder(v)
For-allv suchthat (U v) E nontree AND

ear-label(u v) + cur-ear-num
La bel(v)
cur-ear-num + cur-ear-num + 1

Label(u: Vertex)

cur-ear-num)
if (parent(u) # U) AND (ear-label(parent(u) U) >

ear-label(parent(u) U) + cur-ear-num
Label(parent(U))

We scan the vertices in the increasing order of their
Preorder numbers and a t every node U, look for an
adjacent nontree edge connecting U to a descendant
v. For each such nontree edge (in arbitrary order), we
label that edge with the cur-ear-num. Let TP(,,,) be
the unique path of tree edges from v to U. We follow
TP(,,,) while labeling the edges with cur-ear-num un-
til we encounter an edge with an ear-label lower than
cur-ear-num. We then increment the cur-ear-num
variable. For the distributed version, the For loop
in the Seq-Ear-Label routine is simulated by sending
one by one, a Use-New-Ear message to the children in
the increasing Preorder number of the children syn-
chronized by a Used message from the children. A
Used message is sent to the parent if all the children

181

are exhausted. We will now present the distributed
version.
Distributed version
We present two distributed algorithms for the ear-
labeling, viz. message-optimal and time-efficient. We
will present them in the order listed. We will add the
suffix M after the message names to denote message-
optimal and the suffix T to denote the time-optimal
algorithm.

3.0.1 Message-Optimal algorithm

In the following we present the message-optimal dis-
tributed algorithm for the ear-labeling phase. This is
essentially the simulation of the sequential algorithm
stated above in a distributed setting. All nodes are
scanned in the increasing order of their Preorder num-
bers. Every node being scanned looks for an adjacent
nontree edge connecting to a descendant and sends a
Label-M message on it. This Label-M message perco-
lates up back towards the initiator via the unique path
of tree edges. Every edge in the path is labeled by
the same ear-label embedded in the Label-M message.
The message retracts back in the form of Labeled-M
message when it encounters an already labeled edge
or reaches the initiator. When the initiator receives
the Labeled-M message it looks for next adjacent non-
tree edge to send next Label-M message. If it does
not find one it looks for next unscanned child to send
a Use-New-Ear-M message. Again if it doesn’t finds
one, it sends a Used-M message to its parent. The al-
gorithm terminates when the root receives a Used-M
message from all of its children. To send the Labeled-M
message which retraces the path created by the cor-
responding Label-M message, every node maintains a
variable back- n ode.

Messages

Use-New_Ear-M(cur-ear-num)
Used-M(cur-ear-num)
LabeLM(sender-id, initiatorid, ear-label)
Labeled-M(initiatorid, ear-label)

Process at node i on the receDtion of:

Use-New-Ear-M(e):
current-ear-numberi t e

Send to c
Use-New-Ear-M(current-ear-numberi)

else if Parenti # i send to Parenti
Used-M(current-ear-numberi) 0

Label-M(j, initiator, e):
ear-label(j) c e
back-node t j
if (initiator # i) AND (ear-label(Parenti) > e)

ear-label(Parenti) e e
Send to Parenti Label-M(i,initiator,e)

else send to back-node Labeled-M(initiator,e) 0

Labeled-M(initiator, e):
if (initiator # i)
send to back-node Labeled-M(initiator,e)
else send to i Use-New-Ear-M(e+l)

Used-M(e):
if 3 c in Childreni

delete c from Childreni
Send to c Use-New-Ear-M(e)

else if Parenti # i send to Parent; Used-M(e) 0

We will discuss the correctness of the algorithm after
presenting the time-optimal version of the algorithm.
Communication and Time Complexity:
The communication and time complexity can be easily
shown to be O(m).
Now we present the time-efficient algorithm for the
ear-labeling .

3.0.2 Time-Efficient Algorithm

We will first describe the algorithm and then state
it formally. This phase of the ear decomposition
algorithm starts with the reception of the message
Use-New-Ear-T by the root. The message is sent by
the root to itself in one of the previous phases de-
pending on the feasibility-status of the graph. Node i
receiving a Use-New-Ear-T message checks the Pre-
order numbers of all the neighbors connected to it
by a nontree edge. I t then compares them with its
own Preorder and sends a LabeLTmessage to all those
neighbors whose Preorder is higher than its own Pre-
order (a descendant). A distinct ear-label is sent on
each such edge starting from the current lowest ear-

if 3 c E nontreei suchthat Preorder, > Preorderi
Send to c Label-M(i,i,current-ear-numberi)
delete c from nontree

delete c from Childreni

label available incremeked by l for each such edge.
For example if the current highest label used is e and
node i has k adjacent nontree edges connecting it to
k descendants, then those edges are labeled as e + 1
through e + k in arbitrary order. After the node i does

else if 3 c in Childreni

the above or it doesn't find any candidate to send the
Label-T message to, it sends a Use-New-Ear-T mes-
sage to one of its unscanned children along with the
current highest ear-label used. When all the children
are scanned , it sends back a Used-T message to its
parent which in turns looks for one of its unscanned
children and so on. On receiving a Label-T, message
node i first records the ear-label of the edge on which
the message came and then checks its own id against
the id of the initiator of the Label-Tmessage. It passes
on the message to its parent if node i itself is not the
initiator and ear-label of the parent edge is greater
than the ear-label embedded in the Label-T message.
In this entire process we basically scan the spanning
tree of the graph following the preorder numbering.
At every node we check for nontree edges going to a
descendant, and send a label message on each of them
which percolates up towards the initiator via the chain
of parents and stops when it reaches the initiator or it
encounters an edge labeled by a lower ear-label. In a
distributed environment it is possible that a tree edge
is labeled many times with a different ear-label until it
finally gets the lowest ear-label among all the Label-T
messages that pass through it. A higher ear-label is
always overridden by a lower one and never the re-
verse. We will refer to the set of edges with ear-label
e as P,. There are two facts worth noting:
Observation 3.1: Exactly one Label-T message is
sent on every nontree edge with a unique ear-label.
This implies that for every e, P, has exactly one non-
tree edge belonging to it.
Observation 3.2: After the algorithm terminates,
any P, is of the form:

where (20 21) is the unique nontree edge in P,, Xk
is the parent of Xk-1, 1 < i 5 k, and all nodes are
distinct with the exception that when kk > 1, Xk may
be same as 20.

We will now state the distributed algorithm in a more
formal manner:
We will give the prototypes of the messages and the
action taken by node i on the reception of each mes-
sage.

(20 Z l) , (a 221, ' * . I (Zk-1 Xk), k 2 1

Messages

Use-New-Ear- Tcurrent-ear-num)
Label-7(sender_idl initiatorid, ear-label)
Used- T(current-ear-num)

current-ear-number; e
For-all c where c E nontree; AND Preorder, >

Preorder;
Send to c LabeLT(i,i,current-ear-number;)
current-ear-number; current-ear-number; +

1
if 3 c in Children,

delete c from Children;
Send to c

Use-New-Ear- qcurrent-ear-number;)
else if Parent; # i send to Parent,

Used- qcurrent-ear-number;) 0

Label-T(j,init iat or, e):
ear-label(j) + e
if (initiator # i) AND (ear-label(Parent;) > e)

ear-label(Parent;) + e
Send to Parent; Label- nilinitiator ,e) 0

Used-T(e):
if 3 c in Children;

delete c from Children,
Send to c Use-New-Ear-T(e)

else if Parenti # i send to Parent; Used-T(e) 0

In the following, we will discuss the correctness of
the proposed distributed algorithm. We will restrict
our discussion to the third phase i.e., the ear labeling
phase. The first phase simply does feasibility check-
ing which is a straightforward implementation of the
algorithm in [l]. To show the correctness we will first
discuss the relevant facts.
Lemma 3.3: The root of DFS spanning tree of a
bridgeless graph has atleast 1 nontree edge adjacent
to it. 0
Lemma 3.4: Let U and v be distinct nodes initiat-
ing Label-Tmessages with ear-labels e,, and e, respec-
tively. e,, < e, iff Preorder,, < Preorder,. 0
Theorem 3.5: Given a bridgeless graph along with
a rooted DFS spanning tree, phase 3 of the algorithm
gives an ear decomposition of the graph. o
Lemma 3.6: If the graph is biconnected then the
algorithm gives an open ear decomposition. - -
Communication and Time Complexity:
Since the Use-New-Ear-T and Used-T messages are
sent exactly once along each tree edge, the number of
these messages is in O(n). Now, consider the node U

with preorder number k. Let the number of adjacent
nontree edges connecting U to its descendants be dk. - -

Process at node i on the reception of:

Use-Ne w-Ear-T(e):

Any Label-T message initiated by U can go through
(n - k) edges at the most (It cannot involve a node
with lower preorder than the initiator). So the max-

183

imum number of LabeLT messages generated in the
network due an initiation by U can be (n - k). Hence
the total number of Label-T message generated due to
U can be dk * (n - k) . This gives us the upper bound
on the number of LabeLT messages as:

dt * (n - k)
Also, c ; r , ' d k = m - n + 1
The complexity simplifies to:
m * n - n2 + n - k * dk
As evident, the message complexity will be O(m * n)
in the worst case but will be linear for more practical
purposes.
The algorithm terminates as soon as all the edges are
labeled. Consider the node U with preorder number
I C . It receives a Use-New-Ear-T message after k steps
from the start of the phase 3. After it receives the
message, it will take atmost (ra - k) time steps to la-
bel any ear starting at U following the same arguments
as for message complexity. So the time for completion
of any ear labeling is bounded by (k + n - k) , i . e . ,
exactly n.

References

A. V. Aho, J . E. Hopcroft, and J . D. Ullman. The
Design and Analysis of Computer Algorithms.
Addison-Wesley Publishing Company, 1974.

B. Awerbuch. Reducing complexities of the d i s
tributed max-flow and breadth-first-search algo-
rithms by means of network synchronization. Net-
works, 15:425-437, 1985.

B. Awerbuch and R. G. Gallager. A new dis-
tributed algorithm to find breadth-first-search
trees. IEEE Trans. Information Theory, IT-
33:315-322, May 1987.

K. Bogart. Introductory Combinatorics. Har-
court, Brace and Jovanovich, 1990.

T . Cheung. Graph traversal techniques and the
maximum flow problem in distributed computa-
tion. IEEE f ians . Software Eng., SE9(4):504-
512, July 1983.

R. Gallager, P. Humblet, and P. Spira. A d i s
tributed algorithm for minimum-weight spanning
trees. A C M T O P L A S , 5(1):66-77, 1983.

P. N. Klein and J. H. Reif. An efficient paral-
lel algorithm for planarity. In Proc. 27th Annual
IEEE FOCS, pages 465-477, 1986.

[8] E. Korach, D. Rotem, and N. Santoro. D i s
tributed algorithms for finding centers and me-
dians in networks. A C M T O P L A S , 6(3):380-401,
1984.

[9] L. Lovisz. Computings ears and branchings
in parallel. In Proceedings of the 26th Annual
IEEE Symp. on Foundations of Computer Sci-
ence (Portland, OR) , pages 464-467, 1985.

[lo] G. L. Miller and V. Ramachandran. A new graph
triconnectivity algorithm and its parallelization.
In Proc. 19th Annual A C M S T O C , pages 335-
344, 1987.

[ll] S. Rajanarayanan and S. Iyengar. A new opti-
mal distributed algorithm for the set intersection
problem. Inform. Process. Lett., 38(3):143-148,
May 1991.

[12] V. Ramachandran. Parallel open ear decompo-
sition with applications to graph biconnectivity
and triconnectivity. to appear, Synthesis of Par-
allel Algorithms, J . H . Reif, ed., 1992.

[13] V. Ramachandran and U. Vishkin. Efficient par-
allel triconnectivity in logarithmic time. VLSI
Algorithms and Architecture, pages 33-42, 1988.

[14] K. Ramarao. Distributed algorithms for network
recognition problems. IEEE Trans. on Comput-
ers, 38(9), Sept 1989.

[15] M. Sharma, S. Iyengar, and N. Mandyam. An
efficient distributed depth-first-search algorithm.
Inform. Process. Lett., 32(4):183-186, Sept. 1989.

Parallel ear
decomposition search (eds) and st-numbering in
graphs. Theoretical Computer Science, 47~277-
298, 1986.

[16] B. S. Y. Maon and U. Vishkin.

[17] S. Zaks. Optimal distributed algorithms for sort-
ing and ranking. IEEE Trans. Comput. , C-
34(4) :376-379, 1985.

184

