
J. Parallel Distrib. Comput. 66 (2006) 796–806
www.elsevier.com/locate/jpdc

Utilizing unreliable public resources for higher profit and better SLA
compliance in computing utilities

Shah Asaduzzaman, Muthucumaru Maheswaran∗

School of Computer Science, McGill University, Montreal QC, Canada H3A 2A7

Received 18 October 2004; received in revised form 11 June 2005; accepted 27 January 2006
Available online 20 March 2006

Abstract

Computing utilities are emerging as an important part of the infrastructure for outsourcing computer services. Fundamental to outsourcing
is the notion of quality of service, which is defined by service level agreements (SLAs) between the computing utilities and clients. One of
the major objectives of computing utilities is to maximize their net profit while maintaining customer loyalty. To achieve this objective, the
computing utilities should meet or exceed their SLA constraints most of the time. Defining the SLAs conservatively might be one way of
easily achieving these goals. However, by tuning the SLA parameters conservatively the computing utility might under utilize its resources
with a resultant loss of revenue. Therefore, we can see two main issues with SLA management: designing SLAs competitively so that expected
revenue for the computing utility is maximized and maintaining the operating conditions such that SLAs are satisfied with very high probability.
In this paper, we show that inducting unreliable public resources into a computing utility enables more competitive SLAs while maintaining
higher levels of run time compliances as well as maximizing profit. Our scheduling algorithms assume that idle cycles from public resources
are available in plenty, therefore, the performance gains do not incur any additional financial cost. However, there is communication overhead
when public resources from a wide area network is included. This overhead is kept to the minimum by enabling the scheduler work without
any monitoring on the public resources.
© 2006 Elsevier Inc. All rights reserved.

Keywords: Resource management; Scheduling; Service level agreement; Public computing utility

1. Introduction

Constant improvements in computer communications and
microprocessor technologies are driving the development of
new classes of network computing systems. One such system
is the computing utility (CU) that brings large number of re-
sources and services together in a virtual system to serve its
clients. Typically, CUs are built by connecting the resources or
services to a resource management system (RMS) that itself is
implemented either centrally or federally. The RMS allocates
resources to the client requests such that some measure of deliv-
ered performance is maximized subject to fairness constraints.
The CUs have diverse designs based on various parameters in-
cluding target applications, organization of the RMS, classes of

∗ Corresponding author. Fax: +51 43983883.
E-mail addresses: asad@cs.mcgill.ca (S. Asaduzzaman),

maheswar@cs.mcgill.ca (M. Maheswaran).
URL: http://www.cs.mcgill.ca/∼anrl/ (M. Maheswaran).

0743-7315/$ - see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2006.01.005

resources managed by the utility, and levels of services offered
to the clients.

Although CUs were initiated in the realm of high-
performance computing [13], they have been successfully
adopted in other areas such as online gaming, content dis-
tribution, and video-on-demand. While research into CUs is
striving to achieve application independent designs [7], target
applications continue to cast strong influence on the design of
CU systems. The organization of the RMS is another key CU
design consideration. The organization of the RMS can impact
the scalability, extensibility, and fault tolerance of the CU. The
CU can manage different classes of resources. For instance,
a CU can include dedicated resources that are owned and ex-
clusively managed by the CU, volunteer resources that are not
bound by any contracts, and partially committed resources that
are managed through incentives schemes administered by the
CU. The levels of services offered to the clients by the CU is
another important consideration. In the simplest case, the CU
offers best effort services to the clients. However, to attract

http://www.elsevier.com/locate/jpdc
mailto:asad@cs.mcgill.ca
mailto:maheswar@cs.mcgill.ca
http://www.cs.mcgill.ca/~anrl/

S. Asaduzzaman, M. Maheswaran / J. Parallel Distrib. Comput. 66 (2006) 796–806 797

clients with business critical applications the CUs should offer
services with quality of service (QoS) assurances.

One of the common approaches to construct CUs is to de-
ploy server resources and run CU infrastructure software such
as Grid [15] and Web Services [6] on them to create virtual
systems for research [23] and commercial purposes [11]. When
server resources are deployed by a single organization for the
sole purposes of the CU, proper capacity planning is essen-
tial to make CU cost-effective while meeting the performance
expectations. When multiple organizations are contributing re-
sources towards the CU, the management becomes complicated
unless each organization sets aside certain number of resources
exclusively for the CU. PlanetLab [23] is one example of CU
that falls into the latter category.

This paper is concerned about augmenting CUs using “pub-
lic” resources (i.e., resources that wish to contribute their
computing, storage, and network capacities without subjecting
themselves to any contractual agreements). Several large-scale
network computing applications including peer-to-peer (P2P)
file sharing systems such as Gnutella [21] and volunteer com-
puting systems such as SETI@home [1] have demonstrated
the tremendous potential of using public resources. However,
these systems also illustrate the challenges that need to be
addressed in using public resources. The additional capacity
introduced by the public resources should be efficiently man-
aged to provide higher levels of services in a cost-effective
manner. In this paper, we refer to the augmented CU where
public resources provide additional capacity as the public
computing utility (PCU).

The PCU model we use here assumes a finite-sized private
(dedicated) resource pool and a very large (nearly infinite) sized
public resource pool. The private resource pool may be either
distributed or concentrated at a single network location. The
public resource pool, on the other hand, is fully distributed and
is organized in a P2P network. A P2P discovery service [27]
is assumed to be available to locate the most appropriate set
of public resources to satisfy a given request. Although public
resources are available in plenty, their service rates are unpre-
dictable. Estimates of expected performances based on obser-
vation of prior engagements provide the only basis for choosing
the best candidates from the available public resources.

The clients using a CU subscribe through a CU service
provider with a service level agreement (SLA) that defines
among other parameters the maximum load the client is per-
mitted to offer and the portion of the offered load guaranteed to
be delivered by the provider. The SLA also defines the pricing
scheme for the service and penalties that should incur in case
of a quality violation by the CU. The parameters of the SLA
guide the RMS in deciding resource allocations.

Although different applications can potentially use a PCU,
here we consider only high-throughput computing applications.
In this situation, job requests belonging to different clients ar-
rive at the PCU at arbitrary times. Each job has a deadline
before which it should be completely serviced if the client is
to receive full benefit. It is well known [20] that even if all
the information about the jobs (i.e., arrival time, processing
time, and deadline) are known a priori, finding the optimal non-

preemptive schedule that maximizes throughput is a NP-hard
problem for a multiprocessor system. In a practical PCU set-
ting, the RMS has to take the allocation decision as soon as the
jobs arrive, and the arrival times are arbitrary.

In this paper, we devise an online scheduling heuristic for
the RMS of the PCU. The PCU online heuristic needs to decide
what class of resources (public or private) should be used for
servicing a given request in addition to determining how best
to use the selected resource. Because the PCU is bound by
the SLAs when delivering services to the clients, we need to
consider the SLAs in the resource allocation process as well.

Section 2 discusses the related results found in the litera-
ture. Section 3 explains the proposed system architecture in
detail. Section 4 defines the resource scheduling problem be-
ing dealt with in the PCU. Section 7 discusses the results from
the simulations performed to evaluate the resource allocation
alternatives. Section 6 describes a proposed PCU architecture
and demonstrates the use of the heuristic for QoS in the PCU
system context.

2. Related work

Multiprocessor job scheduling is a well-studied problem in
operations research and computer science. Although several op-
timal algorithms are available [20] for simpler scheduling prob-
lems, most of the interesting and practical scheduling problems
are computationally intractable. When preemption is possible,
there are optimal polynomial time algorithms for scheduling
jobs with arrival time and due date constraints on a single
processor [5]. Also for the two processor case arbitrary jobs
with certain precedence constraints can be scheduled in poly-
nomial time [17]. However, scheduling jobs with arrival time
and deadline constraints is proven to be a NP-hard problem for
more than two processors [18]. In fact [10] proved that optimal
scheduling of jobs in multiple processors is impossible if any
of the 3 parameters—arrival time, execution time or deadline is
unknown. Because in an online scheduling scenario, resource
allocations have to be carried out with incomplete information
regarding jobs, heuristic solutions are appropriate for this sit-
uation. A good survey of online scheduling heuristics can be
found in [28].

One major goal of the RMS of a PCU is to enforce QoS
according to the SLAs signed up with its clients. SLA com-
pliant resource management for cluster of dedicated machines
has been studied in several research projects. Oceano [3] has
described the architecture and protocols for SLA management
in cluster based hosting utilities, whereas [9] gives a SLA ne-
gotiation protocol for more distributed computing system such
as the Grid [14,15]. However, study of scheduling algorithms
with detailed performance evaluations were not carried in the
above works. Performance evaluation of scheduling heuristics
for cluster based hosting centers are found in [4,8,16,26] with
different optimization goals in different cases. For instance,
[8,26] attempt to minimize the total number of active servers to
minimize energy consumption and to maximize average server
utilization, respectively, whereas [4] targets performance isola-
tion. An SLA driven resource management scheme for clusters

798 S. Asaduzzaman, M. Maheswaran / J. Parallel Distrib. Comput. 66 (2006) 796–806

to maximize net profit is evaluated in [16]. Further, [29] defines
QoS through aggregate yield functions and evaluates a greedy
heuristic to manage resources in a server cluster to maximize
yield as well as reserving a minimum resource share for each
service classes. But none of the above system has dealt with
QoS on top of unreliable resources like a PCU.

The Condor project [30] focuses on harvesting unused re-
sources from heterogeneous public machines, but their resource
management mainly emphasizes on discovery and co-allocation
of resources through matchmaking [24] and gangmatching [25].
They do not support SLA driven QoS aware resource manage-
ment on the public resource pool.

One work that is very close to our work is [19], which ex-
amines the resource management problem of providing mar-
ketable stochastic QoS using an infinite pool of public resources
of stochastic behavior and a finite pool of dedicated private re-
sources. Although their architecture matches closely to that of
PCU, our work is significantly different from theirs in several
dimensions. In their model the public resources are homoge-
neous in performance but cycle lengths are stochastic (i.e., the
public resources deliver at a fixed and known performance level
when they are connected to the system). Instead we have mod-
eled the throughput of the public resources to be stochastic (i.e.,
the performance levels delivered by the public resources vary
even while they remain connected with the PCU), which more
closely captures the real behavior. The QoS guarantee provided
by their scheme is a stochastic QoS measured in quantiles [19],
where the probability distribution of the delivered QoS (cycle
lengths) is identical to the cycle length distributions of the in-
dividual public resources. Further, their scheme does not have
any long-term SLA with the clients. As performance evaluation
they have studied the expected amount dedicated resources re-
quired for completing the jobs within the deadline constraints.

In presence of SLAs with clients as is the case in our PCU
model, the SLA compliance is a major issue because non-
compliance incurs penalties for the provider. Our scheduling
heuristic is devised to simultaneously maximize the net-profit
of the service provider and the level of compliance with the
long-term SLAs. Our work also differs from [19] in the jobs
characteristics. Instead of correlating the cycle-length require-
ments of the jobs and the public resource characteristics, we
deal with job characteristics that are independent of the un-
derlying public resource characteristics. Our investigation also
includes job streams arriving from multiple clients that have
different SLAs with the PCU.

3. The PCU system model and assumptions

The primary component of the PCU is a proximity aware
P2P network such as the Pastry [27] that connects all the re-
sources that participate in the system. The P2P network en-
ables efficient resource discovery by finding the most appropri-
ate sets of resources in response to queries posed by resource
brokers working on behalf of clients. The public resources are
expected to be uniformly dispersed throughout the Internet and
the private resources can be concentrated as clusters at certain
locations on the Internet. There can be one or more such clus-

ters that are installed and maintained by the PCU provider. For
uniformity and simplicity, the public and private resources are
both discovered through the common P2P discovery network.
The resource broker that is seeking the resources on behalf of
the client decides in conjunction with the PCU which type of
resource should be used to service a given request from the
client.

Several issues should be addressed in developing the re-
source allocation process in a PCU system. These include: (a)
co-allocating different resources such as processing bandwidth,
storage capacity, and network bandwidth, (b) using trust mea-
sures of public resources to derive robust resource allocations,
(c) using network proximities to derive efficient resource allo-
cations that reduce the loading by PCU on the underlying net-
work and at the same time reduce impact of network conges-
tions on the QoS delivered by the PCU, and (d) managing the
incentives for the participating volunteer resources so that the
performance delivered by such resources can be maximized.

As a first cut at the problem, we consider only one resource,
the CPU processing bandwidth. We model the public resources
to have stochastic throughput with identical probability distri-
bution. The parameters of the distribution are estimated from
the history information on the performance of the public re-
sources. It is known that proper incentive management will
modify the default behavior of the volunteer resource providers
to a more favorable one for the PCU [2,12]. This influence of
incentive management is not considered in this paper.

Job requests from different clients arrive at the PCU at dif-
ferent points in time. The RMS of the PCU makes allocation
decisions at the end of discrete time quantums called epochs.
The length of an epoch is a design parameter for the system.
The allocation decisions of the RMS are influenced by several
parameters including: (a) current utilization of the private re-
source pool administered by the PCU, (b) current load offered
by the different clients, (c) current value of the expected per-
formance of the best-effort resources, and (d) throughput guar-
anteed to the particular client by the PCU in its SLA.

Another PCU design consideration is performance monitor-
ing of the public resources. In the current PCU RMS design,
we assume that no progress monitoring facility exists at a pub-
lic resource to determine the rate at which the public resource
is working for the PCU. The only feedback we obtain from the
public resource is when it completes a job or job component. If
we can have progress indicators from the public resources, we
can improve the contribution from the public resources towards
overall throughput.

4. The resource management problem

Computational jobs arrive from each client of the PCU ser-
vice provider at arbitrary points in time with each job consist-
ing of arbitrary number of mutually independent (i.e., parallel)
components. Along with the jobs, clients are assumed to sub-
mit an estimation of the workload of each of the components
at the submission time. Components are possibly of different
sizes. An overall deadline is defined for the job before which
all the components must finish their execution.

S. Asaduzzaman, M. Maheswaran / J. Parallel Distrib. Comput. 66 (2006) 796–806 799

The SLA that is signed off-line between the provider and
a client reserves a throughput guarantee for the corresponding
client. The SLA defines various parameters including:

• �, the ratio of the client-offered workload that is guaranteed
to be carried out by the PCU service provider.

• V , the maximum limit on the workload that can be offered
by the client.

From these parameters it can be deduced that when the offered
load is not more than V , the delivered throughput should be �v

or more in order to be compliant with the SLA. If offered load
v is greater than V , it is sufficient for the PCU to deliver �V

amount of throughput.
Another service objective of the PCU is meeting the dead-

lines of the individual jobs presented by the clients. The PCU
provider earns revenue in proportion to the total delivered
computational work for the jobs that finish completely within
their deadline (with all of its components). A global through-
put versus price for unit work curve defines this revenue. The
curve may be concave to emphasize the fact that the price
is higher for work in higher throughput, but the rate of in-
crease is gradually slowed down. Further, there is penalty for
violation of the SLA terms and the penalty is proportional to
amount of deviation of the delivered throughput from guar-
anteed throughput, measured over a specified time window.
The length of the window and a moving averaging factor
�SLA that is used to smooth out the burstiness in offered and
completed workloads across the windows are defined as SLA
parameters.

Guided by the above service objectives, the job scheduling
component, which is the core component of the RMS, has pre-
cisely two distinct responsibilities at the end of each epoch:

• Accept or reject the jobs that arrived during the last epoch,
and start the components of the accepted jobs on the private
and/or public resources.

• Migrate some components of some jobs that are vulnerable
for deadline violation, from public resources to the dedicated
resources. Because there is no checkpointing and no progress
monitoring of the jobs running on public machines, the RMS
has to restart the job from the beginning instead of relocating
the remaining portions.

The optimization goal of the job scheduler is to maximize the
net revenue (i.e., revenue–penalty) of the PCU service provider.
To achieve this objective, the job scheduler has to maximize the
amount of work done for jobs that do not violate the deadline.
Another goal is to ensure the fairness among the clients, so
that all of them have equal treatment from the scheduler in
accordance with the subscriptions agreed upon in the SLAs.
The next section describes the heuristic solutions we devised
to achieve these goals.

5. Heuristic solutions for resource management

In this section, we present three heuristic solutions to re-
source management in a PCU environment. The first solution,
the PCU heuristic, is proposed as part of this work. The next

two solutions are adopted from the scheduling literature for the
PCU environment for comparison purposes.

5.1. PCU heuristic: an online resource allocator

The scheduler of the RMS uses an online heuristic to take
decisions about allocating available resources to incoming jobs.
To reduce the scheduling overhead, the RMS executes the
scheduling rules at discrete points of time (i.e., at the end of
each scheduling epoch �). Another component of the RMS, the
SLA monitor measures the current deviation Dc of delivered
throughput from required throughput for each client c, accord-
ing to the SLA specified time-window �c and moving average
factor �SLA. Say the total arrived workload in a time-window
is Wa and total completed and delivered workload is Wd, both
Wa and Wd being smoothed by moving average with the past
values. Then,

Dc = max(Vc, Wa�c) − Wd.

In the above equation, Vc and �c are SLA-defined maximum
load and acceptance ratio for client c. The current value of
Dc is available to the scheduler at the end of every epoch.
There are two parts of the decision taken by the scheduler
at the end of every epoch: (i) accept newly arrived jobs and
start them on public and/or private resources, and (ii) relo-
cate and restart the deadline vulnerable jobs from public re-
source to the private resource pool (in absence of checkpointing
and progress monitoring, it is impossible to migrate without
restarting).

5.1.1. Acceptance of jobs
For each client, the scheduler maintains a priority queue for

newly arrived jobs, ordered by highest contributing job first.
For a job with total workload W and total available time Ta
before deadline, the throughput contribution is W

Ta
. Every time

the foremost job from the queue of the client having highest
Dc −Wc value is chosen, where Wc is the amount of workload
so far accepted for client c in current SLA window.

All the jobs are ultimately accepted, and each of them is as-
signed one of the two different levels of restart-priority, which
is used latter for restarting decisions. The jobs are accepted ac-
cording to the following rules:

(1) As long as available dedicated resources allow, schedule
jobs with critical components on dedicated and the rest on
public resources. The components that are expected to vi-
olate deadline if scheduled on a public resources accord-
ing to their currently estimated expected throughput �, are
identified as critical components. Among the M private re-
sources, Mr are reserved for restarting phase (the ratio Mr

M
is a design parameter). Let Mo denotes the number of occu-
pied private resources at any given time and m denotes the
number of critical components in the new job. Accepting
jobs with this rule continues as long as Mo +m�M −Mr,
where m . Otherwise, the scheduler switches to the rule-2.
The restart-priority is set to high for all the jobs scheduled
by rule-1.

800 S. Asaduzzaman, M. Maheswaran / J. Parallel Distrib. Comput. 66 (2006) 796–806

(2) For the rest of the enqueued jobs all components are sched-
uled on public resources. For any client c, as long as total
accepted workload from that client in the current SLA win-
dow is below �cVc, the restart-priority of the accepted job
is high, otherwise it is low.

5.1.2. Restart jobs
At the end of every epoch, the scheduler restarts some

deadline-vulnerable job-components from public resources. At
any given time, a job component is defined to be deadline-
vulnerable if it cannot be completed before deadline unless
it is allocated a dedicated resource right at that time. A pri-
ority queue is maintained for all the vulnerable components.
The queue is ordered descending primarily by the restart-
priority (explained earlier) and secondly by violation prob-
ability (pv). pv is computed at the job-launch time from
the available information (distribution of the public resource
throughput, component size and the deadline). From the queue,
high restart-priority components are restarted as long as any
dedicated resource is available. Low restart-priority compo-
nents are restarted as long as available dedicated resource is
greater than Mr. The rest of components are left on public
resource.

5.2. Least laxity first and greedy heuristics

For performance evaluation we compare our PCU heuristic
with the well known least laxity first (LLF) [28] heuristic and
a greedy heuristic. We use the LLF heuristic to schedule the
jobs only in the private pool of resources. The laxity is the
slack between possible execution finish time and deadline. New
jobs from each client enter a separate priority queue where
the priority is laxity of job’s deadline. At every epoch jobs are
popped from the queues and scheduled in dedicated resources
if available. Otherwise, the job is deferred until the time after
which it becomes infeasible to execute within deadline. As a
fairness scheme the queue of the client with highest deviation
from SLA is favored when choosing every job.

The greedy heuristic, another one that we used for compar-
ison, works on the same PCU architecture with a combination
of private and public resource pools. The greedy scheduling
policy chooses jobs from the arrival queues in every schedul-
ing epoch in the order of highest contributing job of the highest
deviating client first. It schedules all components of incoming
jobs on private resources in the order of longer component first,
as long as there is spare capacity in the private resource pool.
All the remaining job-components are scheduled on public re-
sources until all the arrival queues are exhausted.

6. Architecture to deploy the heuristics

It is useful to outline a system architecture where the heuris-
tic may be deployed to extract the desired gain from public
resources. In this section, we describe an architecture for the
PCU and show how quality of service support can be imple-
mented in the resource management layer. This research is part

Resource Pool (RP)

Resource Addressable Network (RAN)

Resource
Management

Incentive/Trust
Management

Galaxy Services

Applications

S
e

cu
rit

y

G
al

ax
y

M
id

dl
ew

ar
e

Fig. 1. The Galaxy architecture.

of a bigger project which is targeted to build a complete PCU
named Galaxy.

6.1. A public computing utility architecture

The proposed architecture for the Galaxy PCU is shown in
Fig. 1. The lowest layer of the architecture is the P2P overlay
network called the resource addressable network (RAN). All
the resources that participate in the PCU plug into the RAN. The
RAN provides the resource naming, discovery, and access ser-
vices to the PCU. The next upper layer is the Galaxy resource
management system (GRMS). Similar to the RAN, the GRMS
is also organized as a P2P overlay network of managerial en-
tities called resource brokers (RBs). In the RAN, the peers are
virtualized resources whereas in the GRMS the peers are RBs.
The trust/incentive management is a collaborating module to
the GRMS. It controls the behavior of resources, especially
the public resources, in the system. The next upper layer is
the Galaxy services. Although the architecture does not impose
any restriction on the organization of this layer, it could be or-
ganized as a P2P network. Example Galaxy services include
application level QoS managers, shell interfaces, and network
file systems. Security is a layer in this Galaxy middleware that
spans all the other layers in parallel to provide the system from
malicious activities (external and internal to the system).

6.2. The resource management layer

The GRMS layer, which is responsible for the resource man-
agement in the Galaxy PCU, is composed of two sets of en-
tities: (a) resource peers (RPs) and (b) RBs. RPs are GRMS
layer representatives of the resources present in the Galaxy.
The resources RPs represent can be individual resources, clus-
ter of resources, virtual resources, or software entities. RPs are
the mediators in the GRMS resource allocation: they launch
resource requests on behalf of the entities they represent and
regulate the resource acquisition requests received for the re-
sources under their control. Aggregating multiple resources un-
der an RP has number of architectural benefits: it matches the
administrative domains present in real world and provides an
easy way of handling trust levels and incentives. The role of
RBs and RPs are illustrated in Fig. 2.

S. Asaduzzaman, M. Maheswaran / J. Parallel Distrib. Comput. 66 (2006) 796–806 801

RP

RB

R
A

N
 la

ye
r

G
R

M
S

 la
ye

r

RB
RB

RP
RP

RP

RP

RP

- Resource discovery

- Resource acquisition

RP

RB

- Resource peer

- Resource broker

- RB as RAN entity

- Resources

- Resource request

Fig. 2. GRMS layer functionalities.

The RBs are the entities that coordinate most of the activi-
ties within the GRMS layer. Any RP can act also as an RB as
long as it has sufficient reputation such that existing RBs ac-
cept the new one. RBs have their virtual representations in the
RAN level and this enables the RBs to use the RAN’s scal-
able resource discovery mechanism to discover resources and
other RBs. Two major functionalities of the RBs are to search
and allocate resources as requests emerge from RPs and to as-
sign and revalidate trust levels and incentive shares of the RPs.
Each RP chooses an RB (probably the closest) to send the re-
source requests. The RB uses the RAN discovery mechanism
to discover the appropriate resources. The discovered resources
tell the RB who their RP(s) are. The RB then mediates with
the destination RPs to acquire the resources for the requesting
RP. At the end of the resource utilization, the donor and client
RPs report the performance during the utilization back to the
RB and based on which the RB readjusts the incentive shares
owned by the donor RPs.

6.3. Implementing QoS support in resource management: a
scenario

The GRMS layer implements the “core” set of functionalities
to manage the QoS delivered by Galaxy. The big part of the
Galaxy resource pool made up of publicly owned resources that
are guided by incentives and reputation. But, since it is hard
to guarantee QoS with uncontrolled public resources alone,
Galaxy engineers the QoS guarantees by augmenting the public
resources with a fully controlled and reliable pool of dedicated
resources.

We implement this idea in conjunction with the QoS guaran-
teed resource scheduling service provided by the RBs. Follow-
ings are the steps of a guaranteed resource allocation scenario.

• The RP who needs resources to launch their jobs contacts a
nearby RB for necessary resource allocation.

• The RBs are the resource allocator in Galaxy and to meet the
clients’ request it may assign some resource from the large
set of public resources that are discovered through RAN.
Alternately, RB may reserve some of the trusted resources
from the RAN, and allocate from this reserved pool in urgent
situations.

• In case of failure or poor performance of a public resource,
RB may restart the job on one of the trusted resource from
the reserved pool. The heuristic described in Section 5.1 may
be used here to decide which job needs to switch resource
urgently.

Thus RBs try to maximize the job throughput as well as max-
imally fulfill the implicit service level agreement with the RPs
that is defined with the resource requests.

7. Simulation results

We have evaluated the performance of the PCU heuristic
through a simulator written in Parsec [22] by changing dif-
ferent parameters and comparing it with the greedy and LLF
heuristics. In our simulation setup, the service provider had a
pool of 100 dedicated machines and an infinite pool of pub-
lic machines. There were five independent clients each feed-
ing a stream of parallel jobs that should be completed within
the given deadlines and having its own SLA. Job arrival is a
Poisson process, with each job having a random number (k) of
parallel components (geometrically distributed with a mean 25,
unless mentioned otherwise). Each component of a job also has
a random workload that is from a geometric distribution. Each
job has a feasible deadline, i.e., it can always be completed if
all the parallel components run on dedicated machines. Unless
stated otherwise, the deadline was computed with a uniform
random laxity between 0.5 and 2 times the mean component
length, from the longest component. This tight deadline allows
one trial on the public pool and failing that it should be restarted
on a private resource.

All private machines have homogeneous throughput, com-
pleting 1 unit of workload of a component per second. The pub-
lic resource throughput is sampled from Lognormal distribution
with standard deviation 1.0 and mean less than 1.0, generally
0.8 unless stated otherwise. Justification behind using lognor-
mal distribution is that being left skewed it closely resembles
the behavior of the resources in a PCU setting, where most of
the public resources may have very low or even 0 throughput.

In this section, we show the results of 2 sets of simulation
experiments. The first five graphs (Figs. 3–7 in Section 7.1)
shows the comparative study of the performance of our new

802 S. Asaduzzaman, M. Maheswaran / J. Parallel Distrib. Comput. 66 (2006) 796–806

 0

 20

 40

 60

 80

 100

 120

 140

 0 200 400 600 800 1000 1200 1400

T
hr

ou
gh

pu
t

Offered load

PCU-heuristic
Private Pool LLF

Greedy
Public Pool only

Fig. 3. Variation of mean throughput with offered load values for mean
public resource throughput � = 0.80, mean number of parallel components
P = 25, total number of private resources M = 100, and total SLA booking,∑

�V = 100.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 200 400 600 800 1000 1200 1400

P
en

al
ty

 p
er

 u
ni

t r
ev

en
ue

Offered load

Greedy

Private Pool LLF

PCU-heuristic

Fig. 4. Variation of penalty per unit revenue with offered load for � = 0.80,
P = 25, M = 100, and

∑
�V = 100.

-100

-50

 0

 50

 100

 150

 0 200 400 600 800 1000 1200 1400

N
et

 p
ro

fit
/s

ec

Offered load

PCU-heuristic
Public Pool only

PCU-greedy
Private Pool only

Fig. 5. Variation of net profit earned by the PCU provider with offered load
for � = 0.80, P = 25, M = 100, and

∑
�V = 100.

 0

 50

 100

 150

 200

 250

 300

 350

 0 200 400 600 800 1000 1200 1400

T
hr

ou
gh

pu
t

Offered load

PCU-upperbound

PCU-heuristic

Private Pool LLF

Greedy

Public Pool only

Fig. 6. Upper bound on PCU throughput assuming future behavior of public
resources is known for � = 0.80, P = 25, M = 100, and

∑
�V = 100.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 200 400 600 800 1000 1200 1400

M
ea

n
oc

cu
pi

ed
 m

ac
hi

ne
s

Offered load

Private Pool LLF
Greedy

PCU-heuristic

Fig. 7. Utilization of dedicated resources versus offered load for � = 0.80,
P = 25, M = 100, and

∑
�V = 100.

heuristic with other standard scheduling algorithms. The next
nine graphs (Figs. 8–16 in Section 7.2) shows the study of
how performance of the scheduler is affected by the change of
different environment parameters.

7.1. Comparative study

In the first set of experiments the PCU heuristic is compared
with LLF and greedy using throughput (Fig. 3), SLA compli-
ance (measured using penalty per unit revenue in Fig. 4) and net
revenue in Fig. 5. The PCU heuristic delivers better throughput
than LLF, which implies it useful to augment public resource
in a CU. Also the PCU-heuristic is superior in performance to
the greedy heuristic in similar setting.

The penalty is higher with the LLF algorithm on private pool
only system than the PCU heuristic, because jobs are not de-
prioritized when the client is offering more workload than the
SLA upper bound. In case of the greedy algorithm, penalty

S. Asaduzzaman, M. Maheswaran / J. Parallel Distrib. Comput. 66 (2006) 796–806 803

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 200 400 600 800 1000 1200 1400

P
en

al
ty

/R
ev

en
ue

Offered load

SLA=100%
SLA=120%
SLA=140%
SLA=150%
SLA=160%

SLA=200%

Fig. 8. Penalty per unit revenue earned at different levels of SLA booking
for � = 0.80, P = 25, and M = 100.

 0

 20

 40

 60

 80

 100

 120

 140

 0 200 400 600 800 1000 1200 1400

N
et

 p
ro

fit
/s

ec

Offered load

SLA=100%
SLA=120%
SLA=140%
SLA=150%
SLA=160%
SLA=200%

Fig. 9. Penalty per unit revenue earned at different levels of SLA booking
for � = 0.80, P = 25, and M = 100.

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 200 400 600 800 1000 1200 1400

T
hr

ou
gh

pu
t

Offered load

µ = 1.00
µ = 0.80

µ = 0.70
µ = 0.60

µ = 0.50

Fig. 10. Throughput gain at different public resource characteristics, with
respect to a dedicated pool only system for P = 25, M = 100, and∑

�V = 100.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 200 400 600 800 1000 1200 1400

T
hr

ou
gh

pu
t

Offered load

µ = 1.00
µ = 0.80

µ = 0.70
µ = 0.60

µ = 0.50

Fig. 11. Throughput gain at different public resource characteristics, with
respect to the greedy resource allocation policy on combined pools for
P = 25, M = 100, and

∑
�V = 100.

 0

 50

 100

 150

 200

 250

 300

 350

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
hr

ou
gh

pu
t

Offered load

P=1
P=5

P=10
P=20
P=25

Fig. 12. Throughput gain at different public resource characteristics, with
respect to the greedy resource allocation policy on combined pools for
P = 25, M = 100, and

∑
�V = 100.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
hr

ou
gh

pu
t

Offered load

P = 1
P = 5

P = 10
P = 20
P = 25

Fig. 13. Throughput gain at different degrees of parallelism, with respect to
a dedicated pool only system for � = 0.80, M = 100, and

∑
�V = 100.

804 S. Asaduzzaman, M. Maheswaran / J. Parallel Distrib. Comput. 66 (2006) 796–806

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
hr

ou
gh

pu
t

Offered load

P = 1
P = 5

P = 10
P = 20
P = 25

Fig. 14. Throughput gain at different degrees of parallelism, with respect
to the greedy resource allocation policy on combined pools for � = 0.80,
M = 100, and

∑
�V = 100.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0 200 400 600 800 1000 1200 1400

T
hr

ou
gh

pu
t

Offered load

Laxity = 5 * mean-worktime
Laxity = 4 * mean-worktime
Laxity = 3 * mean-worktime

Laxity = 2 * mean-worktime
Laxity = 1 * mean-worktime

Fig. 15. Throughput gain at different amount of laxity in deadline, with
respect to a dedicated pool only system for � = 0.80, P = 25, M = 100,
and

∑
�V = 100.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 100 200 300 400 500 600 700 800 900

T
hr

ou
gh

pu
t

Offered load

client-1(ρ V = 66)

client-2(ρ V = 33)

Fig. 16. Comparing delivered throughput to 2 clients having different max-load
defined in SLA for � = 0.80, P = 25, and M = 100.

grows even higher when the client is overloading, because the
dedicated pool gets fully occupied and most of the newly ar-
riving jobs are put on public resources. Consequently, only a
small portion of the newly arriving jobs can finish before their
deadlines.

Fig. 6 shows that a much higher gain in throughput is achiev-
able, if the exact knowledge of throughput of each public ma-
chine is available at schedule time, because then there is no
need for restarting jobs. How far of this gain can be achieved
without a priori knowledge of public resource characteristics,
remains a problem for future research.

As Fig. 7 shows, the utilization of dedicated resources is
higher for the greedy policy. This is because greedy uses the
dedicated resources exhaustively. The PCU heuristic tries to ex-
ecute a job-component primarily using public resources unless
it becomes vulnerable for deadline violation. Also, in PCU, to
allow the restarting of vulnerable components, it reserves a por-
tion of the dedicated resources (25%) as contingency resources.
These factors lower the utilization of dedicated resources in
the PCU heuristic. Greedy’s utilization is even more than LLF,
because, in LLF jobs are not allocated unless the all the com-
ponents fit in the private resources, whereas, greedy may put
part of a job in private pool and rest in public pool.

7.2. Response to parameter changes

Here we consider the effects of different environment param-
eters like public resource capacity, SLA-overbooking, degree
of parallellism of the jobs, etc. on the performance of the sched-
uler. First, to consider the flexibility in SLA overbooking, if the
total agreed upon deliverable throughput (�V) is higher than
the maximum system capacity, the SLA deviation goes very
high leading to correspondingly high penalties (Fig. 8). This in
turn reduces the net profit earned by the service provider. From
Fig. 9 it can be observed that SLA booking should be at 140%
of the dedicated pool capacity to maximize the performance
for the given PCU configuration.

Fig. 10 shows that use of PCU-heuristic brings gain in de-
livered throughput in most region of the spectrum of public
resource behavior. It should be noted that with lognormal dis-
tribution, even if the mean throughput is equal to that of a ded-
icated machine, 62% of the public resources have throughput
less than that of a dedicated machine. For very low public re-
source throughput, almost all of the jobs scheduled there need
to restart, and since restart is subject to availability in the lim-
ited capacity private pool, many jobs get discarded. This ex-
plains the less than one throughput-gain with poor quality of
public resources. Fig. 11 shows that PCU-heuristic outperforms
the greedy heuristic across the whole spectrum.

Studying the effect of parallelism Fig. 12 shows that the effect
is insignificant in underloaded situations, but when the system
is overloaded, high number of parallel components increase
the probability of failure of a whole job due to failure of only
one or few components which could not be restarted when
necessary. Hence, the total delivered throughput becomes low.
Fig. 13 shows that the throughput with PCU heuristic always
outperforms the LLF heuristic at a large degree for jobs with

S. Asaduzzaman, M. Maheswaran / J. Parallel Distrib. Comput. 66 (2006) 796–806 805

fewer parallel components. As we compare the PCU and the
greedy heuristics in Fig. 14, it reveals that greedy heuristic
performs much poorer with highly parallel jobs than the PCU
heuristic. This is because in greedy, the private pool of resources
gets occupied very quickly and a large number of jobs are
scheduled on the unreliable public resources.

Study on the effect of laxity before deadline (Fig. 15) shows
that throughput gain is much higher with relaxed laxity jobs.
This is because with relaxed laxity the probability of getting a
job component completed before deadline on a public resource
increases, which incurs less restarts and better contribution from
public resources.

Fig. 16 demonstrates the fairness of the PCU heuristic. For
two different clients having SLA guaranteed max-workload (V)

defined at 2:1 ratio but offering load at similar rate, it shows
that the delivered throughput is proportional to the SLA-defined
maxload of the clients, in overloaded situations. Thus the algo-
rithm honors the SLA for the clients and distributes the avail-
able resources in a fair ratiometric way.

In summary, the results show that the PCU heuristic outper-
forms the other two standard algorithms in terms of throughput
gain, SLA compliance and profit maximization. The current al-
gorithm uses the public resources without any prior knowledge
about their performance, which greatly reduces the commu-
nication overhead. It is shown that with the accurate a priori
knowledge, much higher throughput is achievable. This trade-
off between communication overhead and performance gain
is not studied in this paper. Resource utilization for the PCU
heuristic is lower than other algorithms, because they use ded-
icated resources more exhaustively. On the other hand, this
little under-utilization yields higher performance in terms of
throughput. It is shown that the performance (throughput and
SLA compliance) depends on different factors like the capacity
of the public resources, the degree of parallellism of jobs and
the amount of laxity allowed between job execution time and
deadline. The algorithm also allocate the available resources
fairly among competing clients, according to the commitments
in SLA.

8. Conclusion

In this paper, we presented the idea of creating a PCU by
augmenting computing utilities that are created using dedicated
resources, with public resources. A resource management strat-
egy for such an augmented system was presented. We proposed
a resource allocation heuristic that uses the public and private
(dedicated) pools of resources in an efficient manner. We car-
ried out extensive simulations to evaluate the performance of
the proposed heuristic and compare it with two other heuristics.
One of those heuristics uses only dedicated resources while the
other one uses both pools in a private-greedy manner.

The results indicate that the PCU concept of using public
resources to augment private resources can lead to significant
performance improvements both in terms of overall through-
put obtainable from the computing utility and the service level
compliance of the computing utility. Further, the results indicate
that PCU performance depends on two major factors: charac-

teristics of the public resources and characteristics of the work-
load. For instance, it can be noted that the performance gain
from PCU increases if the job has fewer inter-job dependencies
or relaxed deadlines. The performance of the PCU heuristic can
be further improved by incorporating these parameters in the
decision process.

One of the significant features of our PCU architecture is the
minimal monitoring on the public resources. Because public
resources are in plenty, this helps to keep the overhead low. It
might be possible to selectively enable performance monitoring
for high capacity public resources and increase the delivered
performance levels even further.

This work is part of a bigger project Galaxy which is focus-
ing on designing and implementing a complete PCU. We have
introduced the Galaxy architecture and demonstrated the role
of the proposed resource management heuristic in the context
of the whole system.

References

[1] D.P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, D. Werthimer,
SETI@home: an experiment in public-resource computing, Comm. ACM
45 (11) (2002) 56–61.

[2] N. Andrande, F. Brasileiro, W. Cirne, M. Mowbray, Discouraging free
riding in a peer-to-peer CPU-sharing grid, in: 13th IEEE International
Symposium on High-Performance Distributed Computing, 2004.

[3] K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt, M. Kalantar, S.
Krishnakumar, D. Pazel, J. Pershing, B. Rochwerger, Oceano—SLA
based management of a computing utility, in: Proceedings of the
Seventh IFIP/IEEE International Symposium on Integrated Network
Management, 2001.

[4] M. Aron, P. Druschel, W. Zwaenepoel, Cluster reserves: a mechanism for
resource management in cluster-based network servers, in: Proceedings
of ACM SIGMETRICS, 2000.

[5] P. Bartley, M. Florian, P. Robillard, Scheduling with earliest start and
due date constraints, Naval Res. Logist. Quart. 18 (1971) 511–519.

[6] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris,
D. Orchard, Web services architecture—W3C working draft, Technical
Report, Web Services Working Group, World Wide Web Consortium,
August 2003.

[7] R. Brayanrd, D. Kosic, A. Rodriguez, J. Chase, A. Vahdat, Opus: an
overlay peer utility service, in: 15th International Conference on Open
Architectures and Network Programming (OPENARCH), 2002.

[8] J.S. Chase, D.C. Anderson, P.N. Thakar, A.M. Vahdat, R.P. Doyle,
Managing energy and server resources in hosting centers, in: 18th ACM
Symposium on Operating Systems Principles, 2001.

[9] K. Czajkowski, I. Foster, C. Kesselman, V. Sander, S. Tuecke, SNAP:
A protocol for negotiating service level agreements and coordinating
resource management in distributed systems, Lecture Notes in Computer
Science, vol. 2537, Springer, Berlin, 2002, pp. 153–183.

[10] M.L. Dertouzos, A.K.-L. Mok, Multiprocessor on-line scheduling of
hard-real-time tasks, IEEE Trans. Software Eng. 15 (12) (1989) 1497–
1506.

[11] Ensim—web hosting software, 〈http://www.ensim.com/〉.
[12] M. Feldman, I.S.K. Lai, J. Chuang, Robust incentive techniques for peer-

to-peer networks, in: ACM E-Commerce Conference (EC’04), 2004.
[13] I. Foster, C. Kesselman, The Grid: blueprint for a new computing

infrastructure, Morgan Kaufmann, San Fransisco, CA, 1999.
[14] I. Foster, C. Kesselman, J. Nick, S. Tuecke, The physiology of the grid:

an open grid services architecture for distributed systems integration,
Technical Report, Open Grid Service Infrastructure WG, Global Grid
Forum, June 2002.

[15] I. Foster, C. Kesselman, S. Tuecke, The anatomy of the grid: enabling
scalable virtual organizations, Internat. J. Supercomput. Appl. 15 (3)
(2001) 200–222.

http://www.ensim.com/

806 S. Asaduzzaman, M. Maheswaran / J. Parallel Distrib. Comput. 66 (2006) 796–806

[16] Y. Fu, A.M. Vahdat, Service level agreement based distributed resource
allocation for streaming hosting systems, in: Seventh International
Workshop on Web Content Caching and Distribution (WCW), 2002.

[17] M. Garey, D. Johnson, Two-processor scheduling with start-times and
deadlines, SIAM J. Comput. 6 (1977) 416–426.

[18] M. Garey, D. Johnson, Computers and Intractability: A guide to the
theory of NP-completeness, W H Freeman and Company, New York,
1979.

[19] C. Kenyon, G. Cheliotis, Creating services with hard guarantees
from cycle harvesting resources, in: Proceedings of the Third
IEEE/ACM International Symposium on Cluster Computing and the
Grid (CCGRID’03), 2003.

[20] E.L. Lawler, J.K. Lenstra, A.H.G.R. Kan, D.B. Shmoys, Handbooks in
operations research and management science, vol. 4, Elsevier Science
Publishers, 1993, pp. 445–522 (Chapter 9).

[21] A. Oram, Peer-to-Peer: harnessing the power of disruptive technologies,
O’Reilly and Associates, Sebastopol, CA, 2001.

[22] Parsec: Parallel simulation environment for complex systems, 〈http://pcl.
cs.ucla.edu/projects/parsec/〉.

[23] Planetlab: an open platform for developing, deploying and accessing
planetary-scale services, 〈http://www.planet-lab.org〉.

[24] R. Raman, M. Livny, M. Solomon, Resource management through
multilateral matchmaking, in: Proceedings of the Ninth IEEE Symposium
on High Performance Distributed Computing (HPDC9), Pittsburgh, PA,
2000, pp. 290–291.

[25] R. Raman, M. Livny, M. Solomon, Policy driven heterogeneous resource
co-allocation with gangmatching, in: Proceedings of the Twelfth IEEE
International Symposium on High-Performance Distributed Computing,
Seattle, WA, 2003.

[26] S. Ranjan, J. Rolia, E. Knightly, QoS driven server migraion for internet
data centers, in: Proceedings of IWQoS 2002, 2002.

[27] A. Rowstron, P. Druschel, Pastry: scalable, distributed object location and
routing for large-scale peer-to-peer systems, in: IFIP/ACM International
Conference on Distributed Systems Platforms (Middleware), Heidelberg,
Germany, 2001, pp. 329–350.

[28] J. Sgall, On-line scheduling—a Survey, Springer, Berlin, 1997, pp.
196–231.

[29] K. Shen, H. Tang, T. Yang, L. Chu, Integrated resource management
for cluster-based internet services, in: Proceedings of the Fifth USENIX

Symposium on Operating Systems Design and Implementation (OSDI
02), Boston, MA, 2002, pp. 225–238.

[30] D. Thain, T. Tannenbaum, M. Livny, Distributed computing in practice:
the condor experience, Concurrency and Computation: Practice and
Experience 17 (2–4) (2005) 323–356.

Shah Asaduzzaman received his B.Sc. Engg.
and M.Sc. Engg. degrees both in computer
science and engineering from Bangladesh Uni-
versity of Engineering and Technology,s Dhaka,
Bangladesh, in 1999 and 2002, respectively.
Currently he is a Ph.D. student in the School
of Computer Science in McGill University,
Montreal, Canada. He is pursuing his research
under supervision of Dr. Muthucumaru Mah-
eswaran in the Advanced Networking Research
Lab of this school. His current research inter-
ests include distributed systems architecture,

scalable resource management, fault tolerance in public resource computing,
distributed scheduling and peer-to-peer systems.

Muthucumaru Maheswaran is an Assistant
Professor in the School of Computer Science at
McGill University, Canada. From August 1998
to December 2002, he was an Assistant Profes-
sor in the Department of Computer Science at
the University of Manitoba, Canada. In 1990, he
received a B.Sc. degree in electrical and elec-
tronic engineering from the University of Per-
adeniya, Sri Lanka. He received an M.S. degree
in electrical engineering in 1994 and a Ph.D.
degree in electrical and computer engineering
in 1998, both from the School of Electrical

and Computer Engineering at Purdue University. His research interests include
grid computing, peer-to-peer computing, trust modeling and management
in large-scale networked systems, scalable resource management systems,
custom computing for grid systems, and teaching and learning toolkits for
computing networks. He has authored or coauthored more than 60 technical
papers in these and related areas.

http://pcl.cs.ucla.edu/projects/parsec/
http://pcl.cs.ucla.edu/projects/parsec/
http://www.planet-lab.org

