
Preface

The objective of this book is to introduce assembly language programming. Assembly lan-
guage is very closely linked to the underlying processor architecture and design. Popular
processor designs can be broadly divided into two categories: Complex Instruction Set Com-
puters (CISC) and Reduced Instruction Set Computers (RISC). The dominant processor in
the PC market, Pentium, belongs to the CISC category. However, the recent design trend is to
use the RISC designs. Some example RISC processors include the MIPS, SPARC, PowerPC,
and ARM. Even Intel’s 64-bit processor Itanium is a RISC processor. Thus, both types of
processors are important candidates for our study.

This book covers assembly language programming of both CISC and RISC processors.
We use the Intel Pentium processor as the representative of the CISC category. We have
selected the Pentium processor because of its market dominance. To explore RISC assembly
language, we selected the MIPS processor. The MIPS processor is appealing as it closely
adheres to the RISC principles. Furthermore, the availability of the SPIM simulator allows us
to use a Pentium-based PC to learn MIPS assembly language.

New in the Second Edition
The second edition has been substantially revised to reflect the changes that have taken place
since the publication of the first edition. The major changes are listed below:

• We introduced RISC assembly language programming so that the reader can benefit
from learning both CISC and RISC assembly languages. As mentioned before, Pentium
and MIPS processors are used to cover CISC and RISC processors.

vii



viii Preface

• The first edition used MASM/TASM assemblers. In this edition, we use the NASM
assembler. The syntax of NASM is slightly different from that of MASM/TASM as-
semblers. The advantage is that NASM is free! Another advantage is that it works with
both Microsoft Windows and Linux operating systems.

• Consistent with our shift to NASM, we moved away from DOS to Linux. Since NASM
is available for Windows and Linux, most of the programs in this book can be used
with either Windows or Linux. However, we clearly indicate our preference to Linux.
This preference is exposed in chapters like “High-Level Language Interface” that deal
with mixed-mode programming involving C and assembly language. For example, in
Chapter 17, we use the GNU C compiler (gcc) rather than the Microsoft or Borland
C compiler. Similarly, in Appendix C we use the GNU debugger (gdb) to explore the
debugging process.

• The “Basic Computer Organization” chapter (Chapter 2) has been completely rewritten
to give a general background on computer organization. The Pentium processor details
are moved to a new chapter (Chapter 4).

• A completely new chapter has been added to discuss Pentium’s protected mode inter-
rupt processing.

• We have added a new chapter on recursion. This chapter discusses how we can imple-
ment recursive procedures in the Pentium and MIPS assembly languages.

• We have augmented the Pentium assembly language programming by describing its
floating-point instructions. This entire chapter is new in this edition.

In addition to these major changes, all chapters have gone through extensive revision. Some
chapters have been reorganized to eliminate the duplication present in the first edition.

Intended Use
Assembly language programming is part of several undergraduate curricula in computer sci-
ence, computer engineering, and electrical engineering departments. This book can be used
as a text for those courses that teach assembly language.

It can also be used as a companion text in a computer organization course for teaching
the assembly language. Because we cover both CISC and RISC processors, the instructor can
select the assembly language that best fits her or his course.

In addition, it can be used as a text in vocational training courses offered by community
colleges. Because of the teach-by-example style used in the book, it is also suitable for self-
study by computer professionals and engineers.

Instructional Support
The book’s Web site (www.scs.carleton.ca/˜sivarama/asm_book) has complete
chapter-by-chapter PowerPoint slides for instructors. Instructors can use these slides directly



Preface ix

in their classes or can modify them to suit their needs. In addition, instructors can obtain
the solutions manual by contacting the publisher. For more up-to-date details, please see the
book’s Web site.

Prerequisites
The student is assumed to have had some experience in a structured, high-level language such
as C. However, the book does not assume extensive knowledge of any high-level language—
only the basics are needed. Furthermore, it is assumed that the student has a rudimentary
background in the software development cycle, as is obtained in a typical high-level program-
ming course.

Features
Here is a summary of the special features that sets this book apart:

• This is probably the only book to cover the assembly language programming of both
CISC and RISC processors.

• This book uses NASM and Linux as opposed to scores of other books that use MASM
and Windows.

• The book is self-contained and does not assume a background in computer organization.
All necessary background material on computer organization is presented in the book.

• This book contains a methodical organization of chapters for a step-by-step introduction
to the assembly language.

• Extensive examples are used in each chapter to illustrate the points discussed in the
chapter. Our objective is not just to explain how an instruction works but also to provide
the rationale as to why the instruction has been designed the way it is.

• Procedures are introduced early on to encourage modular programming in developing
assembly language programs.

• A set of input and output routines is provided so that the student can focus on developing
assembly language programs rather than spending time in understanding how the input
and output are done using the basic I/O functions provided by the operating system.

• This book does not use fragments of code in examples. All examples are complete in
the sense that they can be assembled and run, giving a better feeling as to how these
programs work.

• All examples and other required software are available from the book’s Web site (www.
scs.carleton.ca/˜sivarama/asm_book) to give opportunities for students
to perform hands-on assembly programming.

• Most chapters are written in such a way that each chapter can be covered in two or
three 60-minute lectures by giving proper reading assignments. Typically, important



x Preface

concepts are emphasized in the lectures while leaving the other material as a reading
assignment. Our emphasis on extensive examples facilitates this pedagogical approach.

• Interchapter dependencies are kept to a minimum to offer maximum flexibility to in-
structors in organizing the material. Each chapter clearly indicates the objectives and
provides an overview at the beginning and a summary at the end.

• Each chapter contains two types of exercises—review and programming—to reinforce
the concepts discussed in the chapter.

• The appendices provide special reference material that contains a thorough treatment
of various topics.

Overview and Organization
The 18 chapters in the book are divided into 6 parts (see the figure on the next page for chap-
ter dependencies). Part I presents introductory topics and consists of the first two chapters.
Chapter 1 provides introduction to the assembly language and gives reasons for programming
in the assembly language. Chapter 2 presents the basics of computer organization with a focus
on three system components: processor, memory, and I/O.

Part II is dedicated to Pentium assembly language programming. It consists of nine
chapters—Chapters 3 through 11. This part begins with a description of the Pentium pro-
cessor organization (Chapter 3). In particular, this chapter gives sufficient details on the 16-
and 32-bit Intel processors so that the student can effectively program in the assembly lan-
guage. Chapter 4 gives an overview of the assembly language. After covering these two
chapters, one can write simple standalone assembly language programs.

To emphasize the importance of modular programming, procedures are introduced early
on (in Chapter 5). The other chapters in this part expand on the overview given in Chapter 4.
Chapter 6 presents the addressing modes supported by the Intel 16- and 32-bit processors.
This chapter also contains a detailed discussion on the motivation for providing the various
addressing modes. Addressing modes are one of the differentiating characteristics of CISC
processors. Chapter 7 discusses the arithmetic instructions and the use of the flags register.
Chapters 8 and 9 present conditional and bit manipulation instructions. A feature of these
two chapters is that they relate how high-level language statements can be implemented using
the instructions discussed in these two chapters. Chapter 10 discusses the string processing
instructions in detail. ASCII and BCD arithmetic instructions are presented in Chapter 11.

The first four chapters of this part—Chapters 3 to 6—should be covered in some detail for
proper grounding in assembly language programming. However, the remaining five chapters
can be studied in any order. In addition, the depth at which these five chapters are covered
can be varied without sacrificing the effectiveness, depending on the time available and im-
portance to the course objective.

Part III is dedicated to the MIPS assembly language programming. Chapter 12 describes
the RISC design principles; it also covers MIPS processor details. The MIPS assembly lan-
guage is presented in Chapter 13. This chapter also gives details on the SPIM simulator. All



Preface xi

Chapter 6

Chapter 5

Chapter 4

Chapter 3

Chapter 13

Chapter 12

Chapter 1

Chapter 2

Chapter 9Chapter 7 Chapter 11

Chapter 8 Chapter 10

Chapter 14

Chapter 15 Chapter 18

Chapter 17

Chapter 16

the programming examples given in this chapter can be run on a Pentium-based PC using the
SPIM simulator. The SPIM simulator details are given in Appendix D.

Part IV focuses on Pentium’s interrupt processing mechanism. We cover both protected-
mode and real-mode interrupt processing. Chapter 14 gives details on protected-mode inter-
rupt processing. This chapter uses Linux system calls to facilitate our discussion of software
interrupts. The next chapter discusses the real-mode interrupt processing. This is the only
chapter that uses DOS to explore how programmed I/O and interrupt-driven I/O are done.

The remaining 3 of the 18 chapters constitute Part V. These chapters deal with advanced
topics. Chapter 16 focuses on how recursive procedures are implemented in Pentium and
MIPS assembly languages. The next chapter deals with the high-level language interface,
which allows mixed-mode programming. We use C and assembly language to cover the prin-
ciples involved in mixed-mode programming. The last chapter discusses Pentium’s floating-
point instructions. To follow the programming examples of this chapter, you need to under-
stand the high-level language interface details presented in Chapter 17.

The seven appendices provide a wealth of reference material the student needs. Ap-
pendix A primarily discusses the number systems and their internal representation. Ap-
pendix B gives information on the use of I/O routines provided with this book and the as-



xii Preface

sembler software. The debugging aspect of assembly language programming is discussed
in Appendix C. The SPIM simulator details are given in Appendix D. Selected Pentium and
MIPS instructions are given in Appendices E and F, respectively. Finally, Appendix G gives
the standard ASCII table.

Acknowledgments
Several people have contributed, either directly or indirectly, in writing this book. First and
foremost, I would like to thank my family for enduring my preoccupation with this project.
My heartfelt thanks to Sobha and Veda for their understanding and patience!

I want to thank Ann Kostant, Executive Editor at Springer, for her positive feedback on
the proposal for the revision. A very special thanks to Wayne Wheeler, Associate Editor, for
handling various aspects of the project in a timely manner. I would also like to express my
appreciation to the staff at the Springer production department for converting my camera-
ready copy into the book in front of you.

I also express my appreciation to the School of Computer Science at Carleton University
for providing a great atmosphere to complete this book.

Feedback
Works of this nature are never error-free, despite the best efforts of the authors, editors, and
others involved in the project. I welcome your comments, suggestions, and corrections by
electronic mail.

Ottawa, Canada Sivarama Dandamudi
January 2004 sivarama@scs.carleton.ca

http://www.scs.carleton.ca/˜sivarama


