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Abstract

Artificial life research typically employs digital comput-
ers to implement models of living systems. However,
there is now a growing if pre-theoretical feeling that
computers, or perhaps the software running on them,
are themselves some kind of living systems. Such a pos-
sibility can impact artificial life research in at least two
ways: By highlighting that computers and communica-
tions networks can be subjects, as well as tools, for ar-
tificial life modelling, and by highlighting that insights,
tools, and models from the life sciences can have ex-
planatory, predictive, and design consequences for the
construction of future computation and communications
systems. This paper seeks perspective on such ‘real ar-
tificial life’, looking backwards and forwards at the rise
of living systems in manufactured computer and com-
munications systems.

Real artificial life
Strong notions of artificial life, as discussed in (Sober,
1992) for example, claim that computers and computer
programs may not merely simulate, but actually instan-
tiate living systems. When considering the small, closed-
world models typical of most of our work in artificial
life, the strong claim is often dismissed with variants of
the ‘confusion-of-levels’ objection, pointing out that ‘a
model of a hurricane won’t get you wet’ and so forth.
Supporters of the strong claim might argue that life and
hurricanes are qualitatively different, or that a hurricane
model will drench a model of you, or that some simula-
tions might be different from but every bit as useful as
“the real thing” (Dennett, 1978), and the discussions
continue.

Here I want only to recognize that such unsettled is-
sues exist, then set them aside and veer erratically to-
wards the real and the concrete, accepting uncertain
philosophical footings below. I suspect that if you asked
the millions of computer-using people today to give an
example of ‘artificial life’, a common answer would be
‘computer viruses’. Whatever the ontological status of
a simulation of a forest fire, a computer virus is as real
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as the computer programs and data files it infects. The
Melissa virus invaded over 80,000 reported computers
in under two weeks in 1999 (Vatis, 1999). Even with
no ‘viral payload’ whatsoever, Melissa clogged networks
and incapacitated servers around the world; it had di-
rect effects on the real people in the real world, it is not
‘merely’ a model. Much as we may want to distance our-
selves from the ethical and moral questions, do we really
want to argue that the Melissa virus is not artificial life?

We might dismiss Melissa on the grounds that viruses
shouldn’t be considered alive anyway. The natural world
supports some reasonably clear distinctions between
hardy ‘living’ systems that flourish in wide-ranging envi-
ronments, versus mere ‘parasitic replicators’ that require
a ‘virus-friendly’ environment, one willing not only to
copy nearly any information at hand but then also to
interpret the copied program regardless of what it does
(Dawkins, 1991). But in that sense there is a strong kin-
ship between living cells and manufactured computers
in that both cell and computer interiors present tremen-
dously virus-friendly environments. Moreover, the ac-
tual physicality of a computer itself may support richer
notions of life, compared to the apparent insubstantial-
ity of a computer program and the resulting sometimes
anemic quality of purely software candidates for artificial
life.

Though we may prefer to work entirely with small,
manageable programs—executable models that are
‘close to theory’ in some sense—do we really want to ar-
gue that the rapidly expanding world of internetworked
computer systems is not artificial life? Here, my aim
is to run with the naive view to see what insights it
may afford, beginning with the position that the con-
nections between computation and life are genuine and
the ramifications of that linkage are manifest not merely
in small-scale closed-world computer models of natural
world phenomena, but in the past, present, and likely
future of manufactured computing devices on Earth.

There have been approaches to ‘real world’ comput-
ing issues from explicitly alife perspectives—the en-
terprise I am here calling ‘real artificial life’—for ex-
ample (Cohen, 1987; Spafford, 1992; Kephart, 1994;



Ackley, 1996). Either from the outset or over the course
of their development, all of those efforts had a pro-
nounced emphasis on computer security. Indeed, one
of the largest areas of impact of the artificial life mind-
set upon current and emerging computing practices is
in the area of ‘computer immune systems’ for improv-
ing security and robustness, e.g. (Forrest et al., 1996;
Kephart et al., 1995; Forrest et al., 1998). Later we sug-
gest why this has been so.

In this exploration we seek understanding of what is
happening around us as the internet grows. We seek
leverage from the idea that the stunning explosion of
computing power on earth over the last few decades is
not unprecedented, but has antecedents in the long de-
velopment of life of earth. We seek better approaches to
the design of manufactured computing, possibilities of
a different relationship between us and our computers,
and between computers and each other.

This endeavor turns the original charter of artificial life
almost precisely on its head. Rather than seeking to un-
derstand natural life-as-it-is through the computational
lens of artificial life-as-it-could-be (Langton, 1989), we
seek to understand artificial computation-as-it-could-be
through the living lens of natural computation-as-it-is.
The endeavor can fail; there is no a priori assurance the
connections between life and computation are bidirec-
tional, or that any identified points of contact will be
substantial and specific enough to be usefully predictive.

Still, given the tremendous current and future impacts
of the computer and communications hardware and soft-
ware that we choose to design, and the current paucity
of a systematic basis underlying computational design
for robust security and privacy, and the relentlessly my-
opic market-driven approach that most often dominates
deployment decisions, it seems worth some struggle to
uncover new perspectives.

Outline
In keeping with the ‘Looking backwards, looking for-
wards’ theme of this Artificial Life conference, this pa-
per contains takes on the past, present, and future of life
in manufactured computing. The next section sets the
stage with a familiar tale carried into these new circum-
stances, bringing us from the more or less the beginning
up to more or less the present. Following that, we draw
out of the present state of affairs some basic ‘living sys-
tems’ principles and guidelines as they increasingly seem
to apply to networked computer systems, and present a
few instantiations of such principles in research software
development. We characterize computer source code as
a principal genotypic basis for living computation, and
consider methods of applying tools and techniques from
biology to the understanding of computer systems. Fi-
nally we speculate briefly on possible futures for living
computation and consider some possible implications of
artificial life ‘in the real’.

Living Computation: The Past

Depending on how inclusive one chooses to be, the his-
tory of manufactured computing can stretch back hun-
dreds and even thousands of years. To keep things man-
ageable, we open in the recent past, with machines that
are in some sense directly traceable ancestors of the ma-
chines surrounding us in the world today.

An origins story

In five decades, manufactured computer technology has
come from nowhere to account for 10% of the world’s
industrial economies (Dertouzos, 1997), a spectacular
growth process that, along the way, has been playing
out a tale as old as storytelling:

1940’s-1950’s: The age of innocence Though there
are many plausible candidates for the title of ‘first man-
ufactured computer’, it’s fair enough to call the Colos-
sus machine built at Bletchley Park an ‘early computer’.
In January of 1944, the Colossus Mk 1 began breaking
messages encoded with the Nazi’s Enigma cipher within
hours of their interception. By the end of the war, 63
million characters of German messages had been recov-
ered by ten Colossus machines (Sale, 1998).

This war-torn period is the age of innocence in this
story because the computer itself knew nothing of the
conflict; it was unaware of allies or axis, of friends, ene-
mies, or spies. It was completely open and at the mercy
of whoever could reach the main plug panel next to the
paper tape reader. Of course, buried deep in F Block on
the ground of the top-secret Bletchley Park operation,
such naive trust was both reasonable and efficient.

1950’s-1970’s: The knowledge of good and evil
By the debut of the Digital Equipment Corporation
PDP-10 in 1967, computers had found many viable
niches and were spreading, but they were still major
capital investments. The rise of time-sharing operating
systems such as TOPS-10—with the ability to provide
useful services to many users at once—sent communica-
tions links snaking across campuses and through office
buildings. Mere physical control over the central hard-
ware was no longer sufficient for system security.

User accounts, passwords, the distinction between or-
dinary ‘user mode’ and privileged ‘supervisor mode’
operation—all sorts of mechanisms for creating fences,
enforcing separations, and permitting limited sharing—
date from this period. Now for the first time, the in-
ternal design and operation of the computer begins to
reflect the divisions and separations of the world outside
it. Trust is no longer implicit and automatic; now it is
explicit and conditional. Now for the first time, both in
hardware and software the computer itself manifests a
distinction between self and other, and the system ad-
ministrator appears explicitly in the design, playing a
third role, that of the ‘trusted other’.



1970’s-1980’s: You can’t go home again In Au-
gust of 1981, the IBM ‘personal computer’ was launched.
At an astoundingly low price, compared to mainframe
and minicomputers, the PC offered computing power,
inexpensive and convenient floppy disks for bulk storage,
a monitor and keyboard for interactive use, printers and
peripherals. What it didn’t offer was any of the complex
and resource-consuming trust management mechanisms
of the time-sharing systems. Gone were the user ids,
gone the passwords, gone the protected memory, gone
the distinction between user and supervisor modes of
operation. “This is not a time-sharing machine!” we
can imagine somebody arguing, “This is a computer for
one person! Who’s to protect from?”

And then of course, the PC had scarcely hit the market
when the first PC computer viruses appeared and began
to spread via those same convenient floppy disks, without
the least bit of immunological defense by the PC.

1980’s-2000’s: The big big world Belatedly comes
the realization that ‘personal computing’ does not imply
‘isolated computing’—if anything just the reverse, com-
pared to the dedicated-function mainframes of old—but
the genie is out of the bottle. Now we find ourselves in
the odd situation of having myriads of these so-called
personal computers connecting to the internet with es-
sentially no systematic defenses, no immune system, and
precious little sense of self. The scale of it is quite stag-
gering, with the internet growing from thousands to tens
of millions of hosts just in the last decade. Epidemic
waves of infections flash through the networked popu-
lation faster and farther than any natural pathogen—
constrained to transmission vectors involving slow-poke
matter—ever did, even as the exploding size and thus
value of the global network makes remaining uncon-
nected increasingly untenable for many purposes.

It is no wonder that the computer security industry is
booming. Widely underappreciated is the fact that cur-
rent commercial security systems, constrained to deal
with the deployed base of hardware and software, are
for the most part exactly as ad hoc, awkward, and unre-
liable as a plastic bubble is as substitute for an immune
system—it works better than nothing, but surely you
wouldn’t trust your life to it if there was a more inte-
grated and robust alternative.

The missing element

The story so far is one of machines designed in the im-
age of the conscious minds of their creators—a single
strictly serial process proceeding step by deliberate step,
with nothing changing except as directed by the proces-
sor, with no need for coordination or communication,
no peripheral or preconscious awareness, and so forth.
Boundary conditions could be applied only before the
computation began; when started it simply ran until fin-
ished. The machine had no stimulus-response ability, no

interrupts, no hardware monitoring; as far as its func-
tional repertoire was concerned, the machine not only
could not control its ‘body’, it wasn’t even aware it had
one.

Living computation: The present

Thus has the evolution of manufactured computing sys-
tems to the present been backward to the evolution of
natural computing systems such as the brain. The brain
appeared only recently in the scope of the history of life
on earth—and is no great shakes as a general-purpose
algorithmic computing device—but from the beginning
it has been richly interconnected to a body possess-
ing sensory-motor apparatus that beggars anything we
are currently able to manufacture at any price. The
body has an extensive array of active and passive de-
fense mechanisms, and the brain has extensive hardware
support for threat assessment, triage, extrapolation, and
rapid response.

The living computation perspective predicts that we
are nearing childhood’s end for computers, that cur-
rent designs—still steeped in their innocent, safe, and
externally-protected origins—will give way to designs
possessing significant kinesthetic senses, defense and se-
curity at many levels, and with rich and persistently
paranoid internal models representing the body and the
stance of the body within the larger computational and
physical environment.1

Manufactured computers began as ‘pure mind designs’
but were not thereby excused from the demands of ex-
isting in the physical world. With the rise of networked
computing, and the rise of computers intended to survive
in consumer environments and without the benefit of an
expert human system administrator, the ‘IOU: A body’
notes issued fifty years ago and more are now rapidly
coming due.

Life principles for computation design

Many aspects, problems, and developments in current
and emerging computing can be understood in this con-
text. Here, we highlight several computational aspects
of living systems that stand in contrast to traditional ap-
proaches to computing, then offer a few examples from
current work illustrating some ways of that such strate-
gies can apply in current and near-future systems.

Termination considered harmful In the fundamen-
tals of computer science, an algorithm is typically defined
as a finite effective procedure (Horowitz et al., 1997). A
‘procedure’—a description or plan of action to accom-
plish something—that is ‘effective’—so it can actually be

1I would have said this prediction was too obvious to be
worth making, except that so much computer research, devel-
opment, and deployment continues to ignore even the rudi-
ments of robust system design.



performed, step-by-step—and is ‘finite’—so it will defi-
nitely stop eventually. What are we to make of, say, an
operating system, whose number one mission in life is to
never ever stop?

(Horowitz et al., 1997) acknowledge the importance
of such non-algorithmic ‘computational procedures’, but
only in the process of excluding them from further
consideration. Here, in contrast, they are our central
focus—so much so that calling a system ‘living’ may in
some sense mean the system is running an infinite ef-
fective procedure. Such an approach, though certainly
unconventional, is compatible with the ‘Computation as
interaction’ approach to redefining introductory Com-
puter Science (Stein, 1998), and more generally with the
ongoing shift from algorithmic and procedural compu-
tation to object-based open-ended computation. Living
systems potentially offer an epistemological framework
surrounding and motivating these newer characteriza-
tions of computation.

Programs are physical Given the mathematical and
algorithmic emphasis underlying computers and compu-
tation, it is unsurprising that many computer scientists
and other computing professionals tend to think of a
computer program fundamentally in terms of the algo-
rithm it implements, and to carry that sense of abstrac-
tion over to the computer program itself. While that is
often a helpful, or at least harmless, way of thinking, it
is at root a categorical error.

An actual, functioning computer program is literally
a physical entity. It occupies actual physical space, in
RAM, disk, or other media; while one computer pro-
gram occupies some particular space, nothing else can
be there. A functioning computer program consumes
actual energy as it executes, producing waste heat that
must be dissipated by a cooling system. It doesn’t mat-
ter if the same amount of waste heat is produced by an
operating CPU regardless of what program happens to
be running, what is essential is that when some partic-
ular program is running on some particular CPU, the
energy that is consumed is consumed at the behest of
that program.

What distinguishes digital software from most other
organizations of matter is that in a computer it can
be copied so quickly and easily at high fidelity; DNA
molecules in a cell of course have the same property.
The flip side in both cases is that either can also be
easily erased. Computers provide an additional feature
for software that cells at least in principle could pro-
vide for DNA but to my knowledge do not: The abil-
ity to transduce losslessly between the relatively stable
matter-based representation and ephemeral, fast-moving
wave forms.

For internetworked computers only the physical
boundaries between separately owned and administered
systems are truly fundamental. Despite the much-touted

non-spatiality of ‘cyberspace’, driven by precisely that
lossless transduction, in fact each piece of hardware—
each computer and disk, each wireline and switch—is
locallized in space, and each piece of hardware has an
owner. For small personal computers no less than huge
corporate computing facilities, physical access and legal
ownership are the two key elements defining a player in
the game.

The evolutionary mess Establishing and maintain-
ing those boundaries, today, is a disaster. Modern com-
puter security amounts to a porous hodge-podge of cor-
porate firewalls, third-party virus scanners, hastily writ-
ten and sporadically applied operating system patches,
and a myriad of woefully inadequate password authen-
tication schemes. Dozens or hundreds of break-ins oc-
cur daily, computer virus infections are everyday life for
millions of computer users, and new virus detections are
booming, even as more and more businesses and busi-
ness transactions move to the internet, and as software
companies race with each other to deliver new ways of
embedding code inside data.

Though this situation is far from what one would ex-
pect to find in a thoughtfully engineered, deployed, and
maintained system-of-systems, it is precisely what one
expects to find in systems produced by blindly reactive
evolutionary processes. For example, it is too easy sim-
ply to lay blame for computer viruses on the early mass-
market computer designers, even considering the body
of knowledge available from the era of time-sharing. On
the contrary, the tale of the PC and the virus is one of
evolution in action: When the machine was designed,
there were essentially no viruses in the wild—there was
no wild to speak of—and code exchanges were either
in large system-administrator-managed mainframe envi-
ronments or in the tiny computer hobbyist community.
Why would anybody waste design and manufacturing
resources, increase costs greatly, and sacrifice time-to-
market, just to defend against a non-existent problem?

Having humans in the loop, with all our marvelous
cognitive and predictive abilities, with all our philo-
sophical ability to frame intentions, does not necessarily
change the qualitative nature of the evolutionary process
in the least. Market forces are in effect regulated evolu-
tionary forces; in any sufficiently large and distributed
system, nobody is in charge, and evolutionary forces are
constantly at work.

Living computation: Examples

This section provides a few examples drawn from the
author’s work, illustrating ways that living computation
principles can be applied in the implementation of near-
term software systems, and how some of the analytical
tools of the life sciences can find applications in under-
standing the expanding software systems around us.



For Primary purpose
End users Peer-to-peer security-aware chat

system / graphical MUD
‘Agents’ and
artificial life

Scalable distributed environment
with human interactions

Real artificial life Investigate life-like computation
and communications strategies

Select version dates v0.4+ algorithms
v0.4.0= 3/30/00 Authentication: El Gamal
v0.2.6= 8/ 4/98 Encryption: Twofish

v0.1.91= 9/15/97 PKI: included
v0.1.80= 4/11/95 Transport: TCP/UDP
v0.1.24= 10/26/92 Addressing: IPv4+PKI

File counts and code size (by wc)
Content Files KLines %tot %new
C code 721 187.3 49.1 57.0
history 19 50.4 13.2 92.9

documentation 80 34.4 9.0 60.7
Perl code 73 33.0 8.6 100

development 153 24.0 6.3 41.5
Tcl/Tk code 37 18.1 4.7 100

assembly code 145 15.2 4.0 0.0
C++ code 43 10.4 2.7 93.4

uncategorized 24 6.7 1.7 1.2
ccrl code 19 2.3 0.6 100

empty 1 – 0.0 –
Total 1315 381.7 100.0 64.9

Table 1: Views of the ccr research prototype: Purpose,
history, technology, and ‘genetic’ content. ‘%new’ refers
to code developed within the project rather than ac-
quired from the environment.

Living computation by design

For several years, we have been building a series of re-
search prototypes to explore ‘life-like’ design strategies
for networked computations. This ccr project overall
has been introduced previously (Ackley, 1996); here we
provide only the briefest overview, then draw a few ex-
amples from the current system design, and then use the
software itself as a sample object of study.

At its core ccr is a code library for peer-to-peer net-
working with research emphases on security, robust op-
eration, object persistence, and run-time extensibility.
Built upon the core libraries are the graphical user in-
terface world ccrTk, and the text-only world ccrt. Ta-
ble provides views of the system along several dimen-
sions: Its major functions, history, and technology, along
with a breakdown of the current contents of the system
software. Figure 1 visualizes the system in the linear
‘tar file’ format in which it normally reproduces. The
14Mbytes in the ‘genome’ are depicted in terms of ‘cod-
ing’ regions that are the actual source code; ‘promoter’
regions contain metadata guiding the migration of code
segments during early development; ‘garbage’ regions are
simply wasted by the tar file format. Successive ‘zooms’
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Figure 1: Views of the ccr v0.4.0= genome

in Figure 1 across some five orders of magnitude ulti-
mately resolve individual bytes, illustrating the scale of
a modest-sized system like ccr.

A fundamental design element of ccr, arguably a sine
qua non for an independent living system, is its peer-
to-peer communications architecture: A ccr ‘world’ can
communicate with other ccrworlds, but it doesn’t require
any other worlds to function; each ccr world is both
‘client’ and ‘server’ in interactions with other worlds.

Self-reliance Taking seriously the independent living
system approach implies that we must make as few as-
sumptions about the ‘outside world’ as we reasonably
can, and be as self-reliant as we can. This caution ex-
tends through all levels of the system and along multiple
dimensions. One approach would simply avoid all ex-
ternal influences, but when it comes to communications



and communications risk, fundamentally we are damned
if we do and damned if we don’t: We might have had
warning of a threat in time to avoid it, had we been
allowing external factors to affect system behavior.

Most work in computer-based communication has fo-
cused on efficiency and power rather than safety. High-
speed communications protocols, for example, can now
supply data as fast or faster than most processes are
ready to digest it, and even the ubiquitous TCP/IP in-
ternet protocol requires reacting to a connection attempt
even just to ignore it, leading in part to the ‘denial of
service’ attacks currently occurring on the internet. Sim-
ilarly, nearly all software for personal computers focuses
heavily on adding ever more programmed abilities and
‘features,’ even as automated network access is woven
more deeply into the system rather than being more iso-
lated, with the predictable results that your own com-
puter’s processing and data can be stolen out from un-
derneath you by anyone simply by ‘speaking’ to your
machine in particular ways.

Natural living systems have a large variety of mech-
anisms for evaluating interactions, assigning degrees of
trust, and allowing only limited influences in proportion
to estimated risk. Complex chemical signals and hard-
to-duplicate bird songs, for example, increase confidence
that messages are genuine; between ccr worlds cryptog-
raphy serves that purpose, among others, helping on the
one hand to establish identity and increasing (in partic-
ular) the sender’s cost to generate a valid message on the
other hand.

Ritualized interactions such as mating behaviors allow
gradual and mutual stepping-up of trust and acceptable
risk as confidence in identities and intentions grows. A
ccr world wishing to communicate, likewise, engages in
protocols designed to capture as much of the value of
communication as possible while exposing the world to
as little risk as possible. Here, we describe a few of those
protocols and mechanisms, to provide concrete examples
of living computation design strategies in artificial sys-
tems.

A cautious “Hello World” The protocol by which
ccr worlds establish a communications link with each
other moves through several stages, with a gradually in-
creasing ‘message size limit’ allocated to the connection
as the stages are successfully negotiated. Note that all of
the strategies discussed here are in addition to the mech-
anisms provided by the TCP and IP version 4 transport
mechanisms. Initially a ccr world will read only small
messages, of no more than 128 bytes, from an incoming
connection. Such messages are sufficient to exchange ver-
sion information and establish a cryptographic ‘session
key’ for the connection, which both establishes identi-
ties and insulates the channel from eavesdroppers and
intruders. Any attempt to send a larger message causes
the connection to be cut at the receiving end.

If this initial stage succeeds, more trust is warranted,
and the incoming message size limit is raised to 1Kbyte,
which is enough to complete the connection establish-
ment protocol. At the successful conclusion of the ‘greet-
ing ritual’, the message size limit is raised to 100Kbytes.
Note that while that number is high enough for most
typical channel uses, it is much less than it could be.
Higher limits, if desired, can be set by deliberate act of
the ccr world owner. This strategy is typical of ccr’s
self-protection mechanisms. Even once a remote ccr
world is identified and the communications channel se-
cured, still only limited trust is granted to the channel
because inconvenient or dangerous things still may hap-
pen, either due to a user’s mistake, or to malicious intent,
or to bugs in the code.
Friction as friend To help guard against such pos-
sibilities, in addition to the message size limit, a ccr
world also places rate limiters on every established net-
work connection, to reduce the risk of accepting and act-
ing on network communications, whatever they may be.
The inbound bandwidth limiter specifies the maximum
average rate in bytes/second that one world is willing
to read data from another world, with an effective de-
fault of 2Kb/s, which is enough to allow most normal
channel usage to flow unimpeded. If more than 2Kb/s is
supplied, the receiving world simply doesn’t read it un-
til enough time has passed that the overall bandwidth
doesn’t exceed the set bandwidth limit.

In addition to the communication bandwidth control,
a ccr world also maintains a processing bandwidth lim-
iter for each world that is in contact. For two worlds
to communicate meaningfully, it is necessary that data
sent from one world somehow affect the processing that
occurs on the other world; therein also lies the risk. Al-
though ccr uses several mechanisms to control what op-
erations remote worlds can perform locally—for exam-
ple, by controlling the language used to express the mes-
sages the receiving world will choose to read—here we
focus only the processing time control. Each operation a
ccr world can perform has an associated cost in terms of
“work units”. Each computation request received from
another world is tagged locally with the identity of the
requesting world, and as processing proceeds, work units
are logged against the remote world. As with the band-
width limiter, if processing on behalf of a remote world
exceeds a specified rate, then the local world delays ac-
cepting further input from that world until the overall
processing rate drops within established limits.

With a default of 20 work units/world/second, once
again most normal inter-ccr operations are at most min-
imally impacted by the limiter. In pathological situa-
tions, however, the protection they afford can be signif-
icant. Figure 2 illustrates their effect via two simulated
denial-of-service attacks launched by World ‘B’ against
World ‘A’. World ‘A’s data appears in the upper graph
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Figure 2: Using rate-limiters on bandwidth and pro-
cessing time to mitigate denial-of-service events. Case
1: World ‘B’ floods world ‘A’—with defenses disabled—
starting at 00:00. Case 2: World ‘B’ floods world ‘A’—
with defenses in place—starting at 18:00. See text for
details.

and World ‘B’s in the lower graph; in both cases the
solid lines represent memory usage and are measured in
megabytes of growth (the left side y-axis labels), and the
dotted lines represent the currently main loop process-
ing rate in cycles/second (the right side y-axis labels).
A rate of 20CPS is the target ‘heartbeat’ rate of a ccr
world; it will ‘sleep’ if it doesn’t require the full 50ms to
complete all scheduled tasks.

Before the first attack, which starts at zero minutes
into the displayed Case 1 data, World ‘A’s limiters were
effectively disabled by setting the acceptable rates to ex-
tremely large values. ‘A’ grows by several megabytes
quickly and then stabilizes for several minutes, and then
shortly before the 5:00 mark it begins growing expo-
nentially and its cycle rate crashes. The simulated at-
tack was stopped shortly after 15:00 minutes, at which
point ‘A’s size had exceeded 200Mb and it had nearly ex-
hausted the swap space on its machine. Both worlds were
then restarted and the attack was repeated, this time
with the normal values for the limiters. Now in Case 2
‘A’s growth rate is slower, and remains under 10Mb, and
it turns a steady 20CPS throughout the event: The con-
trols are performing effectively.

The growth behavior displayed by World ‘B’ through
the two events was somewhat unexpected: It was much
less different between the two cases than anticipated.
The ‘attack’ was performed by instructing a character
in world ‘B’ to ‘speak’ 10Kb strings of random numbers
approximately 50 times per second. In both cases ‘B’s
size gradually grows. In Case 2 ‘B’ grows because ‘A’ is
deliberately delaying reading from ‘B’, to protect itself,
while ‘B’ continues to speak, causing ‘B’s ‘pending out-

put’ buffers to expand. In Case 1 the same effect occurs,
but there it is because ‘A’ is in severe distress from mem-
ory thrashing and processing overload, and its cycle rate
has crashed, so there also it is not reading from ‘B’ as fre-
quently. In both cases ‘B’s size eventually drops, when
the communication channel was closed by yet another
watchdog within the system. That mechanism injects
‘Are you alive?’ messages into communications streams
at random intervals and times how long the response
takes; if no response is received after several minutes the
connection is killed.

Software genetics
The amount of code in the world is exploding, as is the
amount of code in any given program. Today, essentially
all application programs take advantage of prewritten li-
braries of code—at the very least the runtime library of
the chosen programming language(s), and usually many
other existing components as well, for graphical inter-
faces, database access, parsing data formats, and so
forth. The analogy to natural genetic recombination is
quite strong: Computer source code as genome; the soft-
ware build process as embryological development; the re-
sulting executable binary as phenotype. The unit of se-
lection is generally at the phenotypic level, or sometimes
at the level an entire operating system/applications en-
vironment.

A main place where the analogy breaks down is that in
manufactured computers, but not in the natural world,
there are two distinct routes to producing a phenotype.
The extreme ‘copy anything’ ability of digital computers
means that source code is not required for to produce a
duplicate of a phenotype. Source code is a requirement,
in practical terms, for significant evolution via mutation
and recombination.

Commercial software is traditionally distributed by
direct copying of precompiled binary programs while
guarding access to the ‘germ line’ source code, largely
to ensure that nobody else has the ability to evolve
the line. In that context, the rapidly-growing corpus
of ‘open source’ software is of particular interest. With
source code always available and reusable by virtue of the
free software licensing terms, an environment supporting
much more rapid evolution is created. The traditional
closed-source ‘protect the germ line at all cost’ model
is reminiscent of, say, mammalian evolution; by con-
trast the free software movement is more like anything-
goes bacterial evolution, with the possibility of acquir-
ing code from the surrounding environment and in any
event displaying a surprising range of ‘gene mobility’, as
when genes for antibiotic drug resistance jump between
species. There is therefore reason to expect open source
code, on average, to evolve at a faster rate than closed
source, at least up to some level of complexity depend-
ing on design where the chances of new code being useful
rather than disruptive become negligible.



As software systems grow, and software components
swallow each other and are in turn swallowed, and older
‘legacy systems’ are wrapped with new interface layers
and kept in place, we are arriving at the situation where
actually reading fragments of source code tells us less
and less about how—if at all—that code ever affects the
aggregate system behavior. As this trend accelerates,
tools and techniques from biological analysis are likely
to be increasingly useful.

Figure 3: ccr genome vs itself. Darker represents greater
homologies. See text for discussion.

Figure 3 presents another view of the ccr genome,
using the ‘dotplot’ program (Helfman, 1996) for visual-
izing large data sets. This view shows the ccr genome
plotted against itself, using lines of code as the funda-
mental unit of similarity; there is a black line represent-
ing perfect overlap down the main diagonal. Dark areas
significantly off the main diagonal represent similarities
between widely-separated code regions; squares on the
diagonal represent ‘cohesive’ regions with more similar-
ity within than without. ‘Looking under the hood’, we
find that often such regions either are or are components
of larger functional units—‘genes’—within the genome.
Several such genes have been highlighted with black out-
lines: Region (a) codes for ccr’s web server/client pro-
gram; (b) is the configuration system that guides the
overall system ontogeny; regions (c)–(e) are separately-
evolved code segments (for JPEG images, long integer
manipulation, and regular expressions, respectively) that
have become incorporated, essentially unchanged, into
ccr. The large region near the middle of the genome (f)
contains the ccr core components themselves. Region
(g) deals with processing animated images; interestingly,

Figure 4: The ccr genome vs the ‘gimp’ graphics package
genome. See text for discussion.

it shows a perceptible overlap (h) with the web code
(a) even though their functions are very different and in
fact they are expressed in different languages (C++ (a)
vs C (g))—but, it turns out, both were created by the
same programmer. Semi-automated project historical
notes (i) display a distinctive pattern, as does program-
generated Postscript documentation (j).

Figure 4 compares ccr to a different ‘species’—the
‘GNU Image Manipulation Program’ (GIMP) (Mattis
and Kimball, 2000). There are fewer dark regions, re-
flecting a generally lower degree of similarity between
the code sequences. The dark region (a) is aligned with
Figure 3(b) and reveals that both systems use evolved
variants of the same ‘autoconf’ developmental control
system—though the region is rectangular indicating that
GIMP’s instantiation of the code is bigger than ccr’s. A
large ‘internationalization’ segment (b)—allowing GIMP
to operate in some eleven natural languages—is strik-



ingly different than almost everything in ccr.
A surprising element in this comparison are two short

lines (c)—black diagonals indicating identical sequences.
The relevant sequence is the GNU regular expression
package, which is used in both ccr (Figure 3(e)) and
the GIMP, and is a good example of a highly useful gene
incorporated into multiple different applications out of
the free software environment. Two short black lines,
aligned vertically, show that the GIMP contains two
identical copies of the GNU regex gene. Rather than
being wasteful—as traditional software practices might
have construed it—such gene duplication reduces epis-
tasis and increases evolvability; one copy is deep in the
application core and the other in a relatively peripheral
‘plug-in scripting’ segment. Furthermore, from one point
of view it’s odd that this gene appears at all, because reg-
ular expression support is actually a required part of any
POSIX-conforming operating system. Yet, like complex
living systems, both ccr and the GIMP acquired captive
regex ‘organelles’ instead, reducing their vulnerability to
environmental variations and increasing their ecological
range.

Real artificial life: The Future

I have argued that the similarities between living systems
and actual computational systems are too overwhelming
to dismiss. I’ve suggested that many of the differences
between manufactured computation and natural living
systems, both superficial and substantive, have arisen
from the complementary circumstances surrounding the
origins of the two technologies, but that both approaches
must address the same imperatives and are therefore on
converging evolutionary paths.

If these arguments even mostly hold up, then we
can predict major changes in future architectures of
manufactured computation. A recurring theme here
has been that many of the defining claims for digital
computation and communication—ranging from ‘instant
communication’ to ‘frictionless commerce’ to ‘location
transparency’, and possibly even the notion of ‘general-
purpose computing’—simply are too good to be true,
having been purchased at the expense of utterly ignor-
ing the basic tenets of self-versus-other and local self-
reliance. It will not continue this way. Even though
many parties would like to have control over individ-
ual hardware systems—ranging from software and hard-
ware manufacturers to internet and application service
providers to governments and regulatory agencies—in
the end the geometry of physical space will assert itself
over ‘cyberspace’ as computing systems become aware of
themselves and their universe.

What we can do The hypothesis is that mass-market
computer communications systems, at least, will become
more and more like natural living systems. The scope
and nature of that evolution is far from clear, and ar-

tificial life research and researchers can contribute sig-
nificantly to the process, bringing fresh technical, bio-
logical and philosophical perspectives to the growth and
development of the network, a process which only with
great naiveté can be regarded simply as engineering. Al-
ife models developed for natural systems can be and will
increasingly need to be applied to the hardware, software
and data of the internet. Biological principles, hypothe-
ses, and scaling laws may find analogs in the growing
computational ecosystem. There is much to be done.

Where we may be Over sixty years of development,
computer programs have grown from a few bytes to hun-
dreds of megabytes, from a few lines of assembler source
code to tens of millions of lines of complex programming
language code. We have been living with the ‘software
crisis’—which usually means rapidly increasing software
development and maintenance time and cost, often with
decreasing reliability—now for several decades, and a
number of proposed solutions have come and gone.

Especially over the last fifteen years, ‘object-oriented
programming’ (Meyer, 1988; Booch, 1994, and many
others) has emerged in various forms as a durable pro-
gramming methodology. There are debates over techni-
cal details, and factionalism surrounding specific object-
oriented programming languages, but the overall ap-
proach continues to gain design wins for more and larger
projects when significant new code is needed.

From the living computation perspective, one inter-
pretation of that history is difficult to resist. In coars-
est outline the arc of software development paralleling
the evolution of living architectures: From early pro-
teins and autocatalytic sets amounting to direct coding
on bare hardware; to the emergence of higher level pro-
gramming languages such as RNA and DNA, and associ-
ated interpreters; to single-celled organisms as complex
applications running monolithic codes; to simple, largely
undifferentiated multicellular creatures like SIMD paral-
lel computers. Then, apparently, progress seems to stall
for a billion years give or take—the software crisis.

Some half a billion years ago all that changed, with
the ‘Cambrian explosion’ of differentiated multicellular
organisms, giving rise to all the major groups of modern
animals (Gould, 1989, for example). Living computa-
tion hypothesizes that it was primarily a programming
breakthrough—combining what we might today view as
object-oriented programming with plentiful MIMD par-
allel hardware—that enabled that epochal change.

Where we may be is in the leading edge of the Cam-
brian explosion for real artificial life. If so, there is of
course no certainty, from our vantage point today, how
or how quickly the process will play out. On the other
hand, in this interpretation we are aligning perhaps three
billion years of natural evolution with perhaps a century
of artificial evolution.

We are living in interesting times.
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