
Revisiting LISYS: Parameters and Normal Behavior
Justin Balthrop, Stephanie Forrest, and Matthew R. Glickman

Computer Science Deptartment
University of New Mexico
Albuquerque, NM 87131

lisys@cs.unm.edu

Abstract - This paper studies a simplified form of
LISYS, an artificial immune system for network intru-
sion detection. The paper describes results based on a
new, more controlled data set than that used for ear-
lier studies. The paper also looks at which parameters
appear most important for minimizing false positives,
as well as the trade-offs and relationships among pa-
rameter settings.

I. INTRODUCTION

A growing body of work explores the use of immunolog-
ically inspired methods to address the problem of network
intrusion detection [8, 19, 12]. Although this work has not
yet produced industrial-strength network intrusion detec-
tion systems (IDS), it has provided a convenient common
framework for exploring and comparing various immune-
inspired algorithms. Different experiments by different
groups have achieved markedly different results on this
problem, presumably because of differences among the
models, algorithms, and data sets. We view this diversity
of formalisms and experimental test-beds as positive, in
the sense that at this early stage it is important to explore
a family of immune-inspired algorithms rather than stan-
dardizing too early on arbitrary choices. Nevertheless, it
is important to understand how, why, and under what
circumstances various methods perform well or badly and
to account for discrepancies in reported results.

This paper addresses some of these issues, in the con-
text of LISYS, Hofmeyr’s artificial immune system (IS)
framework applied to network intrusion detection. We
report results on a new small data set for network in-
trusion detection, which is intended to capture network
traffic similar to that of a home networking environment
or small corporate intranet. We study how LISYS charac-
terizes the normal behavior of a network, de-emphasizing
the question of how well it detects a wide range of intru-
sions. It might seem odd for a paper on intrusion detec-
tion to de-emphasize intrusions, but in our experience, the
success of intrusion detection systems depends heavily on
their false-positive rates, and these can be studied largely
independently of real attacks. Also, many of the immune
system abstractions that were used in LISYS have the ef-
fect of controlling false positive rates, so a detailed look at
how the system represents normal behavior and controls
false positives is warranted. However, we do report data
on LISYS’ performance under some attack conditions.

II. OVERVIEW OF LISYS

In this paper, we explore several of the mechanisms
that LISYS uses to control false positives. In order to
get a clear view of these mechanisms, we use a simplified
version of LISYS. In this section we summarize briefly the
basic features that are a part of this simplified LISYS.

LISYS is situated in a local-area network (LAN) and
used to protect the LAN from network-based attacks. In
this domain, self is defined to be the set of normal pairwise
TCP/IP connections between computers, and non-self is
the set of connections, potentially an enormous number,
which are not normally observed on the LAN. A connec-
tion can occur between any two computers in the LAN
as well as between a computer in the LAN and an ex-
ternal computer. It is defined in terms of its “data-path
triple”—the source IP address, the destination IP address,
and the port by which the computers communicate [14, 6].
In LISYS, the connection information is compressed in
two ways to form a single 49-bit string [7]. First, it is
assumed that one of the IP addresses is always internal,
so only the final byte of this address needs to be stored.
The port number is also compressed from 16 bits to 8 bits
by re-mapping the ports into several different classes.

LISYS consists of a set of detectors. Each detector is a
49-bit string and a small amount of local state. A perfect
match between a detector and a compressed SYN packet
means that at each location in the 49-bit string, the sym-
bols are identical. However, perfect matching is rare in
the immune system and improbable between strings of
any significant length, so LISYS uses a partial matching
rule known as r-contiguous bits matching [15]. Under this
rule, two strings match if they are identical in at least r
contiguous locations.

LISYS uses negative detection in the sense that valid
detectors are those that fail to match the normally occur-
ring connections in the network. Detectors are generated
randomly and then detectors that match connections ob-
served in the network during the tolerization period are
eliminated. Detectors also have a fixed probability of
dying randomly at each time step. The finite lifetime
of detectors, when combined with detector re-generation
and tolerization, results in rolling coverage of the self set.
For the r-contiguous bits matching rule and fixed self sets
which don’t change over time, randomly generating de-
tectors is inefficient. More efficient algorithms based on
dynamic programming methods allow us to generate de-

tectors in linear time [3, 2, 17, 16, 18]. However, when
generating detectors asynchronously for a dynamic self
set, such as the network intrusion detection setting, we
have found that random generation works well.

LISYS also uses activation thresholds. Each detector
must match multiple packets before it is activated. Each
detector records the number of times it matches (the
match count) and raises an alarm only when the num-
ber of matches exceeds the activation threshold. Once a
detector has raised an alarm, it returns its match count to
zero. This mechanism also has a time horizon: Over time
the match count slowly returns to zero. Thus, only re-
peated occurrences of structurally similar and temporally
clustered strings will trigger the detection system.

The original LISYS uses a number of other mechanisms
not mentioned here, including distributed detectors, sen-
sitivity levels, permutation masks, memory detectors and
co-stimulation. For more details on full LISYS, the reader
is referred to [7, 8]. For the remainder of this paper, the
term LISYS will refer to the simplified version described
above. Although we collected the data on-line in a pro-
duction environment, we performed our analysis off-line
on a single computer. This made it possible to compare
performance across many different parameter values.1

III. RELATED WORK

At least two other IS-based network IDSs have been
described in the literature [10, 11, 19], as well as an archi-
tecture proposal that targets IS-based intrusion detection
at both the host and network levels [1].

Kim and Bentley describe an architecture and report
experimental results using some of the their system’s key
components [10, 11, 12]. Some commonalities with LISYS
include distribution of detection among multiple hosts,
the use of memory detectors and a mechanism for low-
ering the system’s anomaly threshold as detector match
rates increase. Unlike LISYS, however, detector genera-
tion is centralized at a single node, and the decision about
whether to signal an anomaly relies on communication be-
tween nodes. Another difference is the method of detector
generation. While LISYS produces detectors via a simple
process of random generation in conjunction with filtering
via negative selection, Kim and Bentley describe a more
extensive process involving a genetic algorithm, niching,
and feedback from matched detectors to boost the diver-
sity and utility of detectors. Kim and Bentley examine
all TCP packets and group them according to the con-
nection with which they are associated, thus considering
a wider range of data than LISYS. This increased scope
comes at the cost of a significantly more complicated rep-
resentation. Kim and Bentley report difficulties with the
negative selection algorithm (see Section VII).

1The programs used to generate the results in this paper are avail-
able from http://www.cs.unm.edu/∼immsec. The programs are
part of the LISYS package and are found in the LisysSim directory.

A second instance of an IS-based network IDS, known as
CDIS (Computer Defense Immune System), is described
by Williams et al. [19]. They report very positive exper-
imental results for this system, which also uses negative
selection. Like LISYS, CDIS processes the data-stream at
the packet level; however, rather than restricting attention
to TCP SYN packets, CDIS examines all packets for three
different protocols: TCP, UDP, and ICMP. The number
of fields represented is significantly larger than is used by
LISYS, but in order to accomplish imperfect matching,
detectors in CDIS do not have to specify values for every
field. CDIS includes some other interesting features, in-
cluding affinity maturation to maximize the generality of
detectors and co-stimulation between detectors.

IV. DATA SET

One challenge in intrusion detection is finding good
data sets for experiments and testing. A commonly used
data set is the one from Lincoln Laboratories (LL). This
is the data set used with CDIS in [19]. Some of the weak-
nesses of the LL data set are pointed out in [13]. The
chief criticisms are that it was not generated by actual
users, that it is “too clean” (not enough noise), and that
it is well known where the legitimate attacks occur. Data
from the ‘Internet Exploration Shootout’ (IES) is used by
Kim and Bentley in [11, 12]. There is a high volume of
traffic in this data set, but it only takes place over a pe-
riod of about 16 minutes, not enough time to reasonably
characterize normal behavior, in our opinion. Because of
these factors, we decided not to use either of these data
sets. Although we have access to the data set used in the
original LISYS studies, we decided to collect a new one,
both to see how LISYS performed on a different data set
and because the original data set is now several years old.

Our objective was to control the data set as much as
possible while still collecting data in a realistic context.
We chose to collect data from an internal restricted net-
work of computers in our research group at UNM. The
six internal computers in this network connected to the
Internet through a single Linux machine that acted as a
firewall, router and masquerading server. This network
provided a data set that satisfies both of our objectives.
The internal restricted network is much more controlled
than the the external university network. In this environ-
ment, we can understand all of the connections, and we
can limit attacks. Moreover, this environment is realis-
tic. Many corporations have intranets where activity is
somewhat restricted and external connections must pass
through a firewall. This environment could also model
the increasingly common home network that connects to
the Internet through a cable or DSL modem and has a
single external IP address. Attacks are a reality in these
environments, and we designed attack scenarios that cor-
respond to likely occurrences in this class of environment.

The normal network data consisted 22,329 TCP SYN

packets collected over the course of two weeks in Novem-
ber, 2001. Thus, there was an average of about 1600 pack-
ets per day during this period. Because we are trying to
capture the network activity of local users, we determined
that two weeks was the shortest period of time that would
give us an adequate picture of self. In [7], network con-
nections to web servers are removed by filtering out all
connections to port 80. We did something similar, but
instead of completely removing all web connections, we
simulated the use of a proxy server. All outgoing connec-
tions to port 80 or 443 were re-mapped to port 3128 on
the proxy machine. This produced a similar effect to that
of the web proxy cache SQUID.

V. REPRESENTING NORMAL BEHAVIOR

In this section, we study the effect of different compo-
nents of LISYS on its ability to capture normal behavior.
These include: the specificity of detection (the r param-
eter), the number of detectors, the tolerization period,
and the activation threshold. The following subsections
explore these issues.

A. The r parameter and number of detectors

The value r is a threshold which determines the specificity
of detectors, in that it controls how many strings can po-
tentially be matched by a single detector. For example,
if r = l (49 in our case), the match is maximally specific,
and the detector can match only a single string—itself.
As shown in [4], the number of strings a detector matches
increases exponentially as the value of r decreases.

More specific detectors match fewer strings and thus
can distinguish more precisely between observed self and
everything else. Additionally, as the specificity of detec-
tors increases, the number of detectors required to achieve
the same level of coverage increases (see [5] for probabilis-
tic estimates). So in order to minimize the number of
detectors, the trick is to find the smallest r which still
provides reasonable discrimination. This specific value is
clearly dependent upon the particular data-stream being
monitored. For our data set, figure 1 plots the number of
detectors generated against the number of unique matches
between detectors and strings outside the training set.

To make this graph, we divided the data into two sets:
the first 15,000 normal packets were the training set, and
we combined the remaining normal packets with the at-
tack data (see section VI) to make the test set. Mapping
the packets into the 49-bit representation yields a total of
131 unique strings in the training set, and 551 strings in
the test set.2 Negative selection was performed by ran-
domly generating detectors and discarding all those that
matched at least one string in the training set. We con-
tinued this process until a very large number of detectors
(10,000 – 100,000) was accumulated for each of the three

2Each attack in the test set had only unique strings, but there
were a few repeats among attacks.

0 2000 4000 6000 8000 10000

of detectors

0

100

200

300

400

500

of

 u
ni

qu
e

m
at

ch
es

r = 12
r = 10
r = 8

Fig. 1. The average number of unique matches as a function
of detector set size for r =8, 10, and 12.

values of r. Each of the detectors was then compared to
each string in the test set, and the strings that matched
were recorded for each detector. Then the curves were
derived by randomly selecting sample sets of detectors of
each size from 1 to 10,000 and calculating the mean num-
ber of unique matches against the test set. The number
of samples was doubled until the difference between suc-
cessive means dropped below 1%.

Due to the rules of negative selection, none of the 81
strings in common between the training and test sets
could ever be matched by a detector. Thus, an upper
bound on the number of unique matches that might be
achieved by a set of detectors is 551− 73 = 478. Figure 1
shows (as expected) that larger values of r correspond to
more extensive coverage (i.e. a larger number of matches).
With r = 12, a maximum of approximately 429 matches
(90% of the upper bound of 478) is achieved. Although it
is generally true that a larger value of r provides greater
coverage given enough detectors, it is also the case that
the lower the threshold r, the larger the number of strings
that can be matched by a single detector. Thus, with
small detector sets, smaller values of r will yield greater
coverage. An instance of this phenomenon is illustrated
by the inset of figure 1, which is an expanded view of the
transition points where the detector set size grows large
enough that r = 12 first begins to provide greater cover-
age than r = 8 and r = 10.

At some point, adding detectors no longer adds sig-
nificant new coverage because new detectors are simply
covering the same space as old detectors. We refer to this
point as the saturation point. From the figure, it can be
seen that the number of detectors at the saturation point
is higher for r = 12 than r = 10, and likewise it is higher
for r = 10 than r = 8. However, near-maximal coverage
is achieved for all three r values using a relatively small
number of detectors (between about 1,000 and 2,000).

0 5 10 15 20

activation threshold

0

200

400

600

800

of

 u
ni

qu
e

an
om

al
ie

s

tolerization period
activation threshold

0 5000 10000 15000

tolerization period

0

200

400

600

800

Fig. 2. The number of anomalies signaled in the normal
data set as a function of tolerization period and activa-
tion threshold.

B. Tolerization Period

We expect, in general, that increasing the tolerization pe-
riod, will reduce the number of false positives, because
as the tolerization period becomes longer, detectors are
exposed to a larger and presumably more representative
sample of self. To test our expectations, we studied the
effect of changing the tolerization period on the number of
false positives. These experiments were run with r = 12.

In order to compare detector performance on exactly
the same set of packets, the results shown in figure 2 were
produced by co-varying the start point in the data set with
the tolerization period such that the point at which the
first detectors become mature is the same (after 15, 000
packets) for all tolerization periods. Thus, while runs us-
ing a tolerization period of 15, 000 were started from the
beginning of the data set, runs using a tolerization period
of 5, 000 were started after skipping the first 10, 000 pack-
ets.3 Interestingly, the relationship between tolerization
period and false positives (number of unique anomalies
found in normal data) is roughly linear. We do not yet
have a theoretical derivation of this result.

C. Activation thresholds

Activation thresholds are a mechanism explicitly designed
to reduce false positives. The motivation for activation
thresholds is based on the observation that anomalies from
intrusion attempts tend to be temporally clustered, while
anomalies from false positives tend to occur at a rela-
tively constant rate. When using activation thresholds, if
a detector matches only infrequently, its match count will
likely decay significantly between matches and never reach
the threshold. If, however, a detector matches packets in

3The tolerization periods are expressed in number of packets. The
number of packets per day varies, so these numbers don’t correspond
to an exact period of time, but 5000 packets is roughly 3 days.

dos attack
ftp attack

0 5000 10000 15000 20000

packet #

0

20

40

60

80

100

of

 lo
ca

l a
no

m
al

ie
s

Fig. 3. Local anomalies for attack group one.

rapid succession, its match count is likely to increase more
quickly than the decay rate. The magnitude of a detec-
tor’s match count thus serves as an indicator of its recent
match rate. Intrusion attempts which generate tempo-
rally clustered spikes matching a single detector, are likely
to produce match counts that will exceed the activation
threshold, and an anomaly will be signalled.

Figure 2 illustrates how the number of false positives
falls off as the activation threshold increases. These ex-
periments were run with r = 12 and a tolerization period
of 15,000. For this data set, an activation threshold of 10
appears to minimize the number of detected anomalies.

VI. DETECTING ABNORMAL BEHAVIOR

In order to verify that the process of reducing false pos-
itives didn’t decrease LISYS’ ability to detect true posi-
tives, we performed several attacks using the free security
scanner Nessus. The attacks took place a week after the
normal period ended and consisted of 76,179 TCP SYN
packets over the course of two days. All of the attacks,
with the exception of the denial of service attack were per-
formed from a laptop which was assigned a dynamic IP ad-
dress because it had a physical connection to the internal
network. We tested to see if LISYS could detect the at-
tacks by running LISYS on a data set that consisted of the
normal data (training and test) followed by the data from
one of three attack groups. Based on the experiments
in the previous section, we chose the following parame-
ters: r = 10, number of detectors = 6, 000, tolerization
period = 15000 and activation threshold = 10.

The first attack group consisted of five attacks:

• A denial of service (DOS) attack from an internal
computer to an external computer.

• A firewall attack against the router machine.
• An ftp attack against an internal ftp server.
• SSH probes against several internal machines.
• An attack that probes for services like chargen and

telnet. Nessus refers to these as “useless services”.

0 10000 20000 30000 40000 50000 60000 70000

packet #

0

5

10

of

 lo
ca

l a
no

m
al

ie
s

Fig. 4. Local anomalies for attack group two.

The second attack group consisted of a TCP SYN scan
followed by an nmap tcp connect() scan. Both of these
scans are port scans, but a SYN scan is a stealth scan,
while a tcp connect() scan is noisy. The third attack group
consisted of a full nmap port scan.

Figure 3 shows the LISYS anomaly data for attack
group one. Local anomalies are displayed using windows
of 100. This means that each bar is an indication of the
number of anomalies that occurred in the last 100 pack-
ets. We can see from this graph that LISYS was able to
detect the denial of service attack and the ftp attack. The
vertical lines indicate the beginning of these two attacks,
and there are spikes shortly after these attacks began.
The spikes for the ftp attack are significantly higher than
those for the DOS attack, but both attacks have spikes
that are higher than the spikes in the normal data, indi-
cating a clear separation between true and false positives.
This view is interesting because the height of the spikes
can be interpreted as the system’s confidence that there
is an anomaly occurring at that point in time.

Figure 4 shows the LISYS anomaly data for attack
group two. By looking at this figure, we can see that
there is something anomalous in the last half of the at-
tack data, but LISYS was unable the find anything wrong
in the first half of the attack data.4 Although the spikes
are roughly the same height as the spikes in the normal
data, the temporal clustering of the spikes also indicates
that there is something anomalous. Figure 5 shows the
LISYS anomaly data for attack group three. The figure
indicates that LISYS overwhelmingly found the nmap to
be anomalous. Not only are the majority of the spikes sig-
nificantly higher than the normal data spikes, but there
is a huge number of temporally clustered spikes.

VII. KIM AND BENTLEY’S EVALUATION

Kim and Bentley considered negative detection using
one representation and the r-contiguous matching rule

4Some detectors were tolerized during this first half, but these
detectors were not crucial for the detection in the second half.

0 10000 20000 30000 40000 50000

packet #

0

10

20

30

of

 lo
ca

l a
no

m
al

ie
s

Fig. 5. Local anomalies for attack group three.

[12]. They represented network traffic as strings of length
33 defined over an alphabet of 10 values. Using the r-
contiguous bits matching rule with a threshold of 4, they
concluded that detector generation was impossible in a
reasonable period of time. Although they fail to report
how many retries were required on average to generate a
valid detector, they do report that in one day they failed
to generate a single valid detector. They then tried using a
match threshold of 9. With this threshold, generating de-
tectors became computationally feasible, but it was then
very difficult for them to generate enough detectors to
cover non-self adequately (see section V-A). From these
two experiments, they concluded that the negative selec-
tion algorithm suffers from “severe scaling problems” and
they “raise doubt whether this algorithm should be used
for network intrusion detection.” Results such as these
serve to highlight the importance of choosing an appro-
priate representation for a given problem, an issue whose
importance has long been recognized in other fields, such
as genetic algorithms.

There are several explanations for their results, and the
explanations provide interesting insights into the impor-
tance of representation. First, the difference in the size of
coverage between an r = 9 detector and an r = 4 detector
is huge. The matching threshold r is exponentially sensi-
tive, so an r = 4 detector matches roughly 100,000 times
as many strings as an r = 9 detector. When attempting
to tune such a sensitive parameter, a jump from 4 to 9
hardly seems justifiable. A second factor, is their choice
of representation, which makes r even more sensitive. An
alphabet size of 2 means that decreasing r by 1 roughly
doubles the number of strings that a detector can match,
and hence roughly doubles the amount of coverage of non-
self. With an alphabet size of 10, however, a decrease of
r by 1 increases detector size by an order of magnitude.

Finally, Kim and Bentley’s conclusion, that negative de-
tection does not work because it cannot generate enough
detectors to cover non-self in a reasonable amount of time,
seems to be overstated. Showing that negative detec-

tion doesn’t work for one representation with two match
thresholds does not support such a strong conclusion. It is
important here to remember that negative detection and
the r-contiguous match rule are not the same thing. They
are rather two pieces of a system, either of which could
be replaced if determined to be hindering performance.

VIII. CONCLUSION

In this study, we introduced a new data set, which was
intended to model some of the features of a corporate
intranet or a small home networking environment. This
data set is small and well controlled, yet it features “live”
traffic with real users. We used the new data set to con-
firm many of the results published in the original papers
on LISYS. In particular, we discovered that certain pa-
rameter settings that worked well in the original paper,
also work well for our new data set. These include a
tolerization period of 3-4 days and an activation thresh-
old of 10. We discovered that a detector threshold of
r = 10 performed better than the original published value
of r = 12, although we don’t completely understand the
reason for this difference. In this paper, we also confirmed
the importance of several LISYS mechanisms for control-
ling false positives, including tolerization periods, activa-
tion thresholds, and rolling coverage. Other mechanisms,
not considered in this paper, include: sensitivity levels,
co-stimulation, and permutation masks. Understanding
the role of these additional mechanisms is an important
avenue for future investigation. We also investigated cer-
tain negative results reported by Kim and Bentley and
offered some explanations for them.

In this paper we used the network intrusion detection
problem to explore how various components of LISYS con-
tribute to its performance. In order to use LISYS seriously
as a network intrusion detection system, we believe that
several extensions would be required. Probably the most
important of these would be to modify the representa-
tion to look more deeply in the network stack. An in-
formal survey of recent network-based intrusion methods
suggests that a perfect intrusion-detection system which
monitored only SYN packets would detect at most about
40% of the different kinds of common attacks [9].

However, the restriction to SYN packets in LISYS is not
hard-wired, and the system could be extended to consider
other aspects of network traffic. The advantages of re-
stricting ourselves to SYN packets for this study were sim-
plicity and efficiency. LISYS performs surprisingly well,
even when limited to SYN packet traffic only. And, by
only monitoring SYN packets, the system is much more
efficient. It can monitor every SYN packet in the network,
with modest computational requirements.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support of the
National Science Foundation (grants IRI-9711199, CDA-

9503064, and ANIR-9986555), the Office of Naval Re-
search (grant N00014-99-1-0417), the Defense Advanced
Projects Agency (grant AGR F30602-00-2-0584), the In-
tel Corporation, and the Santa Fe Institute. Many peo-
ple have contributed to LISYS and have offered helpful
comments and advice over the past three years, including
Steven Hofmeyr, Jason Stewart, Todd Kaplan, Hajime In-
oue, Dennis Chao, Fernando Esponda, and Paul Helman.

References
[1] D. Dasgupta. Immunity-based intrusion detection system: A

general framework. In Proc. of the 22nd National Information
Systems Security Conf., 1999.

[2] P. D’haeseleer. An immunological approach to change detec-
tion: theoretical results. In Proc. of the 9th IEEE Comp. Secu-
rity Foundations Workshop.. IEEE Comp. Society Press, 1996.

[3] P. D’haeseleer, S. Forrest, and P. Helman. An immunological
approach to change detection: algorithms, analysis and im-
plications. In Proceedings of the 1996 IEEE Symposium on
Computer Security and Privacy. IEEE Press, 1996.

[4] F. Esponda. Detector coverage with the r-contiguous bits
matching rule. Tech. Report TR-CS-2002-03, UNM, 2002.

[5] S. Forrest, A. S. Perelson, L. Allen, and R. C. Kuri. Self-nonself
discrimination in a computer. In Proc. of the IEEE Symp. on
Research in Security and Privacy. IEEE Press, 1994.

[6] L. Heberlein, G. Dias, K. Levitte, B. Mukherjee, J. Wood, and
D. Wolber. A network security monitor. In Proc. of the IEEE
Symp. on Security and Privacy. IEE Press, 1990.

[7] S. Hofmeyr. An immunological model of distributed detection
and its application to computer security. PhD ths., UNM, 1999.

[8] S. Hofmeyr and S. Forrest. Architecture for an artificial immune
system. Evolutionary Comp. Jrnl., 8(4):443–473, 2000.

[9] K. Ingham, 2001. Personal communication.

[10] J. Kim and P. Bentley. The artificial immune model for net-
work intrusion detection. In 7th European Conf. on Intelligent
Techniques and Soft Computing. Aachen, Germany, 1999.

[11] J. Kim and P. Bentley. Negative selection and niching by an
artificial immune system for network intrusion detection. In
GECCO-99 Proceedings, p. 149–158, 1999.

[12] J. Kim and P. Bentley. An evaluation of negative selection in
an artificial immune system for network intrusion detection. In
GECC0-2001 Proceedings, p. 1330–1337, 2001.

[13] J. McHugh. Testing intrusion detection systems: A critique of
the 1998 and 1999 DARPA intrusion detection system evalua-
tions as performed by Lincoln Laboratory. In ACM Transac-
tions, November 2000, 3(4):262–294, ACM, 2000.

[14] B. Mukherjee, L. T. Heberlein, and K. N. Levitt. Network
intrusion detection. IEEE Network, pages 26–41, 1994.

[15] J. Percus, O. Percus, and A. Perelson. Predicting the size of
the antibody combining region from consideration of efficient
self/non-self discrimination. Proc. of the National Academy of
Science, 90:1691–1695, 1993.

[16] S. T. Wierzchon. Discriminative power of the receptors acti-
vated by k-contiguous bits rule. Journal of Computer Science
and Technology, 1(3):1–13, 2000.

[17] S. T. Wierzchon. Generating optimal repertoire of antibody
strings in an artificial immune system. In Intelligent Informa-
tion Systems, 119–133, 2000.

[18] S. T. Wierzchon. Deriving concise description of non-self
patterns in an artificial immune system. In New Learning
Paradigm in Soft Computing, 438–458, 2001.

[19] P. Williams, K. Anchor, J. Bebo, G. Gunsch, and G. Lam-
ont. CDIS: Towards a computer immune system for detecting
network intrusions. In RAID 2001, 2212:117–133, 2001.

