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1 INTRODUCTION

This chapter describes the behavior of the immune system from an information-
processing perspective. It reviews a series of projects conducted at the Uni-
versity of New Mexico and the Santa Fe Institute, which have developed and
explored the theme “immunology as information processing.” The projects
cover the spectrum from serious modeling of real immunological phenomena,
such as crossreactive responses in animals and the generation of diversity, to
computer science applications, especially the attempt to develop an immune
system for computers to protect them against viruses, intrusions, and other
malicious activities.

In each project, we have used an approach with the following steps:
(1) Identify a specific mechanism that appears to be interesting computation-
ally, (2) write a computer program that implements or models the mechanism,
(3) study its properties through simulation and mathematical analysis, and
(4) demonstrate its capabilities, either by applying the model to a biological
question of interest or by showing how it can be used profitably in a computer
science setting.

Design Principles for Immune System & Other Distributed Autonomous
Systems. L. A. Segel and I. R. Cohen, eds. Oxford Univ. Press, 2000. 361
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2 INFORMATION PROCESSING IN THE IMMUNE SYSTEM

The terms “information processing” and “computation” are not easily de-
fined. For the purposes of this chapter we use the term “information” to refer
to a spatio-temporal pattern that can be understood and described indepen-
dently of its physical realization. We will use the words “computation” and
“information processing” interchangeably to describe processes that operate
on, or transform, information. In the immune system, we believe that such
patterns occur in peptides, proteins, and other molecules and that the recogni-
tion, learning, storage, communication, and transformation of these patterns
governs the behavior of the immune system. This is a strong claim, one that
can be contrasted with the more conventional structural view of immunology,
which models cells, molecules, and their interactions as mechanical devices.
The following sections illustrate how emphasizing the informational proper-
ties of the immune system can provide insights which extend our knowledge
beyond that provided by the structural view.

The immune system processes peptide patterns using mechanisms that
in some cases correspond closely to existing algorithms for processing infor-
mation (e.g., the genetic algorithm), and it is capable of exquisitely selective
and well-coordinated responses, in some cases responding to fewer than ten
molecules. Some of the techniques used by the immune system include learn-
ing (affinity maturation of B cells, negative selection of B and T cells, and
evolved biases in the germline), memory (crossreactivity and the secondary re-
sponse), massively parallel and distributed computations with highly dynamic
components (on the order of 10® different varieties of receptors [52] and 107
new lymphocytes produced each day [37]), and the use of combinatorics to
address the problem of scarce genetic resources (V-region libraries).

It is generally believed that one major function of the immune system
is to help protect multicellular organisms from foreign pathogens, especially
replicating pathogens such as viruses, bacteria, and parasites. In order to suc-
ceed, the immune system must be capable of distinguishing harmful foreign
material (which we will refer to as “nonself”) from normally behaving con-
stituents of the organism (which we will label “self”).! That is, it must be able
to recognize foreign material (also called “antigen”) as foreign—a problem we
cast as one of pattern recognition. Detection of pathogens is accomplished by
lymphocytes and antibodies, which function as small independent detectors,
circulating throughout the body in the blood and lymph systems. Lympho-
cytes (B cells and T cells) recognize pathogens by forming molecular bonds

1For many years, the problem of immunology was described as that of discriminating
self from nonself. However, this view is clearly oversimplified. There are, for example, harm-
less bacteria (nonself) which are tolerated by the immune system. Likewise, the immune
system attacks bona fide self cells, for example, in some cancers. Granting these complexi-
ties, and without taking a position in the ongoing debate about the immune system’s true
function, we will use the self/nonself language to refer to the classes of patterns which the
immune system tolerates or tries to eliminate, respectively.
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between pathogen fragments and receptors on the surface of the lympho-
cyte. The more complementary the molecular shape and electrostatic surface
charge between pathogen and receptor, the stronger the bond (or the higher
the affinity). Thus, we say that, in the immune system, pattern recognition is
implemented as binding. When an immune system detector (including B cells,
T cells, or antibodies) binds to a peptide, we say that the immune system has
recognized the pattern encoded by the peptide.

We have extracted the following informational design principles from our
study of immunology: The immune system is diverse, which greatly improves
robustness, on both a population and individual level, for example, different
people are vulnerable to different pathogens; it is distributed, consisting of
many components which interact locally to provide global protection, so there
is no central control, and hence no single point of failure; it is error tolerant
in that a few mistakes in classification and response are not catastrophic;
it is dynamic, i.e., individual components are continually created, destroyed,
and are circulated throughout the body, which increases the temporal and
spatial diversity of the immune system; it is self-protecting, i.e., the same
mechanisms that protect the body also protect the immune system itself; and
it is adaptable, i.e., it can learn to recognize and respond to new pathogens,
and it can retain a memory of those pathogens to facilitate future responses.

Here, we focus on three examples of the information-processing perspec-
tive: How the immune system distributes its detection through negative selec-
tion and other mechanisms, the affinity maturation process and its relation to
genetic algorithms, and crossreactive memory and its relation to associative
memories.

2.1 HOW THE IMMUNE SYSTEM DISTRIBUTES DETECTION AND
RESPONSE

The immune system is distributed throughout the body, and this important ar-
chitectural feature affects nearly everything else. Certainly, any computational
model of an immune system must account for distribution, as it constrains
many of the details involving detection, learning, memory, and response. One
obvious reason for the importance of distribution in the immune system is that
the pathogens to which it must respond are themselves distributed throughout
the body. Another reason is that distribution makes the system much more
robust to attack—it is difficult to neutralize a system which is not in only
one place. Distributed systems have always appealed to computer scientists
because of their potential efficiency (by distributing workload over multiple
locations) and fault-tolerance (robustness to component failures), but these
properties are rarely achieved in artificial systems except in highly specialized
settings.

How does the immune system achieve highly distributed memory and con-
trol? There are three principle mechanisms: (1) negative selection, (2) costim-
ulation and other signaling events, and (3) cell division and death. Negative
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selection allows the immune system to perform self/nonself discrimination
with little or no communication between individual detectors (distributed de-
tection). Costimulation and other signaling occurs locally and controls key
processes such as cell proliferation, activation, and death. These processes
allow the immune system to allocate resources (cells) dynamically in areas
where they are most needed and to prevent many autoimmune reactions. Be-
cause each cell carries a complete description of itself, these processes also
provide vehicles for distributing the information needed for the immune sys-
tem to function (distributed autonomous control). We believe that each of
these mechanisms is crucial to the highly distributed nature of the immune
system. In the remainder of this section, we discuss each of these mechanisms
in more detail.

One of the principle ways that the immune system achieves self-tolerance
(correct discrimination between self and nonself) is by allowing its detector
lymphocytes to mature in isolated settings, the thymus in the case of T cells
and the bone marrow for B cells. This is necessary because the binding regions
for these cells are created through a pseudorandom genetic process, which
could easily lead to self-reactive cells. Focusing on T cells, there are several
stages of maturation, including genetic rearrangements, positive selection, and
negative selection. Of particular interest is negative selection, in which T cells
that bind sufficiently strongly with self-proteins expressed in the thymus are
destroyed. In addition to negative selection, there is also positive selection of
those T cells that can bind weakly to certain molecules. Negative selection
prevents T cells from binding to normal self-proteins, while positive selection
ensures that T cells will be able to bind to self-cells that express abnormal
peptides. T cells that survive both positive and negative selection are allowed
to mature, leave the thymus, and become part of the active immune system.
Once in circulation, if a T cell binds to antigen in sufficient concentration, a
recognition event is said to have occurred, triggering the complex set of events
that leads to elimination of the antigen. These negative-selection processes are
called centralized tolerance because the cells are censored in a single location.

T-cell censoring can be thought of as defining a set (the set of self-
peptides) in terms of its complement (all nonself peptides). We can use this
principle to design a distributable change-detection algorithm with interesting
properties. Suppose we are given a collection of digital data, which we will
call “self,” and that we wish to monitor self for changes. The data might be
an activity pattern, a static program code, or a file of data. The algorithm
works as follows: (1) generate a set of detectors which fail to match self (as-
suming a “closed world,” each detector is then guaranteed to match some
portion of nonself); (2) use the detectors to monitor the protected data; and
(3) record activated detectors. Whenever a detector is activated, a change is
known to have occurred, and the location of the change is known (by examin-
ing the pattern which activated the detector). There are several details which
must be specified before we have an implementable algorithm (1) How are
the detectors represented? (2) How is a match defined? (3) How are detectors
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generated? (4) How efficient is the algorithm? These topics are explored in
detail in Forrest et al. [14] and D’haeseleer [6, 7], but we give highlights here.

There are many possible definitions of self for a computer. Our definitions
rely on the idea that any pattern (e.g., a computer program, an execution
trace of a program, or the flow of packets through a local area network) can
be represented as a finite-length string of symbols. In particular, we represent
self as a set of equally sized strings (e.g., by logically segmenting a computer
program into equal-length substrings), where the symbol I denotes the length
of each string. Similarly, each detector can be defined to be a string of the
same length as the substrings.

A perfect match between two strings of equal length means that at each
location in the string, the symbols are identical. However, perfect matching
(perfect binding) is rare in the immune system and improbable between strings
of any significant length. Partial matching in symbol strings could be defined
in many ways, including Hamming distance or edit distance. However, we typ-
ically use a more immunologically plausible rule called r-contiguous bits [38].
This rule looks for r contiguous matches between symbols in corresponding
positions. Thus, for any two strings x and y, we say that match(x,y) is true
if z and y agree (match) in at least r contiguous locations. The value r is a
threshold and determines the specificity of the detector, which is an indication
of the number of strings that can be matched (detected) by a single detector.
For example, if r = [, the matching is completely specific; that is, the detector
will detect only a single string (itself). A consequence of a partial matching
rule with a threshold, such as r-contiguous bits, is that there is a tradeoff
between the number of detectors used, and their specificity. As the specificity
of the detectors increases, so the number of detectors required to achieve a
certain level of coverage also increases.

Detectors can be generated in several ways. A general method (one that
works for any matching rule) is also the one used by the immune system.
Simply generate detectors at random, censor them against self, and eliminate
those that match self. For the “r-contiguous bits” rule defined above, this gen-
erating procedure is inefficient—the number of random strings that must be
generated and tested is approximately exponential in the size of self. However,
more efficient algorithms based on dynamic programming methods allow us
to generate detectors in linear time for the r-contiguous bits rule [6].

The negative-detection algorithm has several interesting properties. First,
it can be easily distributed because each detector can function independently
of other detectors, that is, without communication between detectors or co-
ordination of multiple detection events. This is because each detector covers
part of nonself. A set of detectors can be split up over multiple sites, which will
reduce the coverage at any given site but which will provide good syste-mwide
coverage. To achieve similar coverage using detectors which match against self
would be much more expensive. In this second case (which we call “positive
detection”), the system would maintain a description of self and notice when
a pattern appeared that failed to match the description. To do this, either a
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complete set of the detectors (to specify the complete normal pattern) would
be needed at every site, resulting in multiple copies of the detection system,
or the sites must be in continual communication to coordinate their results.
To see why this is true, consider a pattern that fails to match the positive
detectors. The match failure could be for two reasons—either the pattern will
be matched by a positive detector located at another location, or it is a true
anomaly.

A second point about the negative-selection algorithm is that if we assume
a closed world and a complete specification of self, it will never report false
positives. Depending on how the detector sets are chosen, however, there is
a chance of false negatives. Consequently, the algorithm is likely to be more
applicable to dynamic or noisy data where perfect discription is difficult to
achieve. This is in contract to cryptographic applications, where the data
are static, it is important to detect any one-bit change, and efficient change-
detection methods already exist. The number of detectors that is required to
detect nonself (using the r-contiguous bits matching rule) depends on how the
self set is organized, what false-negative rate we are willing to tolerate, and
choice of matching rule [6, 14]. For randomly chosen self sets, the number is
roughly the same order of magnitude as the size of self, but for nonrandom
data the number is often much lower.

A second mechanism that supports distributed processing in the immune
system is the concept of a second signal, also known as costimulation. From the
information-processing perspective, this mechanism helps the immune system
avoid autoimmune reactions (or false positives), especially in the presence
of distributed learning or adaptation (e.g., somatic hypermutation). It also
allows the immune system more flexibility in determining tolerance. Rather
than a completely centralized tolerance mechanism (e.g., if all self/nonself
determination were performed in the thymus), the second signal is one means
by which the immune system can determine tolerance in the periphery, by
taking advantage of the fact that self-patterns occur much more frequently
than nonself patterns.

As Hofmeyr described [26], one example of how a second signal works is
given by T-helper lymphocytes. To review, when a B lymphocyte (that is pos-
sibly a mutated descendant of an earlier lymphocyte that survived negative
selection) binds a foreign peptide (the first signal), it requires additional stimu-
lation by a signal from a T-helper lymphocyte (that has been censored against
self in the thymus) in order to trigger an immune response. The second-signal
system thus prevents mutating B-lymphocyte cell lines from incorrectly re-
acting against self. It also helps prevent autoimmunity in T cells, in the fol-
lowing way. Not all peripheral self-proteins are expressed in the thymus. Con-
sequently, T cells emerging will not necessarily be tolerant of all self-proteins.
Self-tolerance in these T cells can also be assured through costimulation. In
this case, the first signal occurs when binding exceeds the affinity threshold,
but the second signal is provided by the cells of the innate immune system,
such as macrophages. We call this frequency tolerization [24], because a self-
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reactive T cell is likely to encounter self in the absence of tissue damage with
much higher frequency than self in the presence of tissue damage; i.e., self
is much more frequent than nonself. A similar situation arises in computer
security settings where normal behavior is more frequent than malicious in-
trusions (see section 4). This general signaling strategy is widespread in the
immune system, and it can involve more than two signals.

The processes of negative selection and costimulation help the immune
system determine which patterns it should tolerate and which patterns it
should eliminate. That is, negative selection and costimulation address the
problem of representation and learning of representations. The processes of
cell replication and death are a third method by which the immune system
achieves its distributed organization. However, here the emphasis is on control.
Instead of employing a central process to generate and manage all detectors,
immune system control is distributed throughout the body. By control, we
refer to the immune system processes that allocate resources, determine which
type of immune response will be invoked (effector choice), and know how and
when to shut down an immune response. Immune cells are self-replicating
(which allows the system to be more autonomous and more adaptable), and
their control functions result from the processes of programmed cell death,
competition for antigen, and so forth.

How might these ideas be useful to computer science? An example is in
computer security, where we are concerned about the problem of protecting
an artificial immune system from being attacked. If we implemented pro-
tective mechanisms as a distributed collection of self-replicating modules, it
would be much more difficult to neutralize the entire defense system. There
is a strong analogy here to computer viruses, which are a powerful form of
distributed computation (unfortunately, to date mostly harmful). A major
problem with computer viruses is uncontrolled replication. At most, they
check to see if a file has already been infected before reinfecting it. What
is needed is a distributed way to regulate the replication and destruction of
distributed agents/detectors. Once again, we can take inspiration from the
immune system.

We have already described some of the mechanisms through which B
cells can be stimulated to clone themselves. For example, when an antigen is
recognized in the presence of T-cell help (indicating that the antigen is not part
of self), the B cell is stimulated to divide. Unchecked, this would eventually
lead to a disproportionate number of B cells of one type. Thus, each increase in
cell division must be balanced out at some point by a concomitant reduction in
the rate of reproduction and the removal of excess cells through programmed
cell death (apoptosis). The dynamic control of relative cell birth and death
rates is an important component of the immune system’s distributed control
system. The immunology behind this control system is complex and only
partially understood (for a review, see Boise and Thompson [1]). However,
the basic principles have been identified and provide a reasonable starting
point. These include costimulation (discussed earlier) and negative feedback
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cycles, in which lymphocyte activation promotes immediate survival of cells
but also triggers mechanisms that eventually lead to their deletion at the end
of the response.

Many different signaling molecules, called cytokines, are believed to par-
ticipate in the immune response (see Denny [4]), but how they all work to-
gether has not been explained systematically [55]. This complex network of
signaling molecules and cells apparently has the following properties [41, 42]:
(1) every cytokine type affects multiple cells; (2) every function (immune re-
sponse) is affected by multiple cytokines; (3) immune cells secrete a mixture
(vector) of cytokines; (4) signals are molecules, and therefore, distributed (lo-
cally) by diffusion; and (5) these signals can be subverted (e.g., viruses can
evolve to avoid or interfere with cytokines, perhaps by blocking receptors),
so there is an evolutionary pressure toward robust, secure networks. Relevant
to computer science, the cytokine signaling networks provide interesting clues
about how to design a distributed autonomous control network that is dy-
namic (both the nodes and connections are changing in time), robust to small
perturbations, but responsive to large perturbations.

To summarize, negative selection of detectors provides centralized tol-
erance and then gives the immune system its ability to distribute detection.
Costimulation allows the immune system to distribute its censoring (frequency
tolerization). Finally, the processes of cell replication, apoptosis, and the lo-
cal diffusion of cytokines give the immune system the ability to distribute its
resource allocation decisions and control.

2.2 AFFINITY MATURATION AND GENETIC ALGORITHMS

In a primary response the immune system uses learning mechanisms similar to
biological evolution to design detectors that are specific to a particular antigen.
Learning is required if the antigen is “new,” that is, if it has not previously
been encountered in the lifetime of the organism. Let us consider extracellular
pathogens, against which B cells are a primary defense. When a B cell is
activated by binding pathogen, it produces many copies of itself (clones that
are produced through cell division), in a process called clonal expansion. The
resulting cells can undergo somatic hypermutation, creating daughter B cells
with mutated receptors. These new B cells compete for pathogens with their
parents and with other clones. The higher the affinity of a B cell for available
pathogens, the more likely it is to clone. This results in a Darwinian process of
variation and selection, called affinity maturation. Affinity maturation enables
B cells to adapt rapidly to the specific pathogens present in the body. High-
affinity B cells deal with pathogens efficiently by secreting antibody, which can
promote pathogen destruction. This is especially important when the immune
system is fighting off a replicating pathogen, a situation which is essentially a
race between pathogen reproduction and B-cell reproduction. Efficient binding
of pathogens is also required to clear infections completely.
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The affinity maturation process is reminiscent of a genetic algorithm
[10, 16, 27], but there are some important differences. In their traditional
form, genetic algorithms process a population of individuals. The population
is created randomly in the initial generation. In the simplest case, each indi-
vidual is a bit string, typically representing a candidate solution to a problem.
Variations among individuals in the population result in some individuals be-
ing more fit than others (e.g., better problem solutions). These differences
are used to bias the selection of a new set of individuals at the next time
step, referred to as selection. During selection, a new population is created
by making copies of more successful (more fit) individuals and deleting less
successful ones. However, the copies are not exact. There is a probability of
mutation (random bit flips), crossover (exchange of corresponding substrings
between two individuals), or other changes to the bit string during the copy
operation. By transforming the previous set of good individuals to a new one,
the genetic operations generate a new set of individuals, which have a better
than average chance of having high fitness. When this cycle of evaluation, se-
lection, and genetic operations is iterated for many generations, a population
of individuals arises, that is biased towards highly fit individuals.

Genetic algorithms can be viewed as a first-order model of the affinity mat-
uration process, as well as a model of change over evolutionary time scales. In
the affinity maturation case, each individual in the population can be thought
of as a single B cell. High-fitness B cells are those that bind with high affin-
ity to frequently occurring antigen, and they are activated to produce B-cell
clones (selection). Somatic hypermutation is the genetic operator, that al-
lows the population of B-cell clones to evolve to be highly specific to the
frequently occurring antigen. Over time, a population of B cells is produced
that binds much more tightly to the prevalent antigen than before the process
started. There are two important differences between affinity maturation in
the immune system and conventional genetic algorithms. First, in an immune
system undergoing hypermutation, there is no obvious equivalent to crossover.
In this case, we can think of the crossover probability being set to zero. A sec-
ond difference is that in the immune system the amplification (selection) and
mutation phases are apparently distinct [31], whereas in the genetic algorithm
they are interleaved.

As we will see in section 3.1, the genetic algorithm can be used to study
different hypotheses about how the immune system is likely to have evolved.
In this case, each individual in the genetic algorithm corresponds to a bio-
logical individual (more properly, the immune system genes of a biological
individual), fitness corresponds to the survivability of that individual against
pathogens, and mutation and crossover correspond to the genetic changes that
an individual passes on to his or her offspring.
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2.3 CROSSREACTIVITY AND ASSOCIATIVE MEMORIES

A successful immune response results in the proliferation of B cells that have
high affinities for the foreign pathogens that caused the response. The in-
formation encoded in these B cells constitutes the “memory” of the immune
system. Understanding immune memory is problematic because B cells typi-
cally live for just a few days, and once an infection is eliminated, it is not well
understood what prevents the adapted subpopulation of B cells from dying
out. On subsequent encounters with the antigen, however, the immune sys-
tem responds with a secondary response in which the memory cells for the
earlier antigen quickly produce large quantities of specific antibodies. These
secondary responses are much faster and stronger than primary responses.
The distinction between primary and secondary responses is the basis for vac-
cination, and it is the reason why we get diseases such as measles only once.
In vaccination, an attenuated version of the antigen is injected to prime the
immune system, so that when the real antigen is encountered, it can produce
a response quickly and in large volume.

B-cell receptors do not require an exact match to an antigen in order to
be activated. If the immune system is primed with a particular antigen, and
then presented with a related antigen (one that is structurally similar but not
exactly the same) some of the memory components for the first antigen can be
stimulated by the second antigen, producing a secondary immune response.
Thus, it is sometimes possible to produce a secondary response to an antigen
that the immune system has never seen before. In the field of associative
memories, this is called association or generalization [49]. In immunology, such
a secondary response is called “crossreactive memory,” or “original antigenic
sin.” Crossreactivity can be beneficial (as in the case of vaccinating with
cowpox to protect against the related disease smallpox), and it can be harmful
(as in the case where a secondary response is ineffective at eliminating the new
antigen but blocks an effective primary response).

3 IMMUNE SYSTEM MODELING

In section 2 we discussed immunology from an informational perspective. Here,
we describe how such a perspective can contribute to immune system mod-
eling. The models we describe are all based on a universe in which antigens
and detectors are represented by strings over a small alphabet of symbols, and
interactions among strings represent molecular binding. In effect, we represent
only the receptor region on the surface of a lymphocyte. This approach, first
introduced by Farmer et al. [8], is now now widely adopted in the theoretical
immunological community. It has been used to study a wide variety of im-
mune system mechanisms. For a recent example see Detours and Perelson [5].
In these “artificial immune systems,” binding takes place when an antibody
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string and an antigen string have similar binary patterns.? Binding between
idealized antibodies and antigens is defined by a matching function that re-
wards more specific matches over less specific ones, as we saw earlier with
the r-contiguous bits rule. This constraint is related to the immune system’s
ability to distinguish self from nonself, because recognition of nonself must be
fairly specific in order to avoid recognizing self.

Representing binding between antigens and antibodies as simple string
matching has advantages and disadvantages. On the one hand, it fails to cap-
ture much of what is known and of interest to immunologists—the details
of specific molecular and cellular interactions. On the other hand, it pro-
vides the ability to model many cells and their interactions, something that
we think will be increasingly important over the next several years, both for
understanding immune system function and for exploiting immune system
principles in computing. Also, it allows us to isolate the informational aspects
of immune system processing from other potential factors such as dose, anti-
genicity, immunocompetence, and virulence and transmissibility, as we will
see in section 3.2.

With this basic modeling abstraction in place we can construct a wide va-
riety of model immune systems. For example, affinity maturation can be mod-
eled in such a system by constructing one population of antibodies and one
of antigens, each from bit strings. Antigens are “presented” to the antibody
population one at a time, and high-affinity antibodies have their fitness in-
creased. The antibody population is then evolved by a genetic algorithm based
on its success at matching antigens [13, 50]. Similarly, crossreactive memory
can be modeled by constructing populations of B cells, presenting the system
with a single antigen type, allowing affinity maturation, then presenting the
system with one or more related antigens, and studying the strength of the
response [47]. The following subsections describe two such models, one that
is concerned with the evolutionary pressures that shaped the immune system
and one that is concerned with the question of repeated vaccination against
a mutating virus.

3.1 DIVERSITY GENERATING MECHANISMS

One question that can be addressed with models such as these involves the
generation of diversity. Several mechanisms have been discovered by which
the immune system is able to generate its enormously diverse set of receptors.
These include: immune receptor libraries [43], combinatorial rearrangement
of entries from multiple libraries [52], junctional diversity [15], and somatic
hypermutation and/or gene conversion [54]. We would like to better under-
stand the relative contributions of these different mechanisms, and if possible,
what role each mechanism plays in generating the immune repertoire. A re-

2 A more direct analogy with binding in immunology would be based on complementary
binary patterns. In binary alphabets, however, matching rules based on complementary bit
patterns are logically equivalent to those based on similarity.
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lated question is whether the immune system has evolved its genetics to cover
pathogen space randomly or if it has evolved biases that incorporate learning
about the pathogenic environment. These questions are difficult to address
experimentally in animals.

Ron Hightower’s 1996 dissertation [18] studied the mechanisms through
which the immune system creates its large number of unique receptors—the
multigene families. His work provided insight about how and why the natural
immune system evolved as it did [40], showed that robust pattern recogniz-
ers can be learned with a surprisingly small amount of information [19], and
gave an interesting example of a genotype-to-phenotype map that is nontriv-
ial but still quantifiable. His model inserted an interpretation step between
the representation manipulated by evolution (the genetic libraries) and the
representation that is operative during an individual’s life (the expressed an-
tibodies) [20].

Mihaela Oprea then used Hightower’s multigene family model as part of a
detailed study of the sources and evolutionary significance of diversity in the
immune system [34, 35, 36]. Part of this work was a study of how germline
diversity (that is, the antibody gene libraries) contribute to the structure of
the antibody repertoire. To study the effect of germline diversity, Oprea used
a genetic algorithm to model how the immune system might have evolved.
(Note, this is a different use of the genetic algorithm from that described
earlier for affinity maturation.) The genetic algorithm employed a population
of M individuals, called hosts, which evolved in an environment of hostile
pathogens. Each pathogen was represented as a bit string. Each individual
in the population consisted of an antibody library, containing A antibodies,
where each antibody was represented as a bit string of length L (typically,
L = 16). Pathogens were also represented as bit strings of length L, and the
antibody set was evolved on a fixed, but large (2°), pathogen set. The A anti-
bodies were concatenated to form a single chromosome. This representation of
antibody libraries is reminiscent of the so-called “Pitt” approach to classifier
systems [2, 28], in which candidate sets of production rules are represented
by concatenating the individual rules to form a single chromosome. Good rule
sets (those that solve a given problem well) are then evolved using the genetic
algorithm. In the case of Oprea’s model, each library (one individual’s genome)
corresponds to a classifier system if we consider each encoded antibody to take
the role of a single classifier rule. This aspect of her representation seems to
correspond quite directly to V-region genes in humans.

Oprea then used the model to determine how the fitness of a single in-
dividual scales with the amount of diversity (number of entries) and with
the matching rule used to determine bond strength. Her results suggest that
adding more and more antibodies to the genome-encoded repertoire improves
the survival probability of the individual by smaller and smaller amounts,
the exact relation being determined by the binding rule. She experimented
both with binding rules based on Hamming distance [34] and on free-energy
calculations [35]. Theses results suggest an explanation for why the V-region
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libraries in various species do not seem to number more than approximately
one hundred genes. However, if the selection pressure for increasing library
size is small, what would keep evolution from producing even smaller libraries
than the ones that we observe? One possible explanation is that there is a hard
threshold in antibody/pathogen binding, below which recognition will not oc-
cur at all. In this case, some minimal number of antibodies would be required
to ensure that at least one has minimal affinity for any given pathogen. Alter-
natively, one can imagine that the pathogen set is structured as a distribution
of clusters, such that different antibodies in the library would reflect different
clusters of pathogens. Oprea subscribes to the second alternative, conjecturing
that the antibody genes encode antibodies which are “strategically” placed in
the space of possible receptors, thus providing a form of “coarse graining” of
the pathogen space.

3.2 VACCINE DESIGN FOR MUTATING VIRUSES

A second example of how ideas about information processing can be used
to better understand the immune system is Derek Smith’s 1997 dissertation
on the crossreactive immune response and its application to the problem of
vaccine design for mutating viruses [48]. Smith developed a model of crossreac-
tive memory in immunology (closely related to Kanerva’s Sparse Distributed
Memory [30]) and applied the model to the problem of vaccine design for
mutating viruses, focusing on influenza [44, 45, 46, 49].

Smith’s computational model is concerned with B cells, plasma cells, an-
tibodies, memory B cells, and antigens. The model is individual based in the
sense that each individual immune cell and antibody is represented in the com-
puter explicitly. (By contrast, many models represent each type of constituent
explicitly, together with the concentration in which they exist.) Smith’s model
is a particularly simple and elegant example of the individual-based style of
modeling. Each individual’s receptor region is represented as a simple string
of twenty symbols, each symbol chosen from a four-letter alphabet (e.g., a,
b, ¢, d). The four symbols are intended to represent generic properties of the
binding region; e.g., it might be reasonable to interpret them as polar, non-
polar, large, small. In an earlier study, Smith found that with a binding rule
based on the idea of Hamming distance (at how many positions in the string
do the symbol strings differ in value?) on strings of length 20 defined over an
alphabet of size 4, he obtained crossreactivity patterns that agree well with
known biological data [46].

In the model, large populations (107) of B cells, each with a randomly
generated receptor, are created. The population is then presented with anti-
gen, and the B cells that bind to the antigen with sufficient affinity, under
the Hamming rule described earlier, have a chance to be stimulated to divide,
undergo somatic hypermutation, and differentiate into a plasma or memory
cell. Secreted antibody has a chance to bind antigen, and antigen-antibody
complexes are removed from the simulation. Details about how the model is
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implemented, using a technique called lazy evaluation, are given in Smith et
al. [44].

Smith used his model to study the effect of repeated vaccination against
a mutating virus [45]. Influenza is an example of such a virus. Antigenic drift
causes new but related strains of the virus to circulate through human pop-
ulations on an annual basis. Influenza vaccines are, therefore, updated regu-
larly to track the antigenic drift. Smith was interested in the case of human
populations who are vaccinated annually with the updated strains. Through
a series of simulations, based on historical records of actual observed anti-
genic distances, he observed cases of positive interference between vaccines
(where the first year’s vaccine reinforced the effect of the second year’s vac-
cine) and negative interference (where the first year’s vaccine prevented the
second year’s vaccine from being effective). He analyzed these cases in detail
and concluded that the different outcomes resulted from specific combinations
of antigenic distances between the first-year vaccine, the second-year vaccine,
and the epidemic strain that actually appears after the second-year vaccine is
administered. These different cases are illustrated in figure 1.

Smith then compared his simulation results with the published epidemi-
ological studies on vaccine efficacy (see fig. 2). As the figure shows, Smith’s
simulation results agree closely with the epidemiological studies, even though
his model is exquisitely simple. His results are significant because they provide
a parsimonious explanation, based on antigenic distances, for both the cases
in which multiyear vaccines are successful and the cases in which they are not.
Further, his explanation relies only on the informational properties of the re-
ceptors (how closely they are related to each other in sequence space) and not
on biological details of how the receptors are implemented, deployed, or on
biological properties of the virus. Finally, his dissertation makes testable pre-
dictions about how different antigenic strains might interact with one another
and with the wild-type strain encountered during an epidemic.

4 |DEAS FROM IMMUNOLOGY APPLIED TO COMPUTER
SECURITY

The immune system can also be studied for the purpose of designing better ar-
tificial adaptive systems. A natural domain in which to apply immune system
mechanisms is computer security, where the analogy between protecting the
body and protecting a normally operating computer is evident. A computer
security system should ensure the integrity of a machine or set of machines,
protecting them from unauthorized intruders and foreign code. This is sim-
ilar in functionality to the immune system protecting the body (self) from
invasion by harmful microbes (nonself). Within this domain, we have studied
several problems, including computer virus detection [6, 14], host-based intru-
sion detection [11, 12, 22, 53], automated response [51], and network intrusion
detection [23, 25]. This last project incorporates several different immune sys-
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FIGURE 1 An illustration of the antigenic distance hypothesis. Shape space dia-
grams are a way to illustrate the affinities between multiple B cells/antibodies and
antigens, and also the antigenic distances between antigens [39]. In these shape space
diagrams, the affinity between a B cell or antibody (X) and an antigen () is repre-
sented by the distance between them. Similarly, the distance between antigens is a
measure of how similar they are antigenically. (a) B cells with sufficient affinity to
be stimulated by an antigen lie within a ball of stimulation centered on the antigen.
Thus, a first vaccine (vaccine 1) creates a population of memory B cells and antibod-
ies within its ball of stimulation. (b) Crossreactive antigens have intersecting balls
of stimulation, and antibodies and B cells in the intersection of their balls—those
with affinity for both antigens—are the crossreactive antibodies and B cells. The
antigen in a second vaccine (vaccine 2) will be partially eliminated by preexisting
crossreactive antibodies (depending on the amount of antibody in the intersection),
and thus the immune response to vaccine 2 will be reduced [3, 9]. (c) If a subsequent
epidemic strain is close to vaccine 1, it will be cleared by preexisting antibodies.
(d) However, if there is no intersection between vaccine 1 and the epidemic strain,
there will be few preexisting crossreactive antibodies to clear the epidemic strain
quickly, despite two vaccinations. Note, in the absence of vaccine 1, vaccine 2 would
have produced a memory population and antibodies that would hve been protec-
tive against both the epidemic strains in (c) and (d). For an antigen with multiple
epitopes (such as influenza), there would be a ball of stimulation for each epitope.
Printed with permission by PNAS 96 (1999). National Academy of Sciences, USA.
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FIGURE 2 Opbserved vaccine efficacy in repeat vaccinees relative to the efficacy in
first-time vaccines, and predicted vaccinees efficacy based on the antigenic distance
hypothesis. Printed with permission by PNAS 96 (1999). National Academy of
Sciences, USA.

tem mechanisms into an integrated system and is the focus of this section,
which is largely excerpted from Hofmeyr and Forrest [21].

Hofmeyr’s network immune system is situated in a local-area broadcast
network (LAN) and is used to protect the LAN from network-based attacks. In
contrast with switched networks, broadcast LANs have the convenient prop-
erty that every location (computer) sees every packet passing through the
LAN. In this domain, self is defined to be the set of normal pairwise con-
nections (at the TCP/IP level) between computers, including connections
between two computers in the LAN as well as connections between one com-
puter in the LAN and one external computer (fig. 3). A connection is defined in
terms of its “data-path triple”—the source IP address, the destination IP ad-
dress, and the service (or port) by which the computers communicate [17, 33].
This information is compressed to a single 49-bit string that unambiguously
defines the connection. Self is then the set of normally occurring connections
observed over time on the LAN, each connection being represented by a 49-bit
string. Similarly, nonself is also a set of connections (using the same 49-bit
representation), the difference being that nonself consists of those connections,
potentially an enormous number, that are not normally observed on the LAN.

Natural immune systems consist of many different kinds of cells and
molecules. Here, we simplify by introducing one basic type of detector cell
which combines useful properties from several different immune cells. This
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FIGURE 3 Architecture of the artificial immune system.

detector cell has several different possible states, which correspond roughly to
thymocytes (immature T lymphocytes undergoing negative selection in the
thymus), naive B lymphocytes (which have never matched foreign material),
and memory B lymphocytes (which are long-lived and easily stimulated). The
natural immune system also has many different types of effector cells, which
implement different immune responses (e.g., macrophages, mast-cells, etc.).
This set of features was not included in Hofmeyr’s model.

Each detector cell is represented by a single bit string of length I = 49
bits, and a small amount of local state (see fig. 3). There are many ways of im-
plementing the detectors; for example, a detector could be a production rule,
or a neural network, or an agent. We chose to implement detection (binding)
as string matching, where each detector is a string d, and detection of a string
s occurs when there is a match between s and d, according to a matching
rule. We use string matching because it is simple and efficient to implement,
and easy to analyze and understand. Recall that two strings d and s match
under the r-contiguous bits rule if d and s have the same symbols in at least
r contiguous bit positions.

The detectors are grouped into sets, one set per machine, or computer,
on the LAN; each computer loosely corresponds to a different location in the
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FIGURE 4 Life cycle of a detector. A detector is initially randomly created, and
then remains immature for a certain period of time, which is the tolerization period.
If the detector matches any string a single time during tolerization, it is replaced
by a new randomly generated detector string. If a detector survives immaturity, it
will exist for a finite lifetime. At the end of that lifetime it is replaced by a new
random detector string, unless it has exceeded its match threshold and becomes a
memory detector. If the activation threshold is exceeded for a mature detector, it is
activated. If an activated detector does not receive costimulation, it dies (the implicit
assumption is that its activation was a false positive). However, if the activated
detector receives costimulation, it enters the competition (see above) to become a
memory detector with an indefinite lifespan. Memory detectors need only match
once to become activated.

body.? Because of the broadcast assumption, each detector set is constantly
exposed to the current set of connections in the LAN, which it uses as a
dynamic definition of self (i.e., the observed connections in a fixed time period
are analogous to the set of proteins expressed in the thymus during some
period of time). Within each detector set, new detectors, or thymocytes, are
created randomly and asynchronously on a continual schedule, similarly to
the natural immune system. These new detectors remain immature for some
period of time, during which they have the opportunity to match any current

3The ability of immune system cells to circulate throughout the body is an important
part of the immune system that we are currently ignoring. In our system, detectors remain
in one location for their lifetime.
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network connections. If a detector matches when it is immature, it is killed
(deleted). This process, described earlier, is called negative selection.

Detectors that survive the initial censoring are promoted to mature de-
tectors (analogous to T lymphocytes leaving the thymus and B lymphocytes
leaving the bone marrow). Each mature detector can now act independently.
If a mature detector d matches a sufficient number of packets (see the discus-
sion of activation thresholds below), an alarm is raised. The time for which
d is in the naive phase can be thought of as a learning phase. At the end of
this learning phase, if d has failed to match a packet, it is deleted, but if it
has matched a sufficient number of nonself packets then it enters a compe-
tition with other activated detectors to become a memory detector. Memory
detectors have a greatly extended, potentially infinite, lifetime. Memory de-
tectors have a lower threshold of activation (see below), thus implementing a
“secondary response” that is more sensitive and responds more aggressively
than naive detectors to previously seen strings. Although these memory detec-
tors are desirable, a large fraction of naive detectors must always be present,
because the naive detectors are necessary for the detection of novel foreign
packets.

Both the natural immune system and our artificial immune system face
the problem of “incomplete self sets.” When T lymphocytes undergo negative
selection in the thymus, they are exposed to most, but not all, of the proteins
in the body. Consequently, the negative selection process is incomplete in the
sense that a lymphocyte could survive negative selection but still be reactive
against a legitimate self-protein (one that was not presented in the thymus),
potentially leading to an autoimmune reaction. In our artificial immune sys-
tem, such an auto-immune reaction is called a false positive. False positives
arise if we train the system on an incomplete description of self, and then
encounter new but legitimate patterns. We would like the system to be toler-
ant of such minor, legitimate new patterns, but still detect abnormal activity.
We have implemented two methods designed to overcome this problem: ac-
tivation thresholds and adaptive thresholds. Activation thresholds are similar
in function to avidity thresholds in lymphocytes. A lymphocyte is covered
with many identical receptors, and it is only activated when sufficiently many
receptors are bound to pathogens, i.e., when the avidity threshold for bind-
ing is exceeded. Analogously, each detector in the artificial immune system
must match multiple times before it is activated. Each detector records the
number of times it matches, and it raises an alarm only when the number
of matches exceeds the activation threshold, which is stored locally for each
detector set. Once a detector has raised an alarm, it returns its match count
to zero. This mechanism has a time horizon: over time the count of matches
slowly returns to zero. Thus, only repeated occurrences of structurally similar
and temporally clumped strings will trigger the detection system.

However, some attacks may be launched from many different machines,
in which case the first method is unlikely to be successful. To detect such
distributed coordinated attacks, we introduce a second method, called adap-
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tive activation (see fig. 3). Whenever the match count of a detector goes from
0 to 1, the local activation threshold for the set of detectors on a computer
is reduced by one. Hence, each different detector that matches for the first
time “sensitizes” the detection system, so that all detectors on that machine
are more easily activated in future. This mechanism also has a time horizon;
over time, the activation threshold gradually returns to its default value. This
method will detect diverse activity from many different sources, provided the
activity happens within a certain period of time. This mechanism roughly
captures the role that inflammation, cytokines, and other molecules play in
increasing or decreasing the sensitivity of individual immune system lympho-
cytes within a physically local region.

Two simple adaptive mechanisms used in our artificial immune system are
negative selection and the maturation of naive cells into memory cells. A third
adaptive mechanism has also been incorporated—affinity maturation. In its
simple form, detectors compete against one another for foreign packets, just
as lymphocytes compete to bind foreign antigen, as described in section 2.2.
In the case where two detectors simultaneously match the same packet, the
one with the closest match (greatest fitness) wins. This introduces pressure
for more specific matching into the system, causing the system to discriminate
more precisely between self and nonself. We propose, although we have not
yet implemented this, that successful detectors (those that bind many foreign
packets) will undergo proliferation (making copies and migrating to other
computers) and somatic hypermutation (copying with a high mutation rate).

In our system, we use a human as the second signal. When a detector
raises an alarm, there is some chance that it is a false alarm (autoimmune
reaction). Before taking action, the artificial immune system waits a fixed
amount of time (say, 24 hours) for a costimulatory signal, which in the current
implementation is an e-mail message from a human. If the signal is received
(confirming the anomaly), the detector enters the competition to become a
memory detector with an indefinite lifespan (see above), but, if it loses the
competition, it remains naive and has its match count reset to 0. If the second
signal is not received, the artificial immune system assumes that it was a
false alarm and destroys the detector, as in the natural immune system. The
complete lifecycle of a detector is shown in figure 3.

It might seem more natural to send messages to the artificial immune
system in the case of false alarms instead of true anomalies, so that the arti-
ficial immune system can adjust itself appropriately by immediately deleting
the autoreactive detectors. Unfortunately, this would create a vulnerability,
because a malicious adversary could send signals to the artificial immune sys-
tem, labeling true foreign packets as false alarms, thus tolerizing the artificial
immune system against certain forms of attack. The form of costimulation
that we have used is much more difficult to subvert. Because false alarms are
generally much more frequent than true anomalies, our costimulation method
has the additional advantage that action by the human operator is required
in the less frequent case.
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Each of the mechanisms described above can be implemented with a single
detector set running on a single location. We could trivially gain efficiency
advantages by distributing the single detector set across all locations on the
LAN, thus distributing the computational cost of intrusion detection. Such
distribution will give linear speedup, because there are no communication
costs (apart from the signaling of alarms and costimulation). However, we take
advantage of another immune system feature to implement a more powerful
form of distribution.

Molecules of the major histocompatibility complex (MHC) play an impor-
tant role in immune systems, because they transport protein fragments (called
peptides) from the interior regions of a cell to its surface, presenting these pep-
tides on the cell’s surface. This mechanism enables roving immune system cells
to detect infections in cells without penetrating the cell membrane. There are
many variations of MHC, each of which binds a different class of peptides.
Each individual in a population is genetically capable of making a small set of
these MHC types (about ten), but the set of MHC types varies in different in-
dividuals. Consequently, individuals in a population are capable of recognizing
different profiles of peptides, providing an important form of population-level
diversity.* Our artificial immune system uses permutation masks to achieve
a similar kind of diversity. A permutation mask defines a permutation of the
bits in the string representation of the network packets. Each detector set
has a different, randomly generated, permutation mask. One limitation of the
negative-selection algorithm as originally implemented is that it can result in
undetectable abnormal patterns called holes, which limit detection rates [6, 7].
Holes can exist for any symmetric, fixed-probability matching rule, but by us-
ing permutation masks we effectively change the match rule on each host, and
so overcome the hole limitation. Thus, the permutation mask controls how the
network packet is presented to the detection system, which is analogous to the
way different MHC types present different sets of peptides on the cell surface.

Our network intrusion detection system was empirically tested on actual
data collected on a subnet of 50 computers at the Computer Science depart-
ment at the University of New Mexico. The data consisted of two months
of network traffic. This was used as the basis for a simulation of a network
of 50 computers. We chose to simulate the environment because we needed
to repeat many different runs of the simulation to test out the effects of the
various mechanisms. We also collected seven traces of network traffic dur-
ing real incidents of attempted and successful intrusions (for a description of
these intrusions, see Hofmeyr [25]). In the simulation, with each of the 50
computers running with 100 detectors, the false positive rates were on the
order of two per day. This is regarded as very low in the intrusion detection
community [32]. In addition, the system successfully detected all seven intru-
sive incidents, in all cases detecting at least 44% of the nonself strings present

4For example, there are some viruses, such as the Epstein-Barr virus, that have evolved
dominant peptides that cannot be bound by particular MHC types, leaving individuals who
have those MHC types vulnerable to the disease [29].
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in each trace. The various mechanisms were found to be useful: Activation
thresholds reduce false positives by up to a factor of 10; the sensitivity mech-
anism is useful for detecting distributed coordinated attacks; costimulation
reduces false positives by up to a factor of three; memory detectors greatly
improve the secondary response; and, diverse permutation masks are useful
for detecting anomalies that are similar to the normal traffic.

5 CONCLUSIONS

In this chapter, we emphasized three themes: (1) understanding the dis-
tributed memory and control systems of the immune system from an infor-
mational perspective, (2) creating models that emphasize the informational
properties of the immune system, and (3) building an integrated adaptive im-
mune system that can address an important unsolved problem in computer
science.

What is the value of such analogies? In the case of modeling the real im-
mune system, there are several benefits to the information-based approach. As
we saw in the influenza example, viewing biological processes as computations
can lead to nonobvious predictions that can be tested. It can also allow us to
infer global properties of the immune system that are impossible to test exper-
imentally using today’s technology. An example of this is Oprea’s conclusions
about pathogen space coverage, based on her genetic algorithm simulation.
Further, simulations allow us the opportunity to perform perturbation exper-
iments and to run controls that may be difficult to do experimentally. Oprea’s
scaling relations are the result of such an exercise.

In the case of computer science, our study of the immune system has
revealed an important set of design principles, many of which are widely ap-
preciated in computer science, but some of which are not. More importantly,
we have few examples of working computer systems that illustrate all of these
properties in an integrated whole. Hofmeyr’s artificial immune system is, how-
ever, an important step in this direction. As our computers and the software
they run become more complex and interconnected, properties such as ro-
bustness, flexibility and adaptability, diversity, self-reliance and autonomy,
and scalability can only become more important to computer design.

The research described here stresses the similarities between computers
and immunology. Yet, there are also major differences, which it is necessary
to respect. The success of all analogies between computing and living systems
will ultimately rest on our ability to identify the correct level of abstraction—
preserving what is essential from an information-processing perspective and
discarding what is not. In the case of immunology, this task is complicated
by the fact that real immune systems handle data that are very different
from that handled by computers. In principle, a computer vision system or a
speech-recognition system would take as input the same data as a human does
(e.g., photons or sound waves). In contrast, regardless of how successful we are
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at constructing a computer immune system, we would never expect or want
it to handle pathogens in the form of actual living cells, viruses, or parasites.
Thus, the level of abstraction for computational immunology is necessarily
higher than that for computer vision or speech, and there are more degrees of
freedom in selecting a modeling strategy.
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