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Abstract

Automatedintrusionresponsés animportantunsohed
problemin computersecurity A systemcalledpH (for
processhomeostasis)s describedwhich can success-
fully detectandstopintrusionsbeforethetargetsystem
is compromised.In its currentform, pH monitorsev-
ery executingprocesson a computerat the system-call
level, and respondgso anomaliesby eitherdelayingor
abortingsystemcalls. The paperpresentghe rationale
for pH, its designandimplementationanda setof initial
experimentakesults.

1 Intr oduction

This paperaddresses largely ignoredaspectof com-
puter security—theautomatedesponseroblem. Pre-
viously, computersecurityresearcthasfocusedalmost
entirely on prevention(e.g.,cryptographyfirewalls and
protocol design) and detection(e.g., virus and intru-
sion detection). Responsehas beenan afterthought,
generallyrestrictedto increasedogging and adminis-
trator email. Commercialintrusion detectionsystems
(IDSs) are capableof terminatingconnectionskilling
processesandevenblocking messageffom entirenet-
works[3, 12, 22]; in practice though thesemechanisms
cannotbe widely deplosed becausehe risk of an in-
appropriateresponsde.g.,removing alegitimateusers
computerfrom the network) is too high. Thus,IDSsbe-
comeburdens,requiring administratordo analyzeand
respondo almostevery detectecanomaly In an eraof
expandingconnectvity and ubiquitouscomputing,we
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must seeksolutionsthat reducethe systemadministra-
tor's workload, ratherthan increasingit. Thatis, our
computersnustrespondo attacksautonomously

In earlierwork, we andothershave demonstratedereral
methodsof anomalydetectiornby which large classeof
intrusionscanbe detectede.g.,[1, 27, 17, 16]. Good
anomalydetectionhowever, comesat the price of per
sistent false positives. Although more sophisticated
methodswill no doubt continueto be developed,we
believe that it is infeasibleto eliminatefalse positives
completely Thereare several reasondfor this. First,
computerdive in rich dynamicernvironmentswherein-
evitably therearenew patternsof legitimateactivity not
previously seenby the system— a phenomenotnown
asperpetual novelty (seeHofmeyr [21] for anempirical
modelof the rateat which new patternsappeaiin a lo-
cal areanetwork). Secondprofilesof legitimateactiity
changecontinually ascomputersandusersareaddedor
deleted hew software package®r patchesareaddedto
asystemandsoforth. Thus,thenormalstateof the sys-
temis evolving overtime. Finally, thereis inherentam-
biguity in the distinctionbetweennormalandintrusive
(orabnormaljpctivities. For example,changego system
configurationfiles arelegitimateif performedby a sys-
temadministratorhowever, thevery sameactionsarea
security violation conducteddone by a non-priileged
useror an outsideattacler. Thus, ary automatedre-
sponsesystemmustbe designedto accountfor persis-
tentfalse-positres, evolving definitionsof normal,and
ambiguityaboutwhatconstitutesananomaly

We have chosento focuson automatedesponsenech-
anismswhichwill allow acomputerto presere its own
integrity (i.e. stay“alive” anduncompromised)tather
thanonesthat help discover the sourceor methodof an
intrusion. Within this contet, we believe that the best
way to approacithe automatedesponsegroblemis by
designinga systemin which a computerautonomously



monitorsits own activities, routinely makingsmall cor-
rectionsto maintainitself in a “normal” state. In biol-
ogy, the maintenanceof a stable(normal) internal en-
vironmentis known ashomeostasis. All living systems
employ awide rangeof homeostatienechanismén or-
der to survive under fluctuating ervironmental condi-
tions. We proposethat computersystemsshouldsim-
ilarly have mechanismsvhich strive to maintaina sta-
ble environmentinsidethe computerevenin thefaceof
wide variationsin inputs. Under this view, automated
responsas recastfrom a monolithic all-or-nothing ac-
tion (which if incorrectcanhave dire consequencesd
asetof small, continuallyoccurringchangedo the state
of the system. With this view, occasionafalsealarms
arenot problematicbecauséhey have smallimpact. In
earlier papers,we have advocateda view of computer
securitybasedon ideasfrom immunology[16, 34, 20].
This papernaturally extendsthat view by recognizing
that immune systemsare more properly thoughtof as
homeostatienechanism¢hanpuredefensanechanisms
[26].

In thefollowing sectionswe describea working imple-

mentationof theseideas—asetof extensiongo a Linux

kernelwhich doesnot interferewith normal operation
but cansuccessfullystopattacksasthey occur We call

the systempH (shortfor processhomeostasis)To cre-
atepH, we extendecdbur earlierintrusion-detectiomvork

usingsystemcalls[16] by connectingsystemcallswith

feedbackmechanismshat eitherdelayor abortanoma-
loussystemcalls.

Delaysform a naturalbasisfor interferingwith program
behaior: small delaysaretypically imperceptibleto a
program,and are minor anng/ancesto a user Longer
delays,however, cantriggertimeoutsat the application
andnetwork levels, effectively terminatingthe delayed
program. By implementingthe delaysasanincreasing
function of the numberof recentanomalousequences,
pH can smoothlytransition betweennormal execution
andprogramtermination.

This papermakestwo principal contributions. First, it
demonstrateghe feasibility of monitoring every active
processat the system-callevel in real-time,with min-
imal impacton overall performance. Second,it intro-
ducesapractical relatively non-intrusive methodfor au-
tomaticallyrespondingo anomalougprogrambehavior.

The paperproceedsas follows. First, we review our
systemcall monitoringand anomalydetectionmethod.
Next, we explain the designandimplementatiorof pH.
We thendemonstratgH's effectivenessat stoppingat-
tacks, shav throughbenchmarkghat it runswith low

overhead,and describewhat it is like to actually use
pH on a workstation. After a review of relatedwork,
we concludewith a discussiorof limitations andfuture
work.

2 Background

Boththemonitoringandtheresponseomponentsf pH
useideasintroducedin [16]. Whatfollowsis a descrip-
tion of our original testingmethodologywith which we
gatheredon-line datafor off-line analysis. Subsequent
sectionsexplain how thesetechniquesveremodifiedto
createpH.

To review, we monitoredall the systemcalls (without

arguments)made by an executing programon a per

procesdasis.Thatis, eachtime a processvasinvoked,
we begana new trace,logging all the systemcalls for

that process.Thus, for every procesghe traceconsists
of an orderedlist (a time-series)of the systemcalls it

madeduringits execution.For commonlyexecutedoro-

grams,especiallythosethatrun with privilege, we col-

lectedsuchtracesovermary invocationsof theprogram,
whenit wasbehaing normally. We thenusedthe col-

lectionof all suchtracegfor oneprogram)o developan

empiricalmodelof its normalbehaior.

Oncethe systemhad beentrainedon a sufiicient num-
berof normalprogramexecutionsthe modelwastested
onsubsequenhvocationf theprogram.Thehopewas
thatthemodelwould recognizenostnormalbehaior as
“normal” andmostattacksas“abnormal’ Our method
thusfalls into the catagory of anomalyintrusiondetec-
tion.

Givena collectionof systemcall traceshow do we use
themto constructa model? This is an active areaof
researchn the field of machinelearning,andthereare
literally hundredsof good methodsavailableto choose
from, including hiddenMarkov models,decisiontrees,
neuralnetworks, anda variety of methodshasedon de-
terministicfinite automata(DFAs). We chosethe sim-
plestmethodwe couldthink of within thefollowing con-
straints. First, the methodmustbe suitablefor on-line
training and testing. That is, we mustbe able to con-
structthe model“on the fly” in onepassover the data,
and both training and testingmust be efficient enough
to be performedin real-time. Next, the methodmust
be suitablefor large alphabetsizes. Our alphabetcon-
sistsof all the different systemcalls—typically about
200for UNIX systemsFinally, the methodmustcreate



modelsthataresensitve to commonforms of intrusion.
Tracesof intrusionsare often 99% the sameasnormal
traces,with very small, temporallyclumpeddeviations
from normalbehaior. In the following, we describea
simplemethod,which we call “time-delayembedding”
[16]. Warrender{38] comparedime-delayembedding
with severalothercommonmachindearningalgorithms
and discoveredthat it is remarkablyaccurateand effi-
cientin this domain.

We definenormalbehaior in termsof shortn-gramsof
systemcalls. Conceptuallywe definea smallfixedsize
window and“slide” it over eachtrace,recordingwhich
calls precedehe currentcall within the sliding window.
The currentcall anda call at a fixed precedingwindow
positionform a “pair,” with the contentsof awindow of
lengthz beingrepresentelly z — 1 pairs. Thecollection
of uniquepairsover all the tracesfor a single program
constitutesour model of normal behaior for the pro-
gram?

More formally, let

S = alphabebf possiblesystemcalls
T = trace
= thesequencey,ti,...,t- 1,t; € S
w = windowsize2<w <7
P = profile

setof patternsaassociateavith 7" andw
= {(si,55), 55,8 €S, 1<k <w
dp: 0<p<T—k,

tp = 84,

tprk = S5,

For example, supposewne had as normal the following
sequencef calls:

execwe, brk, open, fstat, mmap, close, open,
mmap,munmap

and a window size of 4. We slide the window across
the sequenceandfor eachcall we encounterwe record
what call precedest at different positionswithin the
window, numberingthemfrom 0 to w — 1, with O be-
ing the currentsystemcall. So,for this trace,we getthe
following windows:

1our original paperon using systemcalls for intrusion detection
[16] useda techniquecalled “lookaheadpairs’ pH usesthe original
lookaheadpairsalgorithmasdescribechere,exceptthatit looks be-
hind insteadof ahead. Later papers[20, 38] reportresultsbasedon
recordingfull sequencesWe revertedto lookaheacpairsbecauseét is
simpleto implementandextremelyefficient.

position3  position2 positionl current
execwe
execwe brk
execwe brk open
execwe brk open fstat
brk open fstat mmap
open fstat mmap close
fstat mmap close open
mmap close open mmap
close open mmap munmap

When a call occursmore than oncein a trace, it will

likely beprecededby differentcallsin differentcontexts.
We compressheexplicit window representatiohy join-
ing togetherineswith the samecurrentvalue (notethe
openandmmaprows):

current | positionl | position2 position3
execve

brk execwe

open brk, close | execve,mmap | fstat

fstat open brk execwe
mmap fstat,open | open,close brk, mmap
close mmap fstat open
munmap| mmap open close

Thistablecanbestoredusingafixed-sizebit array If |.S|
is the size of the alphabetnumberof differentpossible
systenrtalls)andw is thewindow size thenwe canstore
thecompletemodelin abit arrayof size:|S| x| S| x (w—
1). Becausew is small (6 is our standarddefault), our
currenimplementatiorusesa 200 x 200 bytearray with
masksto accessheindividual bits.

At testingtime, systemcall pairs from test tracesare
comparedagainstthosein the normal profile. Any sys-
temcall pair (thecurrentcall anda precedingcall within

the currentwindow) not presenin the normalprofile is

calleda mismatch. Any individual mismatchcouldindi-

cateanomaloudehaior (atrue positive), or it couldbe
a sequencehatwasnotincludedin the normaltraining
data(afalsepositive). Thecurrentsystencall is defined
asanomalousf therearearny mismatchesvithin its win-

dow.

To date,all of the intrusionswe have studiedproduce
anomalousequencei temporallylocal clusters.To fa-
cilitate the detectionof theseclusters,we recordrecent
anomaloussystemcalls in a fixed-sizecircular array
which we referto asa locality frame. More precisely
let n bethesizeof our locality frame,andlet 4; bethe
i-th entryof thelocality framearray with 0 < i < n and
A; € {0,1}. Then,for systemcall s (0 < s < 7) with
mismatchesn,, A nan = 1 iff m, > 0, andis 0 other



wise. Thus,thelocality frameimplicitly storeshenum-
ber of the pastn systemcalls which were anomalous.
We call this total of recentanomalies ) A;, thelocal-
ity frame count(LFC).? For the experimentsdescribed
below, we useda locality frameof size128.

3 pH Design

pH performstwo importantfunctions: It monitorsindi-

vidual processeat the system-callevel, andit automat-
ically respondso anomaloudehaior by eitherslowing

down or abortingsystemcalls. Normal behaior is de-
terminedby the currently running binary program;re-

sponsehowever, is determinedbn a perprocesdasis.

To minimize I/O requirementaindmaximizeefficiency,

stability, andsecurity we have implementednostof pH

in kernelspace. We consideredsereral alternatve ap-
proachesincluding audit packagessystem-caltracing
utilities (suchasst r ace), andinstrumentedibraries.
However, eachof theseother approachesas serious
drawbacks. Audit packagegeneratevoluminouslog-

files, which are expensve to createand even more ex-

pensve to analyze. Additionally, they do not routinely
recordevery systemcall. Userspacedracingutilities are
too slow for our application,andin somecasesthey in-

terferewith privilegeddaemondo the extent that they

behae incorrectly Instrumentedibrariescannotdetect
every systemcall, becausenot every systemcall comes
throughalibrary function(e.qg.,buffer overflow attacks).
In addition, a kernelimplementationallows us to put

our monitoringandresponsenechanismsxactly where
they areneededin thesystencall dispatcherandallows

theimplementatiorto be assecureasthekernel.

For eachrunning executable pH maintainstwo arrays
of pair data: A training array and a testingarray The
trainingarrayis continuouslyupdatedwith new pairsas
they appearthetestingarrayis usedo detectanomalies,
andis never modifiedexceptby replacingit with acopy

of thetrainingarray Putanothemway, thetestingarray
is the currentnormal profile for a program,while the

trainingarrayis a candidatduture normalprofile.

A new “normal” is installedby replacingthe testingar
ray with the currentstateof the training array The re-
placemenbccursunderthreeconditions:(1) theuserex-

2A somavhatdifferentapproactwastakenin Hofmeyr [20], where
themeasureof anomaloudehaior wasbasedbn Hammingdistances
betweenunknavn sequencesind their closestmatchin the normal
database.

plicitly signalsvia aspecialsystemcall (sys_pH) thata
profile’s training datais valid; (2) the profile anomaly
count exceedsthe parameteranomaly_limit; (3) the
training formula is satisfied. Whenan anomalyis de-
tected,the currentsystemcall is delayedaccordingto a
simpleformula. Details of theseconditionsandactions
aregivenin the next severalparagraphs.

The training to testing copy can occur automatically
basedn the stateof the following training statistics:

train_count :
last_mod_count :

# callssincearrayinitialization
# callssincearraywaslast
modified

normal_count = train_count — last_mod_count

Whenthe training array meetsall of the following con-
ditions, it is copiedonto the testingarray (note: this is
the normalmechanisnfor initiating anomalydetection
in the system):

> mod_minimum
>  normal_minimum
> normal_ratio

last_mod_count

normal _count
train_count
normal_count

The threeparameter®sn theright areuserdefined,and
canbesetatruntime.

As we mentionedearlier pH respondd4o anomalieshy
delayingsystemcall execution. The amountof delayis
an exponentialfunction of the currentLFC, regardless
of whetherthe currentcall is anomalousor not. The
unscaleddelayfor asystemcall is d = 2-°°. Theeffec-
tive delayfor a systemcall is d x delay_factor, where
delay-_factor is anotheruserdefinedparameter Note
thatdelaysmay be disabledby settingdelay_factor to
0. If the LFC ever exceedsthe tolerization_limit pa-
rameter(which is 12 for the experimentsdescribedoe-
low), thetrainingarrayis reset preventingtruly anoma-
lous behaior from being incorporatednto the testing
array

Becaus@H monitorsprocesdehaior basedntheexe-
cutablethatis currentlyrunning,the execve systemcall
causesa new profile to beloaded. Thus,if anattacler
wereableto subvert a processand causeit to make an
execwe call, pH might be tricked into treatingthe cur-
rentprocessasnormal,basedon the datafor the newly-
loadedexecutable. To avoid this possibility the maxi-
mumLFC count(maxLFC)for a procesds recorded If



maxLFC exceedsthe abort_execve threshold,thenall
execwe’s areabortedfor theanomalougprocess.

pH also keepsa count of the raw numberof anoma-
lies eachprofile hasseen. This countcanbe seenasa
measureof ongoing, non-clusterecabnormalbehavior.

If this numberexceedsthe parametemnomaly_limit,

pH automaticallycopiesthe training array to the test-
ing array causingpH to treatsimilar future behaior as
normal. Borrowing from immunology we refer to this
processastolerization. Low valuesof anomaly _limit

allow pH to automaticallytolerizemostnovel behaior,

while highervaluesinhibit tolerization. Whena system
is initially setup, automatically-createdormalprofiles
may containtoo little normalbehaior. To reducethe
numberof reportedanomalies anomaly _limit should
be setto a small value (lessthan 10). Then, oncethe
systemhasstabilized,anomaly_limit shouldbe setto

atleast20to preventpH from automaticallylearningthe
behavior of attacks.

4 Implementation

The pH prototypeis implementedas a patch for the
Linux 2.2 kernel,andwasdevelopedandtestedon sys-
temsrunning a pre-releasef the Debian/GNU Linux
2.2 distribution [35]. The modifiedkernelis capableof
monitoring every executedsystemcall, recordingpro-
files for every executable An overview of the systemis
shovnin Figurel.

Programprofilesfor eachexecutablearestoredon disk.

Eachprofile containsboth a training and testingarray,

andso s actuallytwo “profiles” by the terminologyin

Section2. The kernelloadsthe current profile when
a new programbegins executing(on execwe), andthen
writes it out againwhenthe processerminates.When
a new executableis loadedvia the execwe systemcall,

the kernelattemptsto load the appropriateprofile from

disk; if it is not present,a new profile is created. If

anotherprocessruns the sameexecutable,the profile
is sharedbetweenboth processes.To prevent consis-
teng problemsdueto interleaving, eachexecutingpro-
cessmaintainsits own recordof recentsystemcalls (its

currentsequence)Whenall processessingagivenpro-
file terminate,the updatedprofile is savzed to disk. A

loadedprofile consumesapproximately80K of kernel
(non-swappablememory

We modified the systemcall dispatcherso thatit calls
a pH function (pH._pr ocess_syscal | ) prior to dis-

patchingthe systemcall. pH_pr ocess_syscal | im-
plementsthe monitoring, responseand training logic.
pH is controlledthroughits own systemcall, sys _pH,
which allows the superuse(root) to take the following
actions:

e Start,stopmonitoringprocesses.

e SetsystemparametergseeSection3 for descrip-
tions):

delay_factor

abort_execve

— mod_minimum

normal_minimum

normal_ratio

tolerization_ limit

anomaly limit

Turn on/off logging of systemcallsto disk (expen-
sive, usedfor delugging).

Turnon/off loggingnovel sequenceto disk.

Statug(printsout currentvaluesof systemparame-
tersto thekernellog).

Write all profilesto disk.

Reset<pid>: Resetdheprofile to beempty

Startnormal <pid>: Copiesthetraining arrayfor
pid’'s executabldo its testingarray andmarksthe
profile asnormal.

Tolerize <pid>: Changethe normalflag for pid's
profile to O, resetits locality frame,andcancelary
currentdelayfor it.

Sensitize<pid>: Clearsthe training array This
mechanisms usedto preventknown true positives
from beingincorporatednto thetrainingdata.

Turnon/off dehuggingmessagesentto kernellog-
gingfacility.

More specifically we extendedthe Linux taskstructure
(thekerneldatastructureusedo represenprocesseand
kernel-level threads)with a new structurewhich con-
tainsthe following fields: the currentwindow of system
calls for the task, a locality frame,anda pointerto the
currentprofile. A profile is a structurecontainingtwo

byte-arraydor storingpairs(the trainingandtestingar

rays)andsomeadditionaltraining statisticsdescribedn

Section3.



kernel data

task_struct:
pH: profile ———| profile: . .
sequence test
LFC train
t v
system :
testing
call
_ _cal system call |_ _ > | pH delay
user code dispatcher -
4 data training
an ’{ 0
delay .~ !
A u Y
system call

|
S e -

Figurel: Basicflow of controlanddatain a pH-modifiedLinux kernel.

iImplementations

5 Experimental Results

In thissectionwe reportonsomeearlyexperimentgest-
ing out pH in a live ervironment. We areinterestedn

threeaspect®f thesystem:lts effectivenessn intrusion
responsdcanit really detectand stop an attackbefore
thesystemis compromised?performancémpact(what
is the overheadof the installedsystem?)and usability
(whatis it like to live with pH on your own computer?).

5.1 Can pH detectand stop attacks in time to
prevent systemcompromise?

To testhow pH couldrespondo securityviolations,we
testedts behaior by seeinghow it coulddetectandre-
spondto a SecureShell (SSH) daemon[29] backdoor
an SSH daemonbuffer overflon, and a sendmail[13]
attackthatexploits a bug in the Linux kernel's capabili-
tiescode. Thesethreeviolationsall allow anattaclerto
obtainroot privileges,usingdifferenttechniquego gain
access.Delaysaloneare significantinhibitors of these
attacks;with execwe aborts,pH caneffectively stopall
of them.

To testthe SSH attacks,the sshd programin Debian
2.2's packagedversion of SecureShell (ssh-nonfree),
versionl.2.27-6wasmodifiedin two basicways. First,
it was madeto link againstthe RSAREF2library, to
maleit vulnerableto a buffer overflow attackscriptpub-
lishedon the BUGTRAQ mailing list [2]. Secondthe
sourcewasmodifiedusingthe rkssh5trojan patch[37],
andwasbuilt usingthe“global passverd” flag. This op-
tion allows an attacler to accesgo ary accounton the
systemusing a compiledin, MD5-encodedpassverd.
In addition,useof this passverd disablesmostlogging,
minimizing the evidenceof theintrusion.

A normalprofile for this modifiedsshd binarywascre-
atedby exercisingthe programon a personalorksta-
tion. Normal logins via root and a regular userwere
tested, using the password, RSA-securedrhosts, and
pure RSA methodsof authentication. Also, failed lo-
gins weretested,using noneistentusersandincorrect
passwerds. Togethetheseproducedb87sequencesnd
aprofile with 1725pairs,over47756systemcalls.

Relative to this syntheticnormal profile, we first tested
whetherpH could detectthe useof the global passverd
to gain accesgo the root account. With all responses
disabled,the backdoorproduceds anomalies3 in the
child (which exec'stheremoteusers shell),and2 in the
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Figure2: A graphshawing the pH-inducedsystem-call
delayduringthesshd backdootintrusion. Notethe ex-

ponentialincrease(from 0 to 8, 16, then 32) and de-
creasewith a constantdelay for mostcalls within the
locality frame. The processshown is the child process,
andit terminateswith a shell being exec'd. The pair
window sizeis 6, thelocality framesizeis 128,andthe
delay_factor is setto 4. Time is measuredn jiffies,
which are1/1000f a secondon Linux runningon i386-

compatiblemachines.

parent(which maintainsthe network connection). Set-
ting delay_factor to 4 producedhe sameanomalypro-
file, but did not prevent the remoteuserfrom logging
in; however, the resultingconnectiorwasslowved down
significantly asshavn in Figure2. With abort_execve
setto 1, the backdoormwas closed,whetherdelayswere
enabledr not.

With all responsedisabledthebuffer overflow attacled
produced4 clusteredanomaliedn the parentSSH pro-
cess. Setting delay_factor to 4 producedthe same
anomalies,and allowed the attacler to obtain a root
shell; however, this shell waslessusefulthanmight be
supposed.Recallthat pH delaysevery processwith a
non-zeroLFC, andthe LFC is only updatedf the pro-
gramhasa valid normal (test) profile. As it turnsout,
bash, the standardshell on mostLinux systems,s a
large,complicatedorogramthattendsnotto reacha sta-
ble profile. Thus,the 64 jiffy (0.64s)delayincurredby
the overflowedsshdis passedn to the exec'd bash,and
bashkeepsthis delayforever! Evenif this werent the
casebecausef the 128 entry locality frame,we’'d see
thedelayfor 125 systemcalls, giving us at leastan 80s
delay Not a hugeamountof time, but possiblyenough
to make a craclerthink the attackisn’t working.

With execwe abortsenabled,the overflow attack was
stopped, whether delays were enabledor not. The

attack script does not simply fail, though; since the

overflow codekeepsretrying the execwe call if it fails,

the abortscausean infinite loop. Each passthrough
the loop generates3 anomalies,due to the failed ex-

ecwe; a few times throughthis tight loop thus causes
thetolerization_limit to beexceededgausingsshd’s

trainingprofile to bereset.

The Linux capability vulnerability allows a non-
privileged programto prevent a privileged one from

droppingits capabilitieson systemsunningrecent2.2
kernels(2.2.14 and 2.2.15 are both vulnerable). An

exploit was publishedon BUGTRAQ [28] which uses
sendmailto take advantageof this hole. Becausehis is

aflaw in thekernel,it cansuccee@venthoughsendmail
doestheright thing andtriesto dropits privileges.

A normalprofile for sendmailDebianversion8.9.3-22)
was first generatedpasedon normal usageon a per
sonal workstation. This normal had 3443734system
callswith 1061 uniquesequencesand produceda pro-
file with 2412 systemcall pairs. Relatve to this nor-
mal, the exploit was extremely noticeable. The exploit
generatesereral differentsendmailprocessesandjust
one of them had 47 anomalies! Indeed,the numerous
anomaliescausedhe tolerization_limit to bereached



numeroudimes. Enablingexecwe abortsdid nothingto
inhibit the attack; this makes sense,since the exploit
doesnt have sendmailirectly run a privilegedshell;in-
stead,it createsa setuid-rootshellin /tmp. However, a
delay-_factor of 4 effectively stoppedthe attack— de-
lays were producedwhich lastedfor at leasttwo hours.
Time delaysof this magnitudewould almostcertainly
frustratea normal cracler; a patientone could be ad-
dressedby automaticallykilling ary processthat had
beendelayedfor a long time period, say 30 minutesor
more.

5.2 What is the overheadof running pH?

To determingheperformancémpactof ourkernelmod-
ifications, we ran the HBench-OS1.0 [11] low-level
benchmarksuite on an HP Pavilion 8260 (266 MHz
Pentiumll, 160M SDRAM, Maxtor 9102010G Ultra-
DMA IDE harddisk) running a pre-releaseversion of
Debian/GNULIinux 2.2. Testswere run for ten itera-
tionsonasystenrunningin singleusermode.In Tables
1 and2, “Standard’refersto a stockLinux 2.2.14ker
nel. “pH” refersto a 2.2.14kernelwith pH extensions,
with monitoringenabledor all processeandwith status
messageandautomatedesponseurnedoff. All times
arein microseconds.

Tables1 and 2 show that our modificationsadd signif-
icantly to systemcall overhead. Table 1 indicatesthat
pH addsapproximately4.7 us to the executiontime of
simple systemcalls that normally would take lessthat
2 s to execute. Table 2 shows that pH causegrocess
creationto be almosttwice asslow for a dynamically-
linked shell. Although thesetablesshowv a significant
performancdit, they arenotindicative of theimpacton
overall systemperformance.

Table 3 shavs how overall performancas affectedfor
a setof tasks. Here we reportthe outputof t i ne for
threedifferentkinds of operationskernelbuilds,f i nd
/[ -print > /dev/null (abasictraversalof the
file system)andQuale 2 framerates.All of thesetests
were run in single-usemode. The mostdramaticef-
fectis seenin the systentime of thekernelbuild, which
almostdoublesdueto monitoringoverhead This differ-
ence however, only causes 4% slowdown in the clock
time. Thefind testshavs almosta 10% slovdown, and
thisis for a programthatis almostentirelyboundby the
speedof filesystem-accessystemcalls. Interestingly
the Quale 2 frame rate testsshows virtually no slow-
down. Thesetestsillustratewhatwe have obsenedin-
formally by usingthe systemoursehes: If delaysare

SystemCall Standardus) pH (us)

getpid 1.1577(0.00000)| 5.8898(0.00025)
getrusage 1.9145(0.00000)| 6.6137(0.00138)
gettimeofday| 1.6703(0.00184)| 6.3779(0.00112)
sigaction 2.5609(0.00010)| 7.2928(0.01029)
write 1.4135(0.00187)| 6.1637(0.00075)

Table 1: Systemcall lateng results. All timesarein
microseconds.Standarddeviationsarelisted in paren-
theses.

Operation| Standardus) pH (us)

null 408.80(00.618)| 2497.90(40.923)
simple 2396.24(11.124)| 8206.62(11.795)
/bin/sh 9385.66(26.761) | 18223.9626.777)

Table2: Dynamicprocessreationlateng results.Null
refersto a fork of the currentprocess.Simpleis a fork
of the currentprocessplus an exec() of a hello-world
programwritten in C. /bin/shrefersto the executionof
hello-world throughthe libc system()interface,which
uses/bin/shto invoke hello-world. All timesarein mi-
croseconds Standarddeviationsarelistedin parenthe-
ses.

turnedoff, ausercanusethe modifiedworkstationwith-

out noticing ary differencesn systembehaior, evenif

shedecidego run a computeandl/O intensve applica-
tion suchasQuale 2.

5.3 pH in Practice

To understandhe usability of the prototype,the modi-
fied kernelwasinstalledon the authors’personakom-
puters,configuredto monitor every processon the sys-
tem. As indicatedabove, sucha configurationhasa
minimal performancampactin practice;however, en-
abling delaysin this situation can causecertain prob-
lems. Privileged programs,suchas | ogi n, send-
mai | , and cr on, have a highly constrainecbehaior
profile; thus, aftera day or two of sampling,thesepro-
gramstend to settleinto a stablenormal, and exhibit
few anomalies.Large non-priilegedprogramssuchas
netscapendemacshave more complicatedoehaiors,
andthustendnotto shiftinto anormalmonitoringmode,
andsoarenever delayed.

Someof the moreinterestingprogramsare oneswhich
performsimplesystenmonitoring,suchasascl ock (a
NeXT Step-styleclock) and wrapm (a batterymonitor
ing program).Theseprogramsexecutealargenumberof



Benchmark Standard pH
kernelbuild (s)

real 702.47(0.07) | 727.44(0.29)

user 669.35(0.60) | 673.67(0.55)

Sys 33.00(0.61) | 53.60(0.70)
find / -print (s)

real 5.68(0.58) 6.24(0.54)

user 1.61(0.09) 1.59(0.09)

Sys 3.27(0.09) 3.90(0.17)
Quale 2 (fps)

demol 22.89(0.03) | 22.87(0.05)

demo?2 23.30(0.00) | 23.30(0.00)

Table3: Overall systemperformanceAll unitsaresec-
onds(s), exceptfor the Quale 2 test,whichis in frames
per second(fps). Ten trials were run for eachexam-
ple, except100trials wererun for f i nd. Eachtestwas
run oncebeforebeginningthe measurementis orderto
eliminateinitial 1/O transients.Standarddeviationsare
listedin parentheses.

systemcalls,andmostof thetime they have repetitious
behaior. However, whena userperturbsthe systemby

changingdesktopor by moving windows, thebehaviors

of theseprogramscanchange In the currentprototype,
theseprogramstend to be the first to obtain normals,
andthe first to be slowed down. Over a few daysthey

tendto settledown andoperatenormally; this transition,
however, canrequireanumberof usersuppliedtoleriza-
tion events. This suggestghat the heuristicsdescribed
in Section3 may needto berefined. However, by tem-

porarily settinganomaly limit to alow value (suchas
5), the numberof reportedanomaliescan be keptto a

minimum.

As monitoringprogramsaregenerallynot critical appli-
cations,problemsinvolving themcanbe seenasminor
nuisances.A more significantsetof issuesariseswith
the behaior of one large, privileged program: the X
sener. The X sener is responsibleor initializing and
controlling accesdo the video display on behalfof X
clientssuchasxt er mandnetscapeX senersaresim-
ilar to monitoring programs,in that they make a large
numberof mostly-repetitve systemcalls,andsotendto
acquirea normalprofile quickly. Useractionscanalso
perturbthe X sener'sbehaior, causingt to bedelayed.
In thiscasethedelayscanhave dramaticeffects,suchas
causingausersentiresessiorto befrozenor leaving the
videohardwarein a confusedstatewhenthey occurdur-
ing sener initialization or shutdavn. Fortunately most
of theseproblemscanbeavoidedby initially startingup
and shuttingdown the X sener a few times, allowing
pH to learnthe critical initialization and shutdavn sys-

temcall patterns.

Thesetwo classesf problemssuggesta weaknessn
our currentapproachProgramsavhich make large num-
bersof systemcalls in a short period of time tendto
acquirenormal profiles, even when a true samplingof
behaior hasnot yet occurred. A naturalsolutionis to
take time into accountduring the normal profile deci-
sion process. Sucha stratgly might require a signifi-
cantamountof computationandso is probablybetter
implementedn a userspaceontrol daemon. It would
alsoallow additionalfactorsto be consideredsuchas
size of executablenumberof invocations,and perhaps
program-specifiqieuristics. Sucha daemonis planned
for thefuture.

6 RelatedWork

Our approachto homeostaticcomputingis similar in

spiritto Brooks’ approactio mobilerobotcontrol,based
on loosely coupledfeedbackloops, real-time interac-
tions with dynamic ernvironments,and no centralized
representationf the outsideworld [9, 10]. We believe

Brooks’ subsumptiorarchitecturecanbe appliedto the
constructionof a computersecurity system. pH in its

currentform is analogougo feedbacKkoopsthathelpa

robotmaintainbalancewith theadditionof aparameter
adjustingcontrol daemonwe may be ableto teachpH

how to “walk.

Although researchiIDSs have performedanomalyde-
tectionfor years[1, 27, 17, 16], mostcommercialsys-
temsemphasizenisusedetection(i.e. patternmatching
for known attacks),requiring frequentupdatesas new
exploits are developed. Many currentcommercialnet-
work IDSs [3, 12, 22] are capableof automaticallyre-
spondingto network attacksthroughincreasedogging,
firewall reconfigurationterminationof connectionsand
evenautomaticblocking of suspiciousetworks. Com-
bined host and network IDSs suchas ISS RealSecure
[22] canalsorespondo threatsby terminatingindivid-
ual processesHowever, becausa@esponsethat halt at-
tackscanalsocausesignificantservicereductionsthese
responsemustberesenedfor attackswvhichcanbeeas-
ily and reliably identified through specific misusesig-
natures.Although usefulfor high-securityinstallations,
actionssuchassessiorcaptureandemail/pagenotifica-
tion aresimply a burdento mostadministrators.

Sekar Bowen, and Segal [30] have developed a
specification-basedpproacHor intrusiondetectionand



automatedesponset the system-callevel. They have

createda languagecalled ASL for specifyingprogram
behaior andresponseso abnormalbehaior, andthey

have created_inux kernelextensionswhich allow their

specificationgo be enforcedon-line. Their approach
hasthe advantageof allowing subtleresponse$o secu-
rity violations,rangingfrom changingsystemcall argu-

mentsto confininga programto an alternatve file sys-
tem. Unfortunately it alsohasthe disadantagef be-

ing laborintensive, in that specificationanustbe con-

structedmanuallyfor eachexecutable.

Michael Ernstandothersat the University of Washing-
ton have developedtechniquesfor dynamically deter
mining programinvariants[15]. pH also dynamically
detectsnvariantsin programbehaior, althoughit does
so at the system-calinsteadof the data-structurdevel.
Perhapg&rnststechniquegouldbeusedo createanon-
line datamonitoringtool which would complementhe
system-calimonitoringof pH.

Delaysare usedthroughoutcomputingto achieve vary-
ing goals.MostlaptopCPUshave the ability to runata
slower speedo minimize heator maximizebatterylife;
Transmeta Crusoeprocessof14] goesa stepfurther
by allowing the speedof the chip to vary continuously
in responséo systemload, maximizingbatterylife and
percevedperformanceThe Ethernefprotocolarbitrates
wire accessy having transmittingcomputersxponen-
tially delay their packets when collisions are detected
[36]. And, at the software level, the standard ogi n
programon mostUNIX systemsdelaysrepeatedogin
attemptgo interferewith passverd guessingattacks.A
final exampleis the programget t y, which noticesif
it spavnsprocessesoo frequentlyon a giventty device
andin this event,putsitself to sleepfor a few minutes.

The coreof pH canbe seenasan unusualtype of pro-
cessscheduling.In mostUNIX systemd4], processes
arescheduledisingstaticpriorities (providedby thead-
ministrator), dynamic priorities (basedon recentCPU
and1/O behavior), andthe numberof processesn the
system. “Fair share” schedulergdivide CPU time be-
tweenusersnot processefl8, 24]. pH’s delaymecha-
nism could be viewed asan implicit mechanisnfor al-
locating CPUtime; however, insteadof beingfair to all
processesr usersjt favors processesvhich arebeha-
ing “normally.”

Researcton high-performanceoperatingsystemsem-
phasizesextensible[5, 31] and minimal [23] kernels.
These systemsrequire novel security mechanismgo
moderate the increasedpower given to application
programs,relative to operatingsystemswith corven-

tional, monolithic kernels. In contrast,our work on
biologically-inspiredOS extensionsassumes corven-
tionalkernel,andaimsto increasehe stability andsecu-
rity of thesystem.

Adaptive, on-line control hasbeenwidely studiedasa
methodfor improving systemperformance. Whether
motivated by non-stationaryworkloads[7], extensible
operating systems[32], parallelism [25], or on-line
databasedransactionprocessing39], researcherfave
focusedon using adaptve methodsfor improving sys-
tem performancenot robustness.Work in usingadap-
tive controlin real-timesystemg6] hasfocusedon us-
ing adaptatiorto help meettiming androbustnesson-
straints.

Finally, pH canbe seemasatypeof faulttolerantsystem
[8, 33, 19, exceptthatwe focuson securityviolations
insteadof hardwareor softwarefailures.

7 Discussion

A major point of this paperis thatit is feasibleto use
system-calldelaysto stopintrusionsin real-time,with-
out prior knowledge aboutwhat form an attack might
take (unlike signature-basescanners)Thethreeexam-
ple exploits helpshaw thatpH cando this, evenfor very
differenttypesof attacks.However, in practicepH’s ef-
fectivenesss determinedy whetherit canobtainstable
normalsfor the binarieson a system.Currently pH can
do this automaticallyonly for programswhich arerel-
atively simple and are called on a regular basis; even
then, thereis an ongoingrisk that pH could be trained
to acceptintrusionsas normal behaior. Researctstill
needsto be doneon more effective training heuristics
thatminimizethetime for pH to obtainanormalprofile,
but alsominimize the chancef pH tolerizingtruly ab-
normalbehaior. By incorporatingsuchheuristicanto a
pH controldaemonwe shouldbe ableto minimize the
needfor useror administratoiintervention.

It may be necessarnjto implementa default timeout
mechanismthrough pH, in which any processthat is
delayedbeyond a certain point is automaticallytermi-
nated. It may alsobe necessaryo increasepH’s reper
toire to include actionssuchas systemcall parameter
modifications. Additionalresponsenechanismsayre-
guire computationallyexpensve analysisalgorithmsto
be added;becauseabnormally-behang processesre
delayed,pH actually hasthe time to performmore so-
phisticatedanalysiswhenanomaliesare detected.Our



philosophy however, is to wait until sucha needarises
beforeimplementingadditionalmechanisms.

A secondnajorpointof thepapelis to shav thatsystem-
call monitoringis practical,evenwhenevery executing
proceson the systemis monitoredsimultaneously pH

routinely monitorsevery systemcall executedby every
processwith little perceptibleoverhead. Thus, we be-
lieve that the currentimplementatiorof pH is efficient
enoughto satisfyawide variety of users.

The currentversionof pH is not completelysecure pH

doesrestrictuseof thesys _pHsystencall to userswho

have thekill capability (which, by defaultis only root);

however, thereareno checksto ensurethata profile has
not beentamperedvith on disk, or restrictionson user
accesdo profiles— they are currentlyowned by root,

but readableby anyone. An attacler could usethis in-

formationto designa less-detectablattackbasednthe
systemcall usageon the target machine. pH could be
usedto generatea denial-of-serviceattack by trigger

ing abnormal(but otherwisebenign)behavior in atarget
program. Also, it may be usefulto implementmecha-
nismsto preventusers(including root) from beingable
to directly modify the storedprofiles. Such*hardening”
of pH, though,shouldwait until pH’s basicfunctionality
hasundegonefurthertesting.

In the past,we have emphasizedhat systemcall pro-

filing is a suitabletechniquefor monitoring privileged
programs. pH in its currentform, however, monitors
and respondgo anomaliesin all programs. In the fu-

ture, we may decideto restrictmonitoringto privileged
programs;yet, with the increasinguse of active con-

tent on the Internet,it may also be desirableto have

pH respondto anomaliesin word processorsand web

browsers.Somelargeprogramssuchasnetscapareim-

plementedisinguserspacéhreadsgausingsystencalls

to be interleavred in apparentlyrandompatternsdueto

variationdn threadschedulingthus,thesystencall pro-

files of theseprogramamay never stabilize.We believe,

though,thatthis will belessof a problemin the future,

as programsswitch to using kernelthreads. Because
the Linux kernelusesthe samedatastructureto repre-
sentthreadsandprocesseH is ableto monitorkernel
threaddndividually, avoiding interleaving effects.
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9 Availability

The currentversionof pH may be obtainedvia the fol-
lowing webpage:

http://www.cs.unm.edutsoma/pH/

The distribution containsa kernelpatchanda few sup-
port programs.All arelicensedunderthe termsof the
GNU GeneraPublicLicense(GPL).
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