
AutomatedResponseUsing System-CallDelays

Anil Somayaji
Dept. of Computer Science
University of New Mexico
Albuquerque, NM 87131

soma@cs.unm.edu

StephanieForrest
Santa Fe Institute

Santa Fe, NM 87501
Dept. of Computer Science
University of New Mexico
Albuquerque, NM 87131

steph@santafe.edu,forrest@cs.unm.edu

Abstract

Automatedintrusionresponseis an importantunsolved
problemin computersecurity. A systemcalledpH (for
processhomeostasis)is describedwhich can success-
fully detectandstopintrusionsbeforethetargetsystem
is compromised.In its currentform, pH monitorsev-
ery executingprocesson a computerat the system-call
level, and respondsto anomaliesby eitherdelayingor
abortingsystemcalls. The paperpresentsthe rationale
for pH, its designandimplementation,andasetof initial
experimentalresults.

1 Intr oduction

This paperaddressesa largely ignoredaspectof com-
putersecurity—theautomatedresponseproblem. Pre-
viously, computersecurityresearchhasfocusedalmost
entirelyon prevention(e.g.,cryptography, firewalls and
protocol design) and detection(e.g., virus and intru-
sion detection). Responsehas beenan afterthought,
generallyrestrictedto increasedlogging and adminis-
trator email. Commercialintrusion detectionsystems
(IDSs) are capableof terminatingconnections,killing
processes,andevenblockingmessagesfrom entirenet-
works[3, 12, 22]; in practice,though,thesemechanisms
cannotbe widely deployed becausethe risk of an in-
appropriateresponse(e.g.,removing a legitimateuser’s
computerfrom thenetwork) is too high. Thus,IDSsbe-
comeburdens,requiringadministratorsto analyzeand
respondto almostevery detectedanomaly. In aneraof
expandingconnectivity and ubiquitouscomputing,we

Publishedin theProceedingsof the9thUSENIX SecuritySymposium
(August14–17,2000).Copyright c

�
2000Anil Somayaji& Stephanie

Forrest.

mustseeksolutionsthat reducethe systemadministra-
tor’s workload, rather than increasingit. That is, our
computersmustrespondto attacksautonomously.

In earlierwork,weandothershavedemonstratedseveral
methodsof anomalydetectionby which largeclassesof
intrusionscanbe detected,e.g., [1, 27, 17, 16]. Good
anomalydetection,however, comesat the price of per-
sistent false positives. Although more sophisticated
methodswill no doubt continueto be developed,we
believe that it is infeasibleto eliminatefalsepositives
completely. Thereare several reasonsfor this. First,
computerslive in rich dynamicenvironments,wherein-
evitably therearenew patternsof legitimateactivity not
previouslyseenby thesystem— a phenomenonknown
asperpetual novelty (seeHofmeyr [21] for anempirical
modelof the rateat which new patternsappearin a lo-
calareanetwork). Second,profilesof legitimateactivity
changecontinually, ascomputersandusersareaddedor
deleted,new softwarepackagesor patchesareaddedto
asystem,andsoforth. Thus,thenormalstateof thesys-
temis evolving over time. Finally, thereis inherentam-
biguity in the distinctionbetweennormalandintrusive
(or abnormal)activities. Forexample,changesto system
configurationfiles arelegitimateif performedby a sys-
temadministrator;however, thevery sameactionsarea
securityviolation conducteddoneby a non-privileged
useror an outsideattacker. Thus, any automatedre-
sponsesystemmustbe designedto accountfor persis-
tent false-positives,evolving definitionsof normal,and
ambiguityaboutwhatconstitutesananomaly.

We have chosento focuson automatedresponsemech-
anismswhich will allow a computerto preserve its own
integrity (i.e. stay“alive” anduncompromised),rather
thanonesthathelpdiscover thesourceor methodof an
intrusion. Within this context, we believe that the best
way to approachtheautomatedresponseproblemis by
designinga systemin which a computerautonomously

monitorsits own activities, routinelymakingsmall cor-
rectionsto maintainitself in a “normal” state. In biol-
ogy, the maintenanceof a stable(normal) internal en-
vironmentis known ashomeostasis. All living systems
employ a wide rangeof homeostaticmechanismsin or-
der to survive under fluctuating environmentalcondi-
tions. We proposethat computersystemsshouldsim-
ilarly have mechanismswhich strive to maintaina sta-
bleenvironmentinsidethecomputer, evenin thefaceof
wide variationsin inputs. Under this view, automated
responseis recastfrom a monolithic all-or-nothingac-
tion (which if incorrectcanhave dire consequences)to
asetof small,continuallyoccurringchangesto thestate
of the system. With this view, occasionalfalsealarms
arenot problematic,becausethey have small impact. In
earlierpapers,we have advocateda view of computer
securitybasedon ideasfrom immunology[16, 34, 20].
This papernaturally extendsthat view by recognizing
that immunesystemsare more properly thoughtof as
homeostaticmechanismsthanpuredefensemechanisms
[26].

In thefollowing sections,we describea working imple-
mentationof theseideas—asetof extensionsto a Linux
kernelwhich doesnot interferewith normaloperation
but cansuccessfullystopattacksasthey occur. We call
the systempH (shortfor processhomeostasis).To cre-
atepH,weextendedourearlierintrusion-detectionwork
usingsystemcalls [16] by connectingsystemcallswith
feedbackmechanismsthateitherdelayor abortanoma-
loussystemcalls.

Delaysform anaturalbasisfor interferingwith program
behavior: small delaysaretypically imperceptibleto a
program,andareminor annoyancesto a user. Longer
delays,however, cantrigger timeoutsat theapplication
andnetwork levels, effectively terminatingthe delayed
program. By implementingthe delaysasan increasing
functionof thenumberof recentanomaloussequences,
pH can smoothlytransitionbetweennormal execution
andprogramtermination.

This papermakestwo principal contributions. First, it
demonstratesthe feasibility of monitoringevery active
processat the system-calllevel in real-time,with min-
imal impacton overall performance.Second,it intro-
ducesapractical,relatively non-intrusivemethodfor au-
tomaticallyrespondingto anomalousprogrambehavior.

The paperproceedsas follows. First, we review our
systemcall monitoringandanomalydetectionmethod.
Next, we explain thedesignandimplementationof pH.
We thendemonstratepH’s effectivenessat stoppingat-
tacks,show throughbenchmarksthat it runs with low

overhead,and describewhat it is like to actually use
pH on a workstation. After a review of relatedwork,
we concludewith a discussionof limitationsandfuture
work.

2 Background

Boththemonitoringandtheresponsecomponentsof pH
useideasintroducedin [16]. Whatfollows is a descrip-
tion of our original testingmethodology, with which we
gatheredon-line datafor off-line analysis. Subsequent
sectionsexplain how thesetechniquesweremodifiedto
createpH.

To review, we monitoredall the systemcalls (without
arguments)madeby an executing programon a per-
processbasis.That is, eachtime a processwasinvoked,
we begana new trace,logging all the systemcalls for
that process.Thus,for every processthe traceconsists
of an orderedlist (a time-series)of the systemcalls it
madeduringits execution.For commonlyexecutedpro-
grams,especiallythosethat run with privilege,we col-
lectedsuchtracesovermany invocationsof theprogram,
whenit wasbehaving normally. We thenusedthe col-
lectionof all suchtraces(for oneprogram)to developan
empiricalmodelof its normalbehavior.

Oncethe systemhadbeentrainedon a sufficient num-
berof normalprogramexecutions,themodelwastested
onsubsequentinvocationsof theprogram.Thehopewas
thatthemodelwouldrecognizemostnormalbehavior as
“normal” andmostattacksas“abnormal.” Our method
thusfalls into the category of anomalyintrusiondetec-
tion.

Givena collectionof systemcall traces,how do we use
them to constructa model? This is an active areaof
researchin the field of machinelearning,andthereare
literally hundredsof goodmethodsavailableto choose
from, including hiddenMarkov models,decisiontrees,
neuralnetworks,anda varietyof methodsbasedon de-
terministicfinite automata(DFAs). We chosethe sim-
plestmethodwecouldthink of within thefollowingcon-
straints. First, the methodmustbe suitablefor on-line
training and testing. That is, we must be able to con-
structthe model“on the fly” in onepassover the data,
andboth training and testingmust be efficient enough
to be performedin real-time. Next, the methodmust
be suitablefor large alphabetsizes. Our alphabetcon-
sistsof all the different systemcalls—typically about
200for UNIX systems.Finally, themethodmustcreate

modelsthataresensitive to commonformsof intrusion.
Tracesof intrusionsareoften 99% the sameasnormal
traces,with very small, temporallyclumpeddeviations
from normalbehavior. In the following, we describea
simplemethod,which we call “time-delayembedding”
[16]. Warrender[38] comparedtime-delayembedding
with severalothercommonmachinelearningalgorithms
and discoveredthat it is remarkablyaccurateand effi-
cientin this domain.

We definenormalbehavior in termsof short � -gramsof
systemcalls. Conceptually, we definea smallfixedsize
window and“slide” it over eachtrace,recordingwhich
callsprecedethecurrentcall within thesliding window.
Thecurrentcall anda call at a fixedprecedingwindow
positionform a “pair,” with thecontentsof a window of
length � beingrepresentedby ����� pairs.Thecollection
of uniquepairsover all the tracesfor a singleprogram
constitutesour model of normal behavior for the pro-
gram.1

More formally, let

� �
alphabetof possiblesystemcalls	 �
trace�
thesequence
����
�����������
��������
���� �

� �
window size �"! � !$#% �
profile�
setof patternsassociatedwith

	
and �� &('*) �),+�-�."/0) �),+ � � ��1!3254 �6�7 /98 ! 7 43#:�;2�

=< �>) �

 <�? . �@) +

For example,supposewe hadasnormal the following
sequenceof calls:

execve, brk, open,fstat, mmap,close,open,
mmap,munmap

and a window size of 4. We slide the window across
thesequence,andfor eachcall we encounter, we record
what call precedesit at different positionswithin the
window, numberingthemfrom 0 to � �>� , with 0 be-
ing thecurrentsystemcall. So,for this trace,we getthe
following windows:

1Our original paperon usingsystemcalls for intrusiondetection
[16] useda techniquecalled“lookaheadpairs.” pH usesthe original
lookaheadpairsalgorithmasdescribedhere,except that it looks be-
hind insteadof ahead.Later papers[20, 38] report resultsbasedon
recordingfull sequences.Werevertedto lookaheadpairsbecauseit is
simpleto implementandextremelyefficient.

position3 position2 position1 current
execve

execve brk
execve brk open

execve brk open fstat
brk open fstat mmap
open fstat mmap close
fstat mmap close open
mmap close open mmap
close open mmap munmap

When a call occursmore than oncein a trace, it will
likely beprecededbydifferentcallsin differentcontexts.
Wecompresstheexplicit window representationby join-
ing togetherlineswith thesamecurrentvalue(notethe
openandmmaprows):

current position1 position2 position3
execve
brk execve
open brk, close execve,mmap fstat
fstat open brk execve
mmap fstat,open open,close brk, mmap
close mmap fstat open
munmap mmap open close

Thistablecanbestoredusingafixed-sizebit array. If A � A
is thesizeof thealphabet(numberof differentpossible
systemcalls)and� is thewindow size,thenwecanstore
thecompletemodelin abit arrayof size: A � ACB1A � ACBED � �
��F . Because� is small (6 is our standarddefault), our
currentimplementationusesa � 8�8 BG� 808 bytearray, with
masksto accesstheindividualbits.

At testing time, systemcall pairs from test tracesare
comparedagainstthosein thenormalprofile. Any sys-
temcall pair (thecurrentcall andaprecedingcall within
thecurrentwindow) not presentin thenormalprofile is
calledamismatch. Any individualmismatchcouldindi-
cateanomalousbehavior (a truepositive),or it couldbe
a sequencethatwasnot includedin thenormaltraining
data(afalsepositive). Thecurrentsystemcall is defined
asanomalousif thereareany mismatcheswithin its win-
dow.

To date,all of the intrusionswe have studiedproduce
anomaloussequencesin temporallylocalclusters.To fa-
cilitate the detectionof theseclusters,we recordrecent
anomaloussystemcalls in a fixed-sizecircular array,
which we refer to asa locality frame. More precisely,
let � bethesizeof our locality frame,andlet H � betheI
-th entryof thelocality framearray, with

8 ! I 43� and
HJ�J� &�8 ��LK . Then,for systemcall

)
(
8 !) 4M#) with

mismatchesNPO , HGO mod Q � � if f NPOSR 8
, andis 0 other-

wise.Thus,thelocality frameimplicitly storesthenum-
ber of the past � systemcalls which were anomalous.
We call this total of recentanomalies,TUH � , the local-
ity framecount(LFC).2 For the experimentsdescribed
below, we useda locality frameof size128.

3 pH Design

pH performstwo importantfunctions: It monitorsindi-
vidualprocessesat thesystem-calllevel, andit automat-
ically respondsto anomalousbehavior by eitherslowing
down or abortingsystemcalls. Normal behavior is de-
terminedby the currently runningbinary program;re-
sponse,however, is determinedona per-processbasis.

To minimizeI/O requirementsandmaximizeefficiency,
stability, andsecurity, wehave implementedmostof pH
in kernel space. We consideredseveral alternative ap-
proaches,includingaudit packages,system-calltracing
utilities (suchasstrace), and instrumentedlibraries.
However, eachof theseother approacheshas serious
drawbacks. Audit packagesgeneratevoluminouslog-
files, which areexpensive to createandeven moreex-
pensive to analyze.Additionally, they do not routinely
recordeverysystemcall. User-spacetracingutilities are
too slow for our application,andin somecases,they in-
terferewith privilegeddaemonsto the extent that they
behave incorrectly. Instrumentedlibrariescannotdetect
every systemcall, becausenot every systemcall comes
throughalibrary function(e.g.,buffer overflow attacks).
In addition, a kernel implementationallows us to put
ourmonitoringandresponsemechanismsexactlywhere
they areneeded,in thesystemcall dispatcher, andallows
theimplementationto beassecureasthekernel.

For eachrunningexecutable,pH maintainstwo arrays
of pair data: A training arrayanda testingarray. The
trainingarrayis continuouslyupdatedwith new pairsas
they appear;thetestingarrayis usedto detectanomalies,
andis nevermodifiedexceptby replacingit with acopy
of the trainingarray. Putanotherway, the testingarray
is the currentnormal profile for a program,while the
trainingarrayis a candidatefuturenormalprofile.

A new “normal” is installedby replacingthetestingar-
ray with the currentstateof the training array. The re-
placementoccursunderthreeconditions:(1) theuserex-

2A somewhatdifferentapproachwastakenin Hofmeyr [20], where
themeasureof anomalousbehavior wasbasedon Hammingdistances
betweenunknown sequencesand their closestmatch in the normal
database.

plicitly signalsvia aspecialsystemcall (sys pH) thata
profile’s training datais valid; (2) the profile anomaly
count exceedsthe parameterV(�XW�NPVZY\[Y I N I
 ; (3) the
training formula is satisfied. Whenan anomalyis de-
tected,thecurrentsystemcall is delayedaccordingto a
simpleformula. Detailsof theseconditionsandactions
aregivenin thenext severalparagraphs.

The training to testing copy can occur automatically
basedon thestateof thefollowing trainingstatistics:

�]^V I � _,W�`a��
 /
callssincearrayinitialization

YbV)
 NPW^c _,W�`a��
 /
callssincearraywaslast
modified

�XW�]�NdVZY _�W�`a��
 �
�]^V I � _,W�`a��
e�;YbV)
 NPW^c _,W�`a��

Whenthe trainingarraymeetsall of the following con-
ditions, it is copiedonto the testingarray(note: this is
the normalmechanismfor initiating anomalydetection
in thesystem):

Y*V)
 NPW^c _,W�`a��
fR NPW^c N I � I N5`gN
�XW�]�NdVZY _,W�`a��
fR �XW�]�NPVZY N I � I Nd`aNh\i j � Q k�l�m�Q hQ�l i n�jpo k�l�m�Q h R �XW�]�NPVZY]^V(
 I W

The threeparameterson the right areuserdefined,and
canbesetat runtime.

As we mentionedearlier, pH respondsto anomaliesby
delayingsystemcall execution.Theamountof delayis
an exponentialfunction of the currentLFC, regardless
of whetherthe currentcall is anomalousor not. The
unscaleddelayfor a systemcall is c � � LFC. Theeffec-
tive delayfor a systemcall is c5Bqc0r�YbV([stVZ_p
�W�] , where
c(r�Y*V([stVZ_p
�W�] is anotheruser-definedparameter. Note
thatdelaysmaybedisabledby setting c(r�YbV([stVZ_p
�W�] to
0. If the LFC ever exceedsthe
�W^Ybr�] ICu V(
 I W�� Y I N I
 pa-
rameter(which is 12 for the experimentsdescribedbe-
low), thetrainingarrayis reset,preventingtruly anoma-
lous behavior from being incorporatedinto the testing
array.

BecausepH monitorsprocessbehavior basedontheexe-
cutablethat is currentlyrunning,theexecve systemcall
causesa new profile to be loaded. Thus, if an attacker
wereableto subvert a processandcauseit to make an
execve call, pH might be tricked into treatingthe cur-
rentprocessasnormal,basedon thedatafor thenewly-
loadedexecutable. To avoid this possibility the maxi-
mumLFC count(maxLFC)for a processis recorded.If

maxLFC exceedsthe VwvpW�]�
 r��gr�_px(r threshold,thenall
execve’sareabortedfor theanomalousprocess.

pH also keepsa count of the raw numberof anoma-
lies eachprofile hasseen.This countcanbe seenasa
measureof ongoing,non-clusteredabnormalbehavior.
If this numberexceedsthe parameterV(�XW�NPVZY\[Y I N I
 ,
pH automaticallycopiesthe training array to the test-
ing array, causingpH to treatsimilar futurebehavior as
normal. Borrowing from immunology, we refer to this
processas tolerization. Low valuesof V0�XW�NPVZY\[Y I N I

allow pH to automaticallytolerizemostnovel behavior,
while highervaluesinhibit tolerization.Whena system
is initially setup, automatically-creatednormalprofiles
may containtoo little normalbehavior. To reducethe
numberof reportedanomalies,V0�XW�NPVZY\[Y I N I
 should
be set to a small value (lessthan10). Then, oncethe
systemhasstabilized, V(�XW�NPV(Yb[Y I N I
 shouldbe setto
at least20to preventpH from automaticallylearningthe
behavior of attacks.

4 Implementation

The pH prototype is implementedas a patch for the
Linux 2.2 kernel,andwasdevelopedandtestedon sys-
temsrunning a pre-releaseof the Debian/GNULinux
2.2 distribution [35]. Themodifiedkernelis capableof
monitoring every executedsystemcall, recordingpro-
files for every executable.An overview of thesystemis
shown in Figure1.

Programprofilesfor eachexecutablearestoredon disk.
Eachprofile containsboth a training and testingarray,
andso is actually two “profiles” by the terminologyin
Section2. The kernel loads the currentprofile when
a new programbegins executing(on execve), andthen
writes it out againwhenthe processterminates.When
a new executableis loadedvia the execve systemcall,
the kernelattemptsto load the appropriateprofile from
disk; if it is not present,a new profile is created. If
anotherprocessruns the sameexecutable,the profile
is sharedbetweenboth processes.To prevent consis-
tency problemsdueto interleaving, eachexecutingpro-
cessmaintainsits own recordof recentsystemcalls(its
currentsequence).Whenall processesusingagivenpro-
file terminate,the updatedprofile is saved to disk. A
loadedprofile consumesapproximately80K of kernel
(non-swappable)memory.

We modified the systemcall dispatcherso that it calls
a pH function (pH process syscall) prior to dis-

patchingthesystemcall. pH process syscall im-
plementsthe monitoring, response,and training logic.
pH is controlledthroughits own systemcall, sys pH,
which allows the superuser(root) to take the following
actions:

y Start,stopmonitoringprocesses.

y Setsystemparameters(seeSection3 for descrip-
tions):

– c0r�Y*V0[stVZ_p
�W�]
– VwvpW�]�
 r��gr�_px(r
– NdW^c N I � I Nd`aN
– �XW�]�NdVZY N I � I N5`gN
– �XW�]�NdVZY]^V(
 I W
–
�W^Ybr�] I�u V(
 I W�� Y I N I

– V(�XW�NdVZY\[Y I N I

y Turn on/off loggingof systemcallsto disk (expen-
sive,usedfor debugging).

y Turnon/off loggingnovel sequencesto disk.

y Status(printsout currentvaluesof systemparame-
tersto thekernellog).

y Write all profilesto disk.

y Reset4 pid R : Resetstheprofile to beempty.

y Startnormal 4 pid R : Copiesthe trainingarrayfor7 I c ’s executableto its testingarray, andmarksthe
profile asnormal.

y Tolerize 4 pid R : Changethenormalflag for
7 I c ’s

profile to 0, resetits locality frame,andcancelany
currentdelayfor it.

y Sensitize 4 pid R : Clearsthe training array. This
mechanismis usedto preventknown truepositives
from beingincorporatedinto thetrainingdata.

y Turnon/off debuggingmessagessentto kernellog-
ging facility.

More specifically, we extendedtheLinux taskstructure
(thekerneldatastructureusedto representprocessesand
kernel-level threads)with a new structurewhich con-
tainsthefollowing fields: thecurrentwindow of system
calls for the task,a locality frame,anda pointerto the
currentprofile. A profile is a structurecontainingtwo
byte-arraysfor storingpairs(thetrainingandtestingar-
rays)andsomeadditionaltrainingstatisticsdescribedin
Section3.

user code
and data

system call
dispatcher

testing
delay
training

pH

system call
implementations

scheduler

train
test

profile:

call
system

delay

kernel data

task_struct:
pH: profile

sequence
LFC

Figure1: Basicflow of controlanddatain apH-modifiedLinux kernel.

5 Experimental Results

In thissection,wereportonsomeearlyexperimentstest-
ing out pH in a live environment. We areinterestedin
threeaspectsof thesystem:Its effectivenessin intrusion
response(canit really detectandstopan attackbefore
thesystemis compromised?),performanceimpact(what
is the overheadof the installedsystem?),andusability
(whatis it like to livewith pH on yourown computer?).

5.1 Can pH detect and stop attacks in time to
prevent systemcompromise?

To testhow pH couldrespondto securityviolations,we
testedits behavior by seeinghow it coulddetectandre-
spondto a SecureShell (SSH)daemon[29] backdoor,
an SSH daemonbuffer overflow, and a sendmail[13]
attackthatexploits a bug in theLinux kernel’s capabili-
tiescode.Thesethreeviolationsall allow anattacker to
obtainroot privileges,usingdifferenttechniquesto gain
access.Delaysalonearesignificantinhibitors of these
attacks;with execve aborts,pH caneffectively stopall
of them.

To test the SSHattacks,the sshd programin Debian
2.2’s packagedversion of SecureShell (ssh-nonfree),
version1.2.27-6wasmodifiedin two basicways. First,
it was madeto link againstthe RSAREF2library, to
makeit vulnerableto abuffer overflow attackscriptpub-
lishedon the BUGTRAQ mailing list [2]. Second,the
sourcewasmodifiedusingtherkssh5trojanpatch[37],
andwasbuilt usingthe“global password” flag. Thisop-
tion allows an attacker to accessto any accounton the
systemusing a compiled in, MD5-encodedpassword.
In addition,useof this password disablesmostlogging,
minimizing theevidenceof theintrusion.

A normalprofile for thismodifiedsshd binarywascre-
atedby exercisingthe programon a personalworksta-
tion. Normal logins via root and a regular userwere
tested,using the password, RSA-securedrhosts, and
pure RSA methodsof authentication.Also, failed lo-
gins weretested,usingnonexistentusersandincorrect
passwords.Togethertheseproduced687sequences,and
a profilewith 1725pairs,over47756systemcalls.

Relative to this syntheticnormalprofile, we first tested
whetherpH coulddetecttheuseof theglobalpassword
to gain accessto the root account. With all responses
disabled,the backdoorproduced5 anomalies,3 in the
child (whichexec’s theremoteuser’sshell),and2 in the

0z 50 100z 150{ 200z
System Call Count

0

10

20

30

40

50

D
el

ay
 (

jif
fie

s)

|

Figure2: A graphshowing thepH-inducedsystem-call
delayduringthesshd backdoorintrusion.Notetheex-
ponentialincrease(from 0 to 8, 16, then 32) and de-
crease,with a constantdelay for mostcalls within the
locality frame. Theprocessshown is thechild process,
and it terminateswith a shell being exec’d. The pair
window sizeis 6, thelocality framesizeis 128,andthe
c(r�Y*V([stVZ_p
�W�] is set to 4. Time is measuredin jif fies,
which are1/100of a secondon Linux runningon i386-
compatiblemachines.

parent(which maintainsthe network connection).Set-
ting c0r�YbV([stVZ_p
�W�] to 4 producedthesameanomalypro-
file, but did not prevent the remoteuserfrom logging
in; however, the resultingconnectionwassloweddown
significantly, asshown in Figure2. With VZv,W�]�
 r��gr�_,x(r
setto 1, thebackdoorwasclosed,whetherdelayswere
enabledor not.

With all responsesdisabled,thebuffer overflow attacked
produced4 clusteredanomaliesin the parentSSHpro-
cess. Setting c0r�YbV([stVZ_p
�W�] to 4 producedthe same
anomalies,and allowed the attacker to obtain a root
shell; however, this shell waslessusefulthanmight be
supposed.Recall that pH delaysevery processwith a
non-zeroLFC, andthe LFC is only updatedif the pro-
gramhasa valid normal (test)profile. As it turnsout,
bash, the standardshell on most Linux systems,is a
large,complicatedprogramthattendsnot to reachasta-
ble profile. Thus,the64 jif fy (0.64s)delayincurredby
theoverflowedsshdis passedon to theexec’d bash,and
bashkeepsthis delayforever! Even if this weren’t the
case,becauseof the 128 entry locality frame,we’d see
thedelayfor 125systemcalls,giving usat leastan80s
delay. Not a hugeamountof time, but possiblyenough
to makea cracker think theattackisn’t working.

With execve abortsenabled,the overflow attack was
stopped,whether delays were enabledor not. The
attack script does not simply fail, though; since the
overflow codekeepsretrying the execve call if it fails,
the abortscausean infinite loop. Each passthrough
the loop generates3 anomalies,due to the failed ex-
ecve; a few times through this tight loop thus causes
the
�W^Y*r�] I�u V(
 I W�� Y I N I
 to beexceeded,causingsshd’s
trainingprofile to bereset.

The Linux capability vulnerability allows a non-
privileged program to prevent a privileged one from
droppingits capabilitieson systemsrunningrecent2.2
kernels (2.2.14 and 2.2.15 are both vulnerable). An
exploit was publishedon BUGTRAQ [28] which uses
sendmailto take advantageof this hole. Becausethis is
aflaw in thekernel,it cansucceedeventhoughsendmail
doestheright thingandtriesto dropits privileges.

A normalprofile for sendmail(Debianversion8.9.3-22)
was first generated,basedon normal usageon a per-
sonal workstation. This normal had 3443734system
calls with 1061uniquesequences,andproduceda pro-
file with 2412 systemcall pairs. Relative to this nor-
mal, the exploit wasextremelynoticeable.The exploit
generatesseveraldifferentsendmailprocesses,andjust
oneof themhad47 anomalies! Indeed,the numerous
anomaliescausedthe
�W^Ybr�] I�u V(
 I W�� Y I N I
 to bereached

numeroustimes. Enablingexecve abortsdid nothingto
inhibit the attack; this makes sense,since the exploit
doesn’t havesendmaildirectly runaprivilegedshell;in-
stead,it createsa setuid-rootshell in /tmp. However, a
c(r�Y*V([stVZ_p
�W�] of 4 effectively stoppedtheattack— de-
layswereproducedwhich lastedfor at leasttwo hours.
Time delaysof this magnitudewould almostcertainly
frustratea normal cracker; a patientone could be ad-
dressedby automaticallykilling any processthat had
beendelayedfor a long time period,say30 minutesor
more.

5.2 What is the overheadof running pH?

To determinetheperformanceimpactof ourkernelmod-
ifications, we ran the HBench-OS1.0 [11] low-level
benchmarksuite on an HP Pavilion 8260 (266 MHz
PentiumII, 160M SDRAM, Maxtor 9102010G Ultra-
DMA IDE hard disk) running a pre-releaseversionof
Debian/GNULinux 2.2. Testswere run for ten itera-
tionsonasystemrunningin singleusermode.In Tables
1 and2, “Standard”refersto a stockLinux 2.2.14ker-
nel. “pH” refersto a 2.2.14kernelwith pH extensions,
with monitoringenabledfor all processesandwith status
messagesandautomatedresponseturnedoff. All times
arein microseconds.

Tables1 and2 show that our modificationsaddsignif-
icantly to systemcall overhead.Table1 indicatesthat
pH addsapproximately4.7 })

to the executiontime of
simplesystemcalls that normally would take lessthat
2 })

to execute.Table2 shows thatpH causesprocess
creationto be almosttwice asslow for a dynamically-
linked shell. Although thesetablesshow a significant
performancehit, they arenot indicativeof theimpacton
overall systemperformance.

Table3 shows how overall performanceis affectedfor
a setof tasks. Herewe report the outputof time for
threedifferentkindsof operations:kernelbuilds,find
/ -print > /dev/null (a basic traversalof the
file system),andQuake 2 framerates.All of thesetests
were run in single-usermode. The most dramaticef-
fect is seenin thesystemtimeof thekernelbuild, which
almostdoublesdueto monitoringoverhead.Thisdiffer-
ence,however, only causesa 4% slowdown in theclock
time. Thefind testshows almosta 10%slowdown, and
this is for aprogramthatis almostentirelyboundby the
speedof filesystem-accesssystemcalls. Interestingly,
the Quake 2 frame rate testsshows virtually no slow-
down. Thesetestsillustratewhatwe have observed in-
formally by using the systemourselves: If delaysare

SystemCall Standard(})
) pH (})

)
getpid 1.1577(0.00000) 5.8898(0.00025)
getrusage 1.9145(0.00000) 6.6137(0.00138)
gettimeofday 1.6703(0.00184) 6.3779(0.00112)
sigaction 2.5609(0.00010) 7.2928(0.01029)
write 1.4135(0.00187) 6.1637(0.00075)

Table 1: Systemcall latency results. All times are in
microseconds.Standarddeviationsare listed in paren-
theses.

Operation Standard(})
) pH (})

)
null 408.80(00.618) 2497.90(40.923)
simple 2396.24(11.124) 8206.62(11.795)
/bin/sh 9385.66(26.761) 18223.96(26.777)

Table2: Dynamicprocesscreationlatency results.Null
refersto a fork of the currentprocess.Simpleis a fork
of the currentprocessplus an exec() of a hello-world
programwritten in C. /bin/shrefersto the executionof
hello-world throughthe libc system()interface,which
uses/bin/shto invoke hello-world. All timesarein mi-
croseconds.Standarddeviationsarelisted in parenthe-
ses.

turnedoff, ausercanusethemodifiedworkstationwith-
out noticingany differencesin systembehavior, evenif
shedecidesto run a computeandI/O intensive applica-
tion suchasQuake2.

5.3 pH in Practice

To understandthe usability of the prototype,the modi-
fied kernelwasinstalledon the authors’personalcom-
puters,configuredto monitor every processon the sys-
tem. As indicatedabove, such a configurationhas a
minimal performanceimpact in practice;however, en-
abling delaysin this situationcan causecertainprob-
lems. Privileged programs,such as login, send-
mail, andcron, have a highly constrainedbehavior
profile; thus,aftera dayor two of sampling,thesepro-
gramstend to settle into a stablenormal, and exhibit
few anomalies.Largenon-privilegedprograms,suchas
netscapeandemacs,have morecomplicatedbehaviors,
andthustendnotto shift intoanormalmonitoringmode,
andsoareneverdelayed.

Someof the moreinterestingprogramsareoneswhich
performsimplesystemmonitoring,suchasasclock (a
NeXTStep-styleclock) andwmapm (a batterymonitor-
ingprogram).Theseprogramsexecutealargenumberof

Benchmark Standard pH
kernelbuild (s)

real 702.47(0.07) 727.44(0.29)
user 669.35(0.60) 673.67(0.55)
sys 33.00(0.61) 53.60(0.70)

find / -print (s)
real 5.68(0.58) 6.24(0.54)
user 1.61(0.09) 1.59(0.09)
sys 3.27(0.09) 3.90(0.17)

Quake2 (fps)
demo1 22.89(0.03) 22.87(0.05)
demo2 23.30(0.00) 23.30(0.00)

Table3: Overall systemperformance.All unitsaresec-
onds(s),exceptfor theQuake 2 test,which is in frames
per second(fps). Ten trials were run for eachexam-
ple,except100trials wererun for find. Eachtestwas
run oncebeforebeginningthemeasurementsin orderto
eliminateinitial I/O transients.Standarddeviationsare
listedin parentheses.

systemcalls,andmostof thetime they have repetitious
behavior. However, whena userperturbsthesystemby
changingdesktopsor by movingwindows,thebehaviors
of theseprogramscanchange.In thecurrentprototype,
theseprogramstend to be the first to obtain normals,
andthe first to be slowed down. Over a few daysthey
tendto settledown andoperatenormally;this transition,
however, canrequireanumberof user-suppliedtoleriza-
tion events. This suggeststhat the heuristicsdescribed
in Section3 mayneedto berefined.However, by tem-
porarily setting V(�XW�NPV(Yb[Y I N I
 to a low value(suchas
5), the numberof reportedanomaliescanbe kept to a
minimum.

As monitoringprogramsaregenerallynot critical appli-
cations,problemsinvolving themcanbe seenasminor
nuisances.A moresignificantsetof issuesariseswith
the behavior of one large, privileged program: the X
server. The X server is responsiblefor initializing and
controlling accessto the video display, on behalfof X
clientssuchasxterm andnetscape.X serversaresim-
ilar to monitoringprograms,in that they make a large
numberof mostly-repetitivesystemcalls,andsotendto
acquirea normalprofile quickly. Useractionscanalso
perturbtheX server’sbehavior, causingit to bedelayed.
In thiscase,thedelayscanhavedramaticeffects,suchas
causingauser’sentiresessionto befrozenor leaving the
videohardwarein aconfusedstatewhenthey occurdur-
ing server initialization or shutdown. Fortunately, most
of theseproblemscanbeavoidedby initially startingup
and shuttingdown the X server a few times, allowing
pH to learnthecritical initialization andshutdown sys-

temcall patterns.

Thesetwo classesof problemssuggesta weaknessin
ourcurrentapproach.Programswhichmake largenum-
bersof systemcalls in a short period of time tend to
acquirenormalprofiles,even whena true samplingof
behavior hasnot yet occurred.A naturalsolutionis to
take time into accountduring the normal profile deci-
sion process. Sucha strategy might requirea signifi-
cantamountof computation,andso is probablybetter
implementedin a userspacecontrol daemon. It would
also allow additionalfactorsto be considered,suchas
sizeof executable,numberof invocations,andperhaps
program-specificheuristics.Sucha daemonis planned
for thefuture.

6 RelatedWork

Our approachto homeostaticcomputingis similar in
spirit to Brooks’approachto mobilerobotcontrol,based
on loosely coupledfeedbackloops, real-time interac-
tions with dynamic environments,and no centralized
representationof the outsideworld [9, 10]. We believe
Brooks’ subsumptionarchitecturecanbeappliedto the
constructionof a computersecuritysystem. pH in its
currentform is analogousto feedbackloopsthathelpa
robotmaintainbalance;with theadditionof aparameter-
adjustingcontrol daemon,we may be ableto teachpH
how to “walk.”

Although researchIDSs have performedanomalyde-
tectionfor years[1, 27, 17, 16], mostcommercialsys-
temsemphasizemisusedetection(i.e. patternmatching
for known attacks),requiring frequentupdatesas new
exploits aredeveloped. Many currentcommercialnet-
work IDSs [3, 12, 22] arecapableof automaticallyre-
spondingto network attacksthroughincreasedlogging,
firewall reconfiguration,terminationof connections,and
evenautomaticblockingof suspiciousnetworks. Com-
bined host and network IDSs suchas ISS RealSecure
[22] canalsorespondto threatsby terminatingindivid-
ual processes.However, becauseresponsesthathalt at-
tackscanalsocausesignificantservicereductions,these
responsesmustbereservedfor attackswhichcanbeeas-
ily and reliably identified throughspecificmisusesig-
natures.Althoughusefulfor high-securityinstallations,
actionssuchassessioncaptureandemail/pagernotifica-
tion aresimply aburdento mostadministrators.

Sekar, Bowen, and Segal [30] have developed a
specification-basedapproachfor intrusiondetectionand

automatedresponseat thesystem-calllevel. They have
createda languagecalledASL for specifyingprogram
behavior andresponsesto abnormalbehavior, andthey
have createdLinux kernelextensionswhich allow their
specificationsto be enforcedon-line. Their approach
hastheadvantageof allowing subtleresponsesto secu-
rity violations,rangingfrom changingsystemcall argu-
mentsto confininga programto an alternative file sys-
tem. Unfortunately, it alsohasthedisadvantagesof be-
ing labor-intensive, in that specificationsmustbe con-
structedmanuallyfor eachexecutable.

MichaelErnstandothersat theUniversityof Washing-
ton have developedtechniquesfor dynamicallydeter-
mining programinvariants[15]. pH also dynamically
detectsinvariantsin programbehavior, althoughit does
so at the system-callinsteadof the data-structurelevel.
PerhapsErnst’stechniquescouldbeusedto createanon-
line datamonitoringtool which would complementthe
system-callmonitoringof pH.

Delaysareusedthroughoutcomputingto achieve vary-
ing goals.Most laptopCPUshave theability to run at a
slower speedto minimizeheator maximizebatterylife;
Transmeta’s Crusoeprocessor[14] goesa stepfurther
by allowing the speedof the chip to vary continuously
in responseto systemload,maximizingbatterylife and
perceivedperformance.TheEthernetprotocolarbitrates
wire accessby having transmittingcomputersexponen-
tially delay their packets when collisions are detected
[36]. And, at the software level, the standardlogin
programon mostUNIX systemsdelaysrepeatedlogin
attemptsto interferewith password guessingattacks.A
final exampleis the programgetty, which noticesif
it spawnsprocessestoo frequentlyon a giventty device
andin this event,putsitself to sleepfor a few minutes.

The coreof pH canbe seenasan unusualtype of pro-
cessscheduling.In mostUNIX systems[4], processes
arescheduledusingstaticpriorities(providedby thead-
ministrator),dynamicpriorities (basedon recentCPU
andI/O behavior), andthe numberof processeson the
system. “Fair share”schedulersdivide CPU time be-
tweenusers,not processes[18, 24]. pH’s delaymecha-
nism couldbe viewedasan implicit mechanismfor al-
locatingCPUtime; however, insteadof beingfair to all
processesor users,it favorsprocesseswhich arebehav-
ing “normally.”

Researchon high-performanceoperatingsystemsem-
phasizesextensible[5, 31] and minimal [23] kernels.
Thesesystemsrequire novel security mechanismsto
moderate the increasedpower given to application
programs,relative to operatingsystemswith conven-

tional, monolithic kernels. In contrast,our work on
biologically-inspiredOS extensionsassumesa conven-
tionalkernel,andaimsto increasethestabilityandsecu-
rity of thesystem.

Adaptive, on-line control hasbeenwidely studiedasa
methodfor improving systemperformance. Whether
motivatedby non-stationaryworkloads[7], extensible
operating systems[32], parallelism [25], or on-line
databasetransactionprocessing[39], researchershave
focusedon usingadaptive methodsfor improving sys-
tem performance,not robustness.Work in usingadap-
tive control in real-timesystems[6] hasfocusedon us-
ing adaptationto help meettiming androbustnesscon-
straints.

Finally, pH canbeseenasatypeof fault tolerantsystem
[8, 33, 19], exceptthat we focuson securityviolations
insteadof hardwareor softwarefailures.

7 Discussion

A major point of this paperis that it is feasibleto use
system-calldelaysto stopintrusionsin real-time,with-
out prior knowledgeaboutwhat form an attackmight
take (unlikesignature-basedscanners).Thethreeexam-
pleexploitshelpshow thatpH cando this,evenfor very
differenttypesof attacks.However, in practicepH’s ef-
fectivenessis determinedby whetherit canobtainstable
normalsfor thebinarieson a system.Currently, pH can
do this automaticallyonly for programswhich arerel-
atively simple and are called on a regular basis;even
then,thereis an ongoingrisk that pH could be trained
to acceptintrusionsasnormalbehavior. Researchstill
needsto be doneon more effective training heuristics
thatminimizethetimefor pH to obtainanormalprofile,
but alsominimizethechancesof pH tolerizingtruly ab-
normalbehavior. By incorporatingsuchheuristicsinto a
pH controldaemon,we shouldbeableto minimize the
needfor useror administratorintervention.

It may be necessaryto implement a default timeout
mechanismthrough pH, in which any processthat is
delayedbeyond a certainpoint is automaticallytermi-
nated. It mayalsobenecessaryto increasepH’s reper-
toire to include actionssuchas systemcall parameter
modifications.Additionalresponsemechanismsmayre-
quire computationallyexpensive analysisalgorithmsto
be added;becauseabnormally-behaving processesare
delayed,pH actuallyhasthe time to performmoreso-
phisticatedanalysiswhenanomaliesaredetected.Our

philosophy, however, is to wait until sucha needarises
beforeimplementingadditionalmechanisms.

A secondmajorpointof thepaperis toshow thatsystem-
call monitoringis practical,evenwhenevery executing
processon thesystemis monitoredsimultaneously. pH
routinelymonitorsevery systemcall executedby every
processwith little perceptibleoverhead.Thus,we be-
lieve that the currentimplementationof pH is efficient
enoughto satisfya widevarietyof users.

Thecurrentversionof pH is not completelysecure.pH
doesrestrictuseof thesys pH systemcall to userswho
have thekill capability(which, by default is only root);
however, thereareno checksto ensurethata profile has
not beentamperedwith on disk, or restrictionson user
accessto profiles— they arecurrentlyownedby root,
but readableby anyone. An attacker could usethis in-
formationto designa less-detectableattackbasedon the
systemcall usageon the target machine. pH could be
usedto generatea denial-of-serviceattackby trigger-
ing abnormal(but otherwisebenign)behavior in a target
program. Also, it may be useful to implementmecha-
nismsto preventusers(including root) from beingable
to directly modify thestoredprofiles.Such“hardening”
of pH, though,shouldwait until pH’sbasicfunctionality
hasundergonefurthertesting.

In the past,we have emphasizedthat systemcall pro-
filing is a suitabletechniquefor monitoring privileged
programs. pH in its current form, however, monitors
and respondsto anomaliesin all programs. In the fu-
ture,we maydecideto restrictmonitoringto privileged
programs;yet, with the increasinguse of active con-
tent on the Internet, it may also be desirableto have
pH respondto anomaliesin word processorsand web
browsers.Somelargeprogramssuchasnetscapeareim-
plementedusinguserspacethreads,causingsystemcalls
to be interleaved in apparentlyrandompatternsdue to
variationsin threadscheduling;thus,thesystemcall pro-
files of theseprogramsmayneverstabilize.We believe,
though,that this will be lessof a problemin thefuture,
as programsswitch to using kernel threads. Because
the Linux kernelusesthe samedatastructureto repre-
sentthreadsandprocesses,pH is ableto monitorkernel
threadsindividually, avoiding interleaving effects.

8 Acknowledgments

The authorsgratefully acknowledgethe supportof the
National ScienceFoundation(grant IRI-9711199),the

Office of Naval Research(grant N00014-99-1-0417),
andtheIntel Corporation.

StevenHofmeyr wrote theoriginal programfor analyz-
ing systemcall traces,Julie Rehmeyr rewrote the code
so that it was suitable to run in the kernel, and Ge-
off Hunsickerdevelopedtheoriginal login trojan,which
we ported for theseexperiments. Margo Seltzersug-
gestedsomeof thebenchmarksusedin the paper. Erin
O’Neill pointedout to usthattheimmunesystemis bet-
ter thoughtof asa systemfor maintaininghomeostasis
than as a defensemechanism. We are grateful to the
abovepeopleandall themembersof theAdaptiveCom-
putationgroup at UNM, especiallyDavid Ackley, for
their many helpful suggestionsand interestingconver-
sationsaboutthiswork.

9 Availability

Thecurrentversionof pH maybe obtainedvia the fol-
lowing webpage:

http://www.cs.unm.edu/~ soma/pH/

Thedistribution containsa kernelpatchanda few sup-
port programs.All arelicensedunderthe termsof the
GNU GeneralPublicLicense(GPL).

References

[1] Debra Anderson, Thane Frivold, and Alfonso
Valdes.Next-generationintrusiondetectionexpert
system(NIDES): A summary. TechnicalReport
SRI–CSL–95–07,ComputerScienceLaboratory,
SRI International,May 1995.

[2] Ivan Arce. SSH-1.2.27 & RSAREF2
exploit. BUGTRAQ Mailing list (bug-
traq@securityfocus.com),December 14 1999.
Message-ID: 4 3856C3EF.230F0AE@core-
sdi.comR .

[3] Axent Technologies, Inc. Netprowler.
http://www.axent.com,2000.

[4] M. J. Bach. The Design of the UNIX Operat-
ing System. Prentice-Hall,EnglewoodCliffs, NJ,
1986.

[5] Brian Bershad, Stefan Savage, Przemyslaw
Pardyak, Emin Gun Sirer, David Becker, Marc
Fiuczynski, Craig Chambers,and SusanEggers.
Extensibility, safetyand performancein the spin
operatingsystem. In Proceedings of the 15th
ACM Symposium on Operating System Principles
(SOSP-15), pages 267–284, Copper Mountain,
CO,1995.

[6] ThomasE. Bihari andKarstenSchwan. Dynamic
adaptationof real-timesoftware. ACM Transac-
tions on Computer Systems, 9(2):143–174,May
1991.

[7] P.R. Blevins andC.V. Ramamoorthy. Aspectsof
a dynamicallyadaptive operatingsystem. IEEE
Transactions on Computers, 25(7):713–725,July
1976.

[8] Anita Borg, Wolfgang Blau, Wolfgang Graetsch,
FerdinandHerrmann,andWolfgangOberle.Fault
toleranceunderunix. ACM Transactions on Com-
puter Systems, 7(1):1–24,February1989.

[9] Rodney A. Brooks. A robust layered control
system for a mobile robot. A.I. Memo 864,
MassachusettsInstituteof Technology, September
1985.

[10] Rodney A. Brooks and Anita M. Flynn. Fast,
cheap,andout of control: a robot invasionof the
solarsystem.Journal of The British Interplanetary
Society, 42:478–485,1989.

[11] A. Brown andM. Seltzer. Operatingsystembench-
markingin thewake of lmbench:A casestudyof
the performanceof netbsdon the intel x86 archi-
tecture.In Proceedings of the 1997 ACM SIGMET-
RICS Conference on Measurement and Modeling
of Computer Systems, Seattle,WA, June1997.

[12] Cisco Systems, Inc. Cisco secure intrusion
detection system. http://www.cisco.com/warp
/public/cc/cisco/mkt/security/nranger/tech
/ntran tc.htm,1999.

[13] Sendmail Consortium. sendmail.org.
http://www.sendmail.org/,2000.

[14] Transmeta Corporation. Crusoe processor:
Longrun technology. http://www.transmeta.com
/crusoe/lowpower/longrun.html, January2000.

[15] MichaelD. Ernst,AdamCzeisler, William G.Gris-
wold, , andDavid Notkin. Quickly detectingrel-
evant programinvariants. In Proceedings of the
22nd International Conference on Software Engi-
neering (ICSE 2000), Limerick, Ireland,June7–9
2000.

[16] S. Forrest, S. Hofmeyr, A. Somayaji, and
T. Longstaff. A senseof self for unix processes.
In Proceedings of the 1996 IEEE Symposium on
Computer Security and Privacy. IEEEPress,1996.

[17] L. T. Heberlein, G. V. Dias, K. N. Levitt,
B. Mukherjee,J. Wood, and D. Wolber. A net-
work securitymonitor. In Proceedings of the IEEE
Symposium on Security and Privacy. IEEE Press,
1990.

[18] G.J. Henry. The fair sharescheduler. Bell Sys-
tems Technical Journal, 63(8):1845–1857,October
1984.

[19] M. A. Hiltunen andR. D. Schlichting. Adaptive
distributed and fault-tolerantsystems. Computer
Systems Science and Engineering, 11(5):275–285,
September1996.

[20] S.Hofmeyr, A. Somayaji,andS.Forrest.Intrusion
detectionusingsequencesof systemcalls. Journal
of Computer Security, 6:151–180,1998.

[21] Steven A. Hofmeyr. An Immunological Model of
Distributed Detection and its Application to Com-
puter Security. PhD thesis, University of New
Mexico, 1999.

[22] InternetSecurity Systems,Inc. RealSecure3.0.
http://www.iss.net,1999.

[23] M. FransKaashoek,DawsonR.Engler, GregoryR.
Ganger, HéctorM. Briceño, RussellHunt, David
Mazières,ThomasPinckney, RobertGrimm, John
Jannotti,andKennethMackenzie.Applicationper-
formanceandflexibility on exokernelsystems.In
Proceedings of the 16th ACM Symposium on Oper-
ating Systems Principles (SOSP ’97), pages52–65,
Saint-Mal̂o, France,October1997.

[24] J. Kay and P. Lauder. A fair sharescheduler.
Communications of the ACM, 31(1):44–55,Jan-
uary1988.

[25] D.M. Ogle, K. Schwan, and R. Snodgrass.
Application-dependentdynamicmonitoringof dis-
tributedandparallelsystems. IEEE Transactions
on Parallel and Distributed Systems, 4(7):762–
778,July1993.

[26] Erin O’Neill. PersonalCommunication,October
1998.

[27] P. PorrasandP. G. Neumann.EMERALD: Event
monitoring enablingresponsesto anomalouslive
disturbances.In Proceedings National Information
Systems Security Conference, 1997.

[28] Wojciech Purczynski. Sendmail & procmail
local root exploits on Linux kernel up to
2.2.16pre5. BUGTRAQ Mailing list (bug-
traq@securityfocus.com),June9 2000. Message-
ID: 4 Pine.LNX.4.21.0006090852340.3475-
300000@alfa.elzabsoft.plR .

[29] SSHCommunicationsSecurity. SSHsecureshell.
http://www.ssh.com/products/ssh/,2000.

[30] R. Sekar, T. Bowen,andM. Segal. On preventing
intrusionsby processbehavior monitoring.In Pro-
ceedings of the Workshop on Intrusion Detection
and Network Monitoring. The USENIX Associa-
tion, April 1999.

[31] Margo Seltzer, YasuhiroEndo,ChristopherSmall,
andKeith Smith. Dealingwith disaster:Surviving
misbehaved kernelextensions. In Proceedings of
the 1996 Symposium on Operating System Design
and Implementation (OSDI II), 1999.

[32] Margo Seltzer and Christopher Small. Self-
monitoring and self-adapting systems. In
Proceedings of the 1997 Workshop on Hot Topics
on Operating Systems, Chatham,MA, May 1997.
http://www.eecs.harvard.edu/~ vino/vino/papers/
monitor.html.

[33] E. Shokri, H. Hecht, P. Crane,J. Dussault,and
K.H. Kim. An approachfor adaptive fault-
tolerancein object-orientedopendistributed sys-
tems.International Journal of Software Engineer-
ing and Knowledge Engineering, 8(3):333–346,
September1998.

[34] A. Somayaji,S. Hofmeyr, andS. Forrest. Princi-
plesof a computerimmunesystem.In New Secu-
rity Paradigms Workshop, New York, 1998.Asso-
ciationfor ComputingMachinery.

[35] SPI. Debian.http://www.debian.org/,2000.

[36] Andrew S.Tanenbaum.Computer Networks, chap-
ter 3, pages145–146. PrenticeHall PTR, Engle-
woodCliffs, NJ,2ndedition,1989.

[37] timecop. Root kit SSH 5.0. http://www.ne.jp
/asahi/linux/timecop/,January2000.

[38] C. Warrender, S. Forrest,andB. Pearlmutter. De-
tecting intrusionsusing systemcalls: Alternative
data models. In Proceedings of the 1999 IEEE
Symposium on Security and Privacy, pages133–
145,LosAlamitos,CA, 1999.IEEEComputerSo-
ciety.

[39] G. Weikum,C. Hasse,A. Monkeberg, andP. Zab-
back. The COMFORT automatictuning project.
Information Systems, 19(5):381–432,July1994.

