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Clouds is a general- 
purpose operating 

system for distributed 
environments. It is 
based on an object- 

thread model adapted 
from object-oriented 

programming. 

distributed operating system is a control program running on a set of 
computers that are interconnected by a network. This control program 
unifies the different computers into a single integrated compute and 

storage resource. Depending on the facilities it provides, a distributed operating 
system is classified as general purpose, real time, or embedded. 

The need for distributed operating systems stems from rapid changes in the 
hardware environment in many organizations. Hardware prices have fallen rapidly 
in the last decade, resulting in the proliferation of workstations, personal comput- 
ers, data and compute servers, and networks. This proliferation has underlined the 
need for efficient and transparent management of these physically distributed 
resources (see sidebar titled “Distributed operating systems”). 

This article presents a paradigm for structuring distributed operating systems, 
the potential and implications this paradigm has for users, and research directions 
for the future. 

Two paradigms 

Operating system structures for a distributed environment follow one of two 
paradigms: message-based or object-based. Message-based operating systems 
place a message-passing kernel on each node and use explicit messages to support 
interprocesses communication. The kernel supports both local communication 
(between processes on the same node) and nonlocal or remote communication, 
which is sometimes implemented through a separate network-manager process. In 
a traditional system such as Unix, access to system services is requested via 
protected procedure calls, whereas in a message-based operating system, the 
requests are via message passing. Message-based operating systems are attractive 
for structuring operating systems because the policy, which is encoded in the server 
processes, is separate from the mechanism implemented in the kernel. 
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Object-based distributed operating 
systems encapsulate services and re- 
sources into entities called objects. Ob- 
jects are similar to instances of abstract 
data types. They are written as individ- 
ual modules composed of the specific 
operations that define the module in- 
terfaces. Clients request access to sys- 
tem services by invoking the appropri- 
ate system object. The invocation 
mechanism is similar to a protected pro- 
cedure call. Objects encapsulate func- 
tionality much as server processes do in 
message-based systems (see sidebar ti- 
tled “What can objects do?”). 

Among the well-known message- 
based systems are the V-system ’ devel- 
oped at Stanford University and the 
Amoeba system2 developed at Vrije 
University in Amsterdam, Netherlands. 
These systems provide computation and 
data services via servers that run on 
machines linked by a network. 

Most object-based systems are built 
on top of an existing operating system, 
typically Unix. Examples of such sys- 
tems include Argus: Cronus,4 and Eden? 
These systems support objects that re- 
spond to invocations sent via the mes- 
sage-passing mechanisms of Unix. 

Mach6 is an operating system with 
distinctive characteristics. A Unix-com- 
patible system built to be machine- 
independent, it runs on a large variety 
of uniprocessors and multiprocessors. 
It has a small kernel that handles the 
virtual memory and process scheduling, 
and it builds other services on top of the 
kernel. Mach implements mechanisms 
that provide distribution, especially 
through a facility called memory ob- 
jects, for sharing memory between sep- 
arate tasks executing on possibly differ- 
ent machines. 

What can objects do? 

Distributed operating systems 

Networked computing environments are now commonplace. Because powerful 
desktop systems have become affordable, most computing environments are 
now composed of combinations of workstations and file servers. Such distributed 
environments, however, are not easy to use or administer. 

Using a collection of computers connected by a local area network often poses 
problems of resource sharing and environment integration that are not present in 
centralized systems. To keep user productivity high, the distribution must be 
transparent and the environment must appear centralized. The short-term solu- 
tion adopted by current commercial software extends conventional operating sys- 
tems to allow transparent file access and sharing. For example, Sun added Net- 
work File System to provide distributed file access capabilities in Unix. Sun-NFS 
has become the industry-stangard distributed file system for Unix systems. The 
small systems world, dominated by IBM PC-compatible and Apple computers, 
has software packages that perform multitasking and network-transparent file ac- 
cess - for example, Microsoft Windows 3.0, Novel1 Netware, Appletalk, and PC- 
NFS. 

A better long-term solution is the design of an operating system that considers 
the distributed nature of the hardware architecture at all levels. A distributed op- 
erating system is such a system. It makes a collection of distributed computers 
look and feel like one centralized system, yet keeps intact the advantages of dis- 
tribution. Message-based and object-based systems are two paradigms for struc- 
turing such operating systems. 

Clouds approach 
Clouds is a distributed operating sys- 

tem that integrates a set of nodes into a 
conceptually centralized system. The 
system is composed of compute servers, 
data servers, and user workstations. A 
computeserver is a machine that is avail- 
able for use as a computational engine. 
A data server is a machine that func- 
tions as a repository for long-lived (that 
is. persistent) data. A user workstation 
is a machine that provides a program- 
ming environment for developing ap- 
plications and an interface with the com- 

Conceptually, an object is an encapsulation of data and a 
set of operations on the data. The operations are performed 
by invoking the object and can range from simple data-ma- 
nipulation routines to complex algorithms, from shared library 
accesses to elaborate system services. 

Objects can also provide specialized services. For exam- 
ple, an object can represent a sensing device, and an invo- 
cation can gather data from the device without knowing 
about the mechanisms involved in accessing it - or its loca- 
tion. Similarly, an object that handles terminal or file 110 con- 
tains defined read and write operations. 

pute and data servers for executing those 
applications on the servers. Note that 
when a disk is associated with a com- 
pute server, it can also act as a data 
server for other compute servers. Clouds 
is a nativeoperatingsystem that runson 
top of a native kernel called Ra (after 
the Egyptian sun god). It currently runs 
on Sun-3/50 and Sun-3/60 computers 
and cooperates with Sun Sparcstations 
(running Unix) that provide user inter- 
faces. 

Clouds is a general-purpose operat- 
ing system. That is, it is intended to 
support all types of languages and ap- 

Objects can be active. An active object has one or more 
processes associated with it that communicate with the exter- 
nal world and handle housekeeping chores internal to the ob- 
ject. For example, a process can monitor an object’s environ- 
ment and can inform some other entity (another object) when 
an event occurs. This feature is particularly useful in objects 
that manage sensor-monitoring devices. 

be used for almost every need - from general-purpose pro- 
gramming to specialized applications - yet provide a simple 
procedural interface to the rest of the system. 

Objects are a simple concept with a major impact. They can 
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Figure 1. A Clouds object. 

plications, distributed or not. All appli- 
cations can view the system as a mono- 
lith, but distributed applications may 
choose to view the system as composed 
of several separate compute and data 
servers. Each compute facility in Clouds 
has access to all system resources. 

The system structure is based on an 
object-thread model. The object-thread 
model is an adaptation of the popular 
object-oriented programming model, 
which structures a software system as a 
set of objects. Each object is an instance 
of an abstract data type consisting of 
data and operations on the data. The 
operations are called methods. The ob- 
ject type is defined by a class. A class 
can have zero or more instances, but an 
instance is derived from exactly one 
class. Objects respond to messages. Send- 

ing a message to an object causes the 
object to execute a method, which in 
turn accesses or updates data stored in 
the object and may trigger sending mes- 
sages to other objects. Upon comple- 
tion, the method sends a reply to the 
sender of the message. 

Clouds has a similar structure, imple- 
mented at. the operating system level. 
Clouds objects are large-grained encap- 
sulations of code and data that are con- 
tained in an entire virtual-address space. 
An object is an instance of a class, and a 
class is a compiled program module. 
Clouds objects respond to invocations. 
An invocation results from a thread of 
execution entering the object to exe- 
cute an operation (or method) in the 
object. 

Clouds provides objects to support 

an abstraction of storage and threads to 
implement computations. This decou- 
ples computation and storage, thus main- 
taining their orthogonality. In addition, 
the object-thread model unifies the treat- 
ment of I/O, interprocess communica- 
tion, information sharing, and long-term 
storage. This model has been further 
augmented to support atomicity and re- 
liable execution of computations. 

Multics was the starting point for many 
ideas found in operating systems today, 
and Clouds is no exception. These ideas 
include sharable memory segments and 
single-level stores using mapped files. 
Hydra first implemented the use of ob- 
jects as a system-structuring concept. 
Hydra ran on a multiprocessor and pro- 
vided named objects for operating- 
system services. 

Clouds paradigm 
This section elaborates on the object- 

thread paradigm of Clouds, illustrating 
the paradigm with examples of its use. 

Objects. A Clouds object is a persis- 
tent (or nonvolatile) virtual address 
space. Unlike virtual-address spaces in 
conventional operating systems, the con- 
tents of a Clouds object are long-lived. 
That is, a Clouds object exists forever 
and survives system crashes and shut- 
downs unless explicitly deleted - like a 
file. As the following description of ob- 
jects shows, Clouds objects are some- 
what “heavyweight,” that is, they are 
best suited for storage and execution of 
large-grained data and programs because 
of the overhead associated with invoca- 
tion and storage of objects. 

Unlike objects in some object-based 
operating systems, a Clouds object does 
not contain a process (or thread). Thus, 
Clouds objects are passive. Since con- 
tents of a virtual address space are not 
accessible from outside the address space, 
the memory (data) in an object is acces- 
sible only by the code in the object. 

A Clouds object contains user-defined 
code, persistent data, a volatile heap for 
temporary memory allocation, and a 
persistent heap for allocating memory 
that becomes a part of the object’s per- 
sistent data structures (see Figure 1). 
Recall that the data in the object can be 
manipulated only from within the ob- 
ject. Data can pass into the object when 
an entry point is invoked (input param- 
eters). Data can pass out of the object 
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when this invocation terminates (result 
parameters). 

Each Clouds object has a global sys- 
tem-level name called a sysname, which 
is a bit string that is unique over the 
entire distributed system. Therefore, the 
sysname-based naming scheme in Clouds 
creates a uniform, flat, system-name 
space for objects. Users can define high- 
level names for objects - a naming 
service translates them to sysnames. 
Objects are physically stored in data 
servers but are accessible from all com- 
pute servers in the system, thus provid- 
ing location transparency to the users. 

Threads. The only form of user activ- 
ity in the Clouds system is the user 
thread. A thread is a logical path of 
execution that traverses objects and 
executes the code in them. Thus, unlike 
a process in a conventional operating 
system, a Clouds thread is not bound to 
a single address space. A thread is cre- 
ated by an interactive user or under 
program control. When a thread exe- 
cutes an entry point in an object, it 
accesses or updates the persistent data 
stored in it. In addition, the code in the 
object may invoke operations in other 
objects. In  such an event. the thread 
temporarily leaves the calling object, 
enters the called object, and commenc- 
es execution there. The thread returns 
to the calling object after the execution 
in the called object completes and re- 
turns results. These arguments and re- 
sults are strictly data; they cannot be 
addresses. This restriction is mandatory 
because addresses in one object are 
meaningless in the context of another 
object. In addition, object invocations 
can be nested as well as recursive. After 
the thread completes execution of the 
operation it was created to execute, it 
terminates. 

The nature of Clouds objects prohib- 
its a thread from accessing any data 
outside the current address space (ob- 
ject) in which it is executing. Control 
transfer between address spaces occurs 
through object invocation, and data 
transfer between address spaces occurs 
through parameter passing. 

Several threads can simultaneously 
enter an object and execute concurrent- 
ly. Multiple threads executing in the 
same object share the contents of the 
object’s address space. Figure 2 shows 
thread executions in the Clouds object 
spaces. The programmer uses system- 
supported primitives such as locks or 
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Figure 2. Distributed object memory. 

semaphores to handle concurrency con- 
trol within the object. 

Interaction between objects and 
threads. The structure created by a sys- 
tem, composed of objects and threads, 
has several interesting properties. 
Inter-object interfaces are procedural. 
Object invocations are equivalent to 
procedure calls on long-lived modules 
that do not share global data. The 
invocations work across machine 
boundaries. 

The storage mechanism used in Clouds 
differs from those found in convention- 
al operating systems. Conventionally, 
files are used to store persistent data. 
Memory is associated with processes 
and is volatile (that is, the contents of 
memory associated with a process are 
lost when the process terminates). Ob- 
jects in Clouds unify the concepts of 
persistent storage and memory to cre- 
ate a persistent address space. This uni- 
fication makes programming simpler. 
Persistent objects provide a structured 
single-level store that is cosmetically 
similar to mapped files in Multics and 
SunOS. 

Some systems use message-passing 
for communicating shared data and co- 
ordinating computations. Clouds shares 

data by placing the data in an object. 
Computations that need access to shared 
data invoke the object where the data 
exists. Clouds does not support messag- 
es and files at the operating system lev- 
el, although it does allow objects to 
simulate them if necessary (see sidebar 
titled “No files? No messages?”on the 
next page). 

In a message-based system, the user 
must determine the desired level of 
concurrency at the time of writing an 
application, and program it as a certain 
number of server processes. The object- 
thread model of Clouds eliminates this 
requirement. An object can be written 
from the viewpoint of the functionality 
it is meant to provide, rather than the 
actual level of concurrency it may have 
to support. At execution time, the level 
of concurrency is specified by creating 
concurrent threads to execute in the 
objects that compose the user-level 
application. The application objects, 
however, must be written to support 
concurrent executions, using synchro- 
nization primitives such as semaphores 
and locks. 

To summarize: 

The Clouds system is composed of 
named address spaces called objects. 
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No files? No messages? 

The persistent objects supported in an operating system 
like Clouds provide a structured permanent storage mecha- 
nism that can be used for a variety of purposes, including the 
simulation of files and messages. An object can store data in 
any form and invocations can be used to 

Manipulate or process the stored data, 
Ship data in and out of the object in forms not necessarily 

Allow controlled concurrent access to shared data, without 
the same as those used for storage, and 

regard to data location. 

There is no need for files in a persistent programming envi- 
ronment. Conventional systems use files as byte-sequential 
storage of long-lived data. When persistent shared memory is 
available, there is no need to convert data into byte-sequen- 
tial form, store it in files, and later retrieve and reconvert it. 

Objects provide data storage, data ma- 
nipulation, data sharing, concurrency 
control, and synchronization. 

Control flow is achieved by threads 
invoking objects. 

Data flow is achieved by parameter 
passing. 

Programming in the Clouds model. 
For the programmer, Clouds has two 
kinds of objects: classes and instances. 
A class is a template used to generate 
instances. An instance is an object invo- 
cable by user threads. Thus, to write 
application programs for Clouds, a pro- 
grammer writes one or more Clouds 
classes that define the application code 
and data. The programmer can then 

The data can be kept in memory in a form controlled by the 
programs (for example, lists or trees), even when the data is 
not in use. 

In fact, objects that store byte-sequential data can simulate 
files, and they can have read and write invocations defined to 
access this data. Such an object will look like a file, even 
though the operating system does not explicitly support files. 

The same is true for messages. The functional equivalence 
of messages and shared memory is well known. If desired, a 
buffer object with defined send and receive invocations can 
serve as a port structure between two (or more) communicat- 
ing processes. 

We feel that files, messages, and disk I/O are artifacts of 
hardware structure. Given an object implementation, these 
features are neither necessary nor attractive. New program- 
ming paradigms based on object-oriented styles use persis- 
tent memory effectively. They do not use files and messages. 

create the requisite number of instanc- 
es of these classes. The application is 
then executed by creating a thread to 
execute the top-level invocation that 
runs the application. 

The following is a simple example of 
programming in the Clouds system. The 
object Rectangle consists of x and y 
dimensions of a rectangle. The object 
has two entry points, one for setting the 
size of the rectangle and the other for 
computing the area. The object defini- 
tion is shown in Figure 3a. 

Once the class is compiled, any num- 
ber of instances can be created either 
from the command line or via another 
object. Suppose the Rectangle class is 
instantiated into an object called RectOl. 

clouds-class rectangle; 
int x, y; 
entry rectangle; 
entry size (int x, y) 
entry int area (); 
end-class 

rectangle-ref rect; 

rect.bind (“RectOl ”); 

rectsize ( 5 ,  10); 
printf(“%d\n” rect.area() ); 

//persistent data for rect. 
//constructor 
//set size of rect. 
//return area of rect. 

//“rect” is a class that refers to 
//an object of type rectangle. 

//call to name server, 
//binds sysname to RectOl 
//invocation of RectOl 
Ilwill print 50 

(b) 

Figure 3. Example code for Clouds. 
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Now RectOl.size can be used to set the 
size and RectOl.area can be called to 
return the area of the rectangle. A com- 
mand in the Clouds command line in- 
terpreter can call the entry point in the 
object. Entry points can also be invoked 
in the program, allowing one object to 
call another. 

Objects have user names, which are 
assigned by the programmer when ob- 
jects are created (compiled or instanti- 
ated). A name server then translates 
the user name to a sysname. (Recall 
that a sysname is a unique name for an 
object, which is needed for invoking the 
object.) The code fragment in Figure 3b 
details the steps in accessing the Clouds 
object Recto1 and invoking operations 
on it. 

Clouds provides a variety of mecha- 
nisms to programmers. These include 
registering user-defined names of ob- 
jects with the name server, looking up 
names using the name server, invoking 
objects both synchronously and asyn- 
chronously, and synchronizing threads. 

I/O to the user console is handled by 
read and write routines (and by printf 
and scanf library calls). These routines 
read/write ASCII strings to and from 
the controlling user terminal, irrespec- 
tive of the actual location of the object 
or the thread. 

User objects and their entry points 
are typed by the language definition. 
The compiler performs static type-check- 
ing on the object and entry point types 
at compile time. It performs no runtime 
type checking. Clouds objects are coarse- 
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grained, unlike the fine-grained entities 
found in such object-oriented program- 
ming languages as Smalltalk. Since an 
object invocation in Clouds is at least an 
order of magnitude more expensive than 
a simple procedure call, it is appropri- 
ate to use a Clouds object as a module 
that may contain several fine-grained 
entities. These fine-grained objects are 
completely contained within the Clouds 
object and are not visible to the operat- 
ing system. 

Currently, we support two languages 
in the Clouds operating system. DC++ 
is an extension of C++ that systems 
programmers use. Distributed Eiffel is 
an extension of Eiffel that targets appli- 
cation developers. The design of both 
DC++ and Distributed Eiffel supports 
persistent fine-grained and large-grained 
objects, invocations, thread creation, 
synchronization, and user-level object 
naming. 

Clouds environment 

The Clouds system integrates a set of 
homogeneous machines into one seam- 
less environment that behaves as one 
large computer. The system configura- 
tion is configured as three logical cate- 
gories of machines, each supporting a 
different logical function. These are 
compute servers, data servers, and user 
workstations. 

The system’s core consists of a set of 
homogeneous machines of the compute 
server category. Compute servers do 
not have any secondary storage. These 
machines provide an execution service 
for threads. Data servers provide sec- 
ondary storage. They store Clouds ob- 
jects and supply the objects’ code and 
data to the compute servers. The data 
servers also support the distributed syn- 
chronization functions. The third ma- 
chine category, the user workstation, 
provides user access to Clouds compute 
servers. Compute servers, in turn, know 
how and when to access data servers. 

The logical machine categories do not 
require a one-to-one scheme for map- 
ping to physical machines. Although a 
diskless machine can function only as a 
compute server, a machine with a disk 
can simultaneously act as a compute 
and data server. This enhances comput- 
ing performance, since data accessed 
via local disk is faster than data access- 
ed over a network. However, in our 
prototype system, shown in Figure4, we 
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use a one-to-one mapping to simplify 
the system’s implementation and con- 
figuration. 

A suite of programs that run on top of 
Unix on Sun workstations provide the 
user interface to Clouds. These pro- 
grams include Distributed Eiffel and 
DC++ compilers, a Clouds user shell 
(under X Windows), a user I/O manag- 
er, and various utilities. The user inter- 
face with these programs is through the 
familiar Unix utilities (including Unix 
editors). 

User environment. A user writes 
Clouds programs in DC++ or Distribut- 
ed Eiffel and compiles them on the Unix 
workstation. The compiler loads the 
generated classes on a Clouds data serv- 
er. Now these classes are available to all 
Clouds compute servers. Any node (or 
user on a Unix machine) can create 
instances of these classes and generate 
invocations to the objects thus created. 
Note that once created, the objects be- 
come part of the persistent object mem- 
ory and can be invoked until they are 
explicitly deleted. 

A user invokes an Clouds object by 
specifying the object, the entry point, 
and the arguments to the Clouds shell. 
The shell sends an invocation request to 
a compute server, and the invocation 
proceeds under Clouds using a Clouds 
thread. The user communicates to the 
thread via a terminal window in the X 
Window System. All output generated 
by the thread (regardless of where it is 
executing) appears on the user terminal 
window, and input to the thread is pro- 
vided by typing in the window. 

System environment. As we men- 
tioned earlier, the hardware environ- 
ments consists of compute servers and 
data servers with some nodes providing 
both functions. Starting a user-level 
computation on Clouds involves first 
selecting a compute server to execute 
the thread. This is a scheduling decision 
and may depend on such factors as sched- 
uling policies, the load at each compute 
server, and the availability of resources 
needed for the computation. Once this 
decision has been made, the second task 
is to bring into the selected compute 
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Distributed shared O r y  

server the object in which the thread 
executes. This requires a remote-pag- 
ing facility. Coupled with this require- 
ment is the fact that all objects are po- 
tentially shared in the Clouds model; 
therefore, the entity that provides the 
remote-paging facility must also main- 
tain the consistency of shared pages. 
This is satisfied in Clouds by a mecha- 
nism called distributed shared memory. 
DSM supports the notion of shared 
memory on a nonshared memory (dis- 
tributed) architecture (see sidebar ti- 
tled “Distributed shared memory”). The 
data servers execute a coherence proto- 
col that preserves single-copy seman- 
tics for all the objects.’With DSM, con- 
current invocation of the same object 
by threads at different compute servers 
is possible. Such a scenario would result 
in multiple copies of the same object 
existing at more than one compute serv- 
er with DSM providing the consistency 
maintenance. 

Suppose a thread is created on com- 
pute server A to invoke object 0,. The 
compute server retrieves a header for 
the object from the appropriate data 
server, sets up the object space, and 
starts the thread in that space. As the 
thread executes in the object space, the 
code and data of the object accessed by 
the thread is demand-paged from the 
data servers (possibly over the network). 

If the thread executing in 0, gener- 
ates an invocation to object 0,, the sys- 
tem may choose to execute the invoca- 

tion on either A itself or on a different 
compute server, B. In the former case, if 
the required pages of object 0, are at 
other nodes, they have to be brought to 
node A using DSM. Once the object has 
been brought into A,  the invocation 
proceeds the same way as when 0, re- 
sides at A. On the other hand, the sys- 
tem may choose to execute the invoca- 
tion on compute server B .  In this case, 
the thread sends an invocation request 
to B, which invokes the object 0, and 
returns the results to the thread at A. 
This scenario is similar to the remote 
procedure call found in other systems 
such as the V system,’ but it is more 
general because B does not have to be 
the node where 0, currently resides. 

The compute and data server scheme 
makes all objects accessible to all com- 
pute servers. The DSM coherence pro- 
tocol ensures that the data in an object 
is seen consistently by concurrent threads 
even if they are executing on different 
compute servers. The distributed syn- 
chronization support provided by data 
servers allows threads to synchronize 
their actions regardless of where they 
execute. 

Clouds implementation 
The Clouds implementation uses a 

minimalist approach towards operating 
system development (like the V system, 
Amoeba, and Mach 3.0). With this ap- 

proach, each level of the implementa- 
tion consists of only those functions 
that cannot be implemented at a higher 
level without a significant performance 
penalty. Traditional systems such as 
Unix provide most operating-system 
services in one big monolithic kernel. 
Unlike such systems, we differentiate 
between the operating-system kernel 
and the operating system itself. This 
approach makes the system modular, 
easy to understand, more portable, and 
convenient to enhance. High-level fea- 
tures can be implemented as user-level 
libraries, objects, or services that use 
the low-level mechanisms in the oper- 
ating system. Further, it provides a clean 
separation of policy from mechanisms; 
that is, the policies are implemented at 
a high level using the lower level mech- 
anisms. 

The current Clouds implementation 
has three levels. At the lowest level is 
the minimal kernel, Ra, which provides 
the mechanisms for managing basic re- 
sources, namely, processor and memo- 
ry. The next level up is a set of system 
objects, which are trusted-software mod- 
ules providing essential system servic- 
es. Finally, other noncritical services 
such as naming and spooling are imple- 
mented as user objects to complete the 
functionality of Clouds. 

The Ra kernel. This native minimal 
kernel supports virtual memory man- 
agement and low-level scheduling. Ra 
implements four abstractions: 

Segments. A segment is a variable- 
length sequence of uninterpreted bytes 
that exists either on the disk or in phys- 
ical memory. Segments have system- 
wide unique names and, once created, 
segments persist until they are explicit- 
ly destroyed. 

Virtualspaces. Avirtual spaceis the 
abstraction of an addressing domain 
and is a monotonically increasing range 
of virtual addresses with possible holes 
in the range. A segment can be mapped 
to a contiguous range of addresses in a 
virtual space. 

ZsiBas. An IsiBa is the abstraction 
of system activity and can be thought of 
asa lightweight process. (Its name comes 
from ancient Egyptian: Isi means light, 
and Ba means soul.) An IsiBa is simply 
a kernel resource that is associated with 
a stack to realize a schedulable entity. 
There are several types of stacks in the 
system (for example, kernel, interrupt, 

40 COMPUTER 



and user), and an IsiBa can use an in- 
stance of any stack type. A Clouds pro- 
cess is an IsiBa in conjunction with a 
user stack and a Ra virtual space. One 
or more Clouds processes are used to 
build a Clouds thread. IsiBas can also 
be used for a variety of purposes 
inside system objects, including inter- 
rupt services, event notification, and 
watchdogs. 

*Partitions. A partition is an entity 
that provides nonvolatile data storage 
for segments. A Clouds compute server 
has access to one or more partitions, but 
a segment belongs to exactly one parti- 
tion. To  access a segment, the partition 
containing the segment has to be con- 
tacted. The partition communicates with 
the data server where the segment is 
stored to page the segment in and out 
when necessary. Note that Ra only de- 
fines the interface to  the partitions. The 
partitions themselves are implemented 
as system objects. 

Figure 5 shows the relationship be- 
tween virtual spaces, segments, and par- 
titions. 

The implementation of Ra is separat- 
ed into machine-dependent and ma- 
chine-independent parts. All Ra com- 
ponents use the class mechanisms of 
C++, a scheme that enhances Ra’s ob- 
ject structure. Ra consists of 6,000 lines 
of machine-dependent C++ code, 6,000 
lines of machine-independent C++ code, 
and 1,000 lines of Sun (68020) assembly 
code. It currently runs on the Sun-3 
class machines. More details about the 
implementation are in Dasgupta et aL8 

System objects. Ra can be thought of 
as the conceptual motherboard. Oper- 
ating-system services are provided on 
top of Ra by system objects. System 
objects are independently compiled 
modules of code that have access to 
certain Ra-defined operations. Ra ex- 
ports these operations as kernel classes 
that are inherited by the system objects. 
Conceptually, the system objects are 
similar to Clouds objects that live in 
their own virtual space. However, for 
the sake of efficiency, system objects 
live in the kernelspace, are linked to the 
Ra kernel at system configuration time, 
and are not directly invocable from the 
user level. System objects are implicitly 
invoked through a system-call interface 
available to  user-level objects. 

Some system objects implement low- 
level functions inside the operating sys- 
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Figure 5. Virtual spaces, segments, and partitions. 

tem; these functions include the buffer 
manager, uniform I/O interface, and 
Ethernet driver. Other system objects 
implement high-level functions that are 
invoked indirectly as a result of a sys- 
tem call. These objects include the thread 
manager, object manager, and user 110 
manager. 

The following bulleted paragraphs 
describe some of the important system 
objects. 

Thread manager. As mentioned ear- 
lier, a thread can span machine bound- 
aries and is implemented as a collection 
of Clouds processes. There is some in- 
formation associated with a thread, such 
as the objects it may have visited, the 
user workstation from which it was cre- 
ated, and the windows on the user work- 
station with which it  has to communi- 
cate when I/O requests are made during 
the computation. The thread manager 
is responsible for the creation, termina- 
tion, naming, and bookkeeping neces- 
sary to  implement threads. 

User object manager. User-level 
objects are implemented through a sys- 
tem object called the object manager. 
The object manager creates and deletes 
objects and provides the object-invoca- 
tion facility. An object is stored in a Ra 
virtual space. The invocation of an ob- 
ject by a thread is handled mainly by the 
object manager in conjunction with the 
thread manager. Briefly, when a thread 
invokes an object, the stack of the in- 
voking thread is mapped into the same 

virtual address space as the object, and 
the thread is allowed to commence exe- 
cution at the entry point of the object. 
When the execution of the operation 
terminates, the object manager unmaps 
the thread stack from the object and 
remaps it in the object where the thread 
was previously executing. If there was 
no previous object, then the object man- 
ager informs the thread manager, and 
the thread is terminated. 

DSM clients and servers. DSM cli- 
ents and servers are partitions that in- 
teract with the data servers to  provide 
one-copy semantics for all object code 
and data used by the Clouds nodes. 
When node A needs a page of data, the 
DSM client partition requests it from 
the data server. If the page is currently 
in use in exclusive mode at node B ,  the 
data server forwards the request to  the 
DSM server at node B ,  which supplies 
the page to A .  The DSM server allows 
maintenance of both exclusive and 
shared locks on segments and provides 
other synchronization support. 

User I/O manager. This system ob- 
ject provides support for Clouds com- 
putations to read from and write to user 
terminals. A user terminal is a window 
on a Unix workstation. When a thread 
executes a write system call, the I/O 
manager routes the written data to the 
appropriate controlling terminal. Reads 
are handled similarly. The user U0 
manager is a combination of a Ra sys- 
tem object and a server on each Unix 
workstation. 
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Networking and RaTP. Two system 
objects handle networking: the Ether- 
net driver and the network protocol. 
All Clouds communication uses a trans- 
port layer protocol called the Ra trans- 
port protocol. RaTP is similar to the 
communication protocol VMTP9 used 
in the V-system, and provides efficient, 
reliable, connectionless message trans- 
actions. A message transaction is a send/ 
reply pair used for client-server type 
communications. RaTP has been im- 
plemented both on Ra (as a system ob- 
ject) and on Unix, allowing Clouds-to- 
Unix communication. 

Status and current performance. The 
Clouds implementation and features 
described thus far are in use. The kernel 
performance is good. Context-switch 
time is 0.15 milliseconds. The time to 
service a page fault when the page is 
resident on the same node costs 2.3 ms 
for a zero-filled, 8-kilobyte page; it costs 
1.5 ms for a nonzero-filled page. 

Networking is one of Clouds' most 
heavily used subsystems, especially since 
our current implementation uses disk- 
less compute servers. All objects are 
demand-paged to the servers over the 
network when used. The RaTP proto- 
col handles the reliable data transfer 
between all machines. The Ethernet 
round-trip time is 1.59 ms; this involves 
sending and receiving a short message 
(72 bytes) between two compute serv- 
ers. The RaTP reliable round-trip time 
is 3.56 ms. To transfer an 8-kilobyte 
page reliably from one machine to an- 
other costs 12.3 ms, compared to 70 ms 
using Unix file-transfer protocol and 50 
ms using Sun-NFS. 

Object invocation costs vary widely 
depending upon whether the object is 
currently in memory or has to be fetched 
from a data server. The maximum cost 
for a null invocation is 103 ms, while the 
minimum cost is 8 ms. Note that due to 
locality, the average cost is much closer 
to the minimum than the maximum. 

Clouds and distributed 
systems research 

The Clouds project includes continu- 
ing systems research on several topics. 

Using persistent objects. Persistent, 
shared, single-level storage is the cen- 
tral theme of the Clouds model. There- 

fore, the thrust of several related re- 
search projects was to effectively sup- 
port and exploit persistent memory in a 
distributed setting. Another area of re- 
search is in harnessing the distributed 
resources to speed up the execution of 
specific applications compared to a sin- 
gle-processor implementation. We sum- 
marize some of these projects here. 

Distributed programming. Using the 
DSM feature of Clouds, centralized al- 
gorithms can run as distributed compu- 
tations with the expectation of achiev- 
ing speedup. For example, sorting 
algorithms can use multiple threads to 
perform a sort, with each thread being 
executed at a different compute server, 
even though the data itself is contained 
in one object. The threads work on the 
data in parallel, and those parts of the 
data that are in use at a node migrate to 
that node automatically. We have shown 
that even though the data resides in a 
single object, the computation can be 
run in a distributed fashion without 
incurring a high overhead. These 
experiments are  helping us under- 
stand the trade-off between computa- 
tion and communication and the gran- 
ularity of computations that warrant 
distribution. 

Types of persistent memory. Persis- 
tent memory needs a structured way of 
specifying attributes, such as longevity 
and accessibility, for the language- level 
objects contained in Clouds objects. To 
this end we provide several types of 
memory in objects. The sharable, per- 
sistent memory is called per-object mem- 
ory. We also provide per-invocation 
memory that is not shared, yet is global 
to the routines in the object and lasts for 
the length of each invocation. Similarly, 
per-thread memory is global to the rou- 
tines in the object but specific to a par- 
ticular thread, and lasts until the thread 
terminates. Such a variety of memory 
structures provides powerful program- 
ming support in the Clouds system.1° 

Lisp programming environment. If the 
address space containing a Lisp envi- 
ronment can be made persistent, sever- 
al advantages accrue, including not hav- 
ing to save/load the environment on 
startup and shutdown. Further, invok- 
ing entry points in remote Lisp inter- 
preters allows interenvironment opera- 
tions that a r e  useful in building 
knowledge bases. Other features that 

naturally arise from the distributed na- 
ture of the system include concurrent 
evaluations and load sharing. An imple- 
mentation of the Clouds Lisp Distribut- 
ed Environment (Clide) is currently in 
experimental usage. 

Object-oriented programming envi- 
ronment. Persistent memory is being 
used to structure object-oriented pro- 
gramming environments. These envi- 
ronments support multigrained objects 
inside Clouds objects and visibilitylmi- 
gration for these language-defined ob- 
jects within Clouds objects. 

Reliability in distributed systems. One 
goal of Clouds is to provide a highly 
reliable computing environment. The 
issue of reliability has two parts: main- 
taining consistency of data in spite of 
failures and assuring forward progress 
for computations. A consistency prob- 
lem can occur when a thread executes at 
several nodes or several nodes supply 
objects to a thread because of the DSM 
abstraction. In that case, a node or com- 
munication link failure causes the com- 
putation results to be reflected at some 
nodes but not at others. A consistency 
mechanism should provide the atomic- 
ity property guaranteeing that a thread 
computation either completes at all 
nodes or has no effect on system state. 
Thus, if failures occur, the effects of all 
partially completed computations are 
undone. 

Consistency by itself does not prom- 
ise progress, because a failure undoes 
the partially completed work. To en- 
sure forward progress, objects and com- 
putation must be replicated at nodes 
with independent failure modes. The 
following aspects of the Clouds system 
address the consistency and progress 
requirements. 

Atomicity. The Clouds consistency- 
preservation mechanisms present one 
uniform object-thread abstraction that 
lets programmers specify a wide range 
of atomicity semantics. This scheme, 
called Invocation-Based Consistency 
Control, automatically locks and recov- 
ers persistent data. Locking and recov- 
ery are performed at the segment level, 
not at the object level. (An object can 
contain multiple data segments. The 
layout and number of segments are un- 
der the control of the user programmer. 
The segments may contain intersegment 
pointers, and objects support dynamic 
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memory allocation on each segment.) 
Because segments are user-defined, the 
user can control the granularity of lock- 
ing. Custom recovery and synchroniza- 
tion are still possible but are unneces- 
sary in many cases. 

Instead of mandating customization 
of synchronization and recovery for 
applications that do not need strict ato- 
micity, the new scheme supports a vari- 
ety of consistency-preserving mecha- 
nisms. The threads that execute are of 
two kinds, namely, s-threads (or stan- 
dard threads) and cp-threads (or consis- 
tency-preserving threads). The s-threads 
are not provided with any system-level 
locking or recovery. The cp-threads, on 
the other hand, are supported by well- 
defined locking and recovery features. 

When a cp-thread executes, all seg- 
ments it  reads are read-locked, and the 
segments it  updates are write-locked. 
The system automatically handles lock- 
ing at runtime. The updated segments 
are written by a two-phase commit mech- 
anism when the cp-thread completes. 
Because s-threads do not automatically 
acquire locks, nor are they blocked by 
any system-acquired locks, they can free- 
ly interleave with other s-threads and 
cp-threads. 

There are two varieties of cp-threads, 
namely, the gcp-thread and the lcp- 
thread. The gcp-thread semantics pro- 
vide global (heavyweight) consistency 
and the Icp-thread semantics provide 
local (lightweight) consistency. All 
threads are s-threadswhen created. Each 
operation has a static label that declares 
its consistency needs. The labels are S 
(for standard), LCP (for local consis- 
tency preserving), and GCP (for global 
consistency preserving). Various com- 
binations of different consistency labels 
in the same object (or in the same thread) 
lead to many interesting (as well as dan- 
gerous) execution-time possibilities, 
especially when s-threads update data 
being readhpdated by gcp or Icp threads. 
(For a discussion of the semantics, be- 
havior, and implementation of this 
scheme, see Chen and Dasgupta.”) 

Fault tolerance. Transaction-process- 
ing systems guarantee data consistency 
if computations do not complete (due 
to failures). However, they do not guar- 
antee computational success. The Clouds 
approach to fault-tolerant or resilient 
computations is called parallel execu- 
tion threads. PET tries to provide unin- 
terrupted processing in the face of pre- 

PET #1 PET #2 
Replicated 
copies 1 -  1 

processing I I 
Figure 6. Parallel execution threads. 

existing (static) failures, as well as sys- 
tem and software failures that occur 
while a resilient computation is in 
progress (dynamic failures).12 

To obtain these properties, the basic 
requirements of the system are 

replication of objects, for tolerating 
static and dynamic failures; 
replication of computation, for tol- 
erating dynamic failures; and 
An atomic commit mechanism to 
ensure correctness. 

The PET system works by first repli- 
cating all critical objects at different 
nodes in the system. The degree of rep- 
lication depends on the degree of resil- 
ience required. 

Initiating a resilient computation cre- 
ates separate replicated threads (gcp- 
threads) on a number of nodes. The 
number of nodes is another parameter 
provided by the user and reflects the 
degree of resilience required. The sep- 
arate threads (or PETS) run indepen- 
dently as if there were no replication. A 
thread invokes a replicated object by 
choosing certain copies of the object, as 
shown in Figure 6. The replica selection 
algorithm tries to ensure that separate 
threads execute at different nodes to 
minimize the number of threads affect- 
ed by afailure. After one or more threads 
complete successfully by executing at 
operational nodes, one thread is chosen 
to be the terminating thread. All up- 
dates made by this thread are propagat- 
ed to a quorum of replicas, if available. 

If there is a failure in committing this 
thread, another completed thread is 
chosen. If the commit process succeeds, 
all the remaining threads are aborted. 

This method allows a trade-off in the 
amount of resources used (that is, num- 
ber of parallel threads started for each 
computation) and the desired degree of 
resilience (that is, number of failures 
the computation can tolerate, while the 
computation is in progress). 

he goal of Clouds was to 
build a general-purpose, distrib- 
uted, computing environment 

suitable for a wide varietyof users in the 
computer science community. We have 
developed a native operating system 
and an application-development envi- 
ronment that is being used for a variety 
of distributed applications. 

Providing a conduit between Clouds 
and Unix saved us considerable effort. 
We did not have to port program devel- 
opment and environment tools (such as 
editors and window systems) to a new 
operating system, and we can develop 
applications that harness the new sys- 
tem’s data and computation distribu- 
tion capabilities in the familiar Unix 
environment. The Clouds system has 
been a fruitful exercise in providing an 
experimental platform for determining 
the worthiness of the object-thread par- 
adigm. = 
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