
Operating System

Partha Dasgupta, Arizona State University
Richard J. LeBlanc, Jr., Mustaque Ahamad, and Umakishore Ramachandran,
Georgia Institute of Technology

Clouds is a general-
purpose operating

system for distributed
environments. It is
based on an object-

thread model adapted
from object-oriented

programming.

distributed operating system is a control program running on a set of
computers that are interconnected by a network. This control program
unifies the different computers into a single integrated compute and

storage resource. Depending on the facilities it provides, a distributed operating
system is classified as general purpose, real time, or embedded.

The need for distributed operating systems stems from rapid changes in the
hardware environment in many organizations. Hardware prices have fallen rapidly
in the last decade, resulting in the proliferation of workstations, personal comput-
ers, data and compute servers, and networks. This proliferation has underlined the
need for efficient and transparent management of these physically distributed
resources (see sidebar titled “Distributed operating systems”).

This article presents a paradigm for structuring distributed operating systems,
the potential and implications this paradigm has for users, and research directions
for the future.

Two paradigms

Operating system structures for a distributed environment follow one of two
paradigms: message-based or object-based. Message-based operating systems
place a message-passing kernel on each node and use explicit messages to support
interprocesses communication. The kernel supports both local communication
(between processes on the same node) and nonlocal or remote communication,
which is sometimes implemented through a separate network-manager process. In
a traditional system such as Unix, access to system services is requested via
protected procedure calls, whereas in a message-based operating system, the
requests are via message passing. Message-based operating systems are attractive
for structuring operating systems because the policy, which is encoded in the server
processes, is separate from the mechanism implemented in the kernel.

34 0018-9162/91/1100-0034$01.00 Q 1991 IEEE COMPUTER

Object-based distributed operating
systems encapsulate services and re-
sources into entities called objects. Ob-
jects are similar to instances of abstract
data types. They are written as individ-
ual modules composed of the specific
operations that define the module in-
terfaces. Clients request access to sys-
tem services by invoking the appropri-
ate system object. The invocation
mechanism is similar to a protected pro-
cedure call. Objects encapsulate func-
tionality much as server processes do in
message-based systems (see sidebar ti-
tled “What can objects do?”).

Among the well-known message-
based systems are the V-system ’ devel-
oped at Stanford University and the
Amoeba system2 developed at Vrije
University in Amsterdam, Netherlands.
These systems provide computation and
data services via servers that run on
machines linked by a network.

Most object-based systems are built
on top of an existing operating system,
typically Unix. Examples of such sys-
tems include Argus: Cronus,4 and Eden?
These systems support objects that re-
spond to invocations sent via the mes-
sage-passing mechanisms of Unix.

Mach6 is an operating system with
distinctive characteristics. A Unix-com-
patible system built to be machine-
independent, it runs on a large variety
of uniprocessors and multiprocessors.
It has a small kernel that handles the
virtual memory and process scheduling,
and it builds other services on top of the
kernel. Mach implements mechanisms
that provide distribution, especially
through a facility called memory ob-
jects, for sharing memory between sep-
arate tasks executing on possibly differ-
ent machines.

What can objects do?

Distributed operating systems

Networked computing environments are now commonplace. Because powerful
desktop systems have become affordable, most computing environments are
now composed of combinations of workstations and file servers. Such distributed
environments, however, are not easy to use or administer.

Using a collection of computers connected by a local area network often poses
problems of resource sharing and environment integration that are not present in
centralized systems. To keep user productivity high, the distribution must be
transparent and the environment must appear centralized. The short-term solu-
tion adopted by current commercial software extends conventional operating sys-
tems to allow transparent file access and sharing. For example, Sun added Net-
work File System to provide distributed file access capabilities in Unix. Sun-NFS
has become the industry-stangard distributed file system for Unix systems. The
small systems world, dominated by IBM PC-compatible and Apple computers,
has software packages that perform multitasking and network-transparent file ac-
cess - for example, Microsoft Windows 3.0, Novel1 Netware, Appletalk, and PC-
NFS.

A better long-term solution is the design of an operating system that considers
the distributed nature of the hardware architecture at all levels. A distributed op-
erating system is such a system. It makes a collection of distributed computers
look and feel like one centralized system, yet keeps intact the advantages of dis-
tribution. Message-based and object-based systems are two paradigms for struc-
turing such operating systems.

Clouds approach
Clouds is a distributed operating sys-

tem that integrates a set of nodes into a
conceptually centralized system. The
system is composed of compute servers,
data servers, and user workstations. A
computeserver is a machine that is avail-
able for use as a computational engine.
A data server is a machine that func-
tions as a repository for long-lived (that
is. persistent) data. A user workstation
is a machine that provides a program-
ming environment for developing ap-
plications and an interface with the com-

Conceptually, an object is an encapsulation of data and a
set of operations on the data. The operations are performed
by invoking the object and can range from simple data-ma-
nipulation routines to complex algorithms, from shared library
accesses to elaborate system services.

Objects can also provide specialized services. For exam-
ple, an object can represent a sensing device, and an invo-
cation can gather data from the device without knowing
about the mechanisms involved in accessing it - or its loca-
tion. Similarly, an object that handles terminal or file 110 con-
tains defined read and write operations.

pute and data servers for executing those
applications on the servers. Note that
when a disk is associated with a com-
pute server, it can also act as a data
server for other compute servers. Clouds
is a nativeoperatingsystem that runson
top of a native kernel called Ra (after
the Egyptian sun god). It currently runs
on Sun-3/50 and Sun-3/60 computers
and cooperates with Sun Sparcstations
(running Unix) that provide user inter-
faces.

Clouds is a general-purpose operat-
ing system. That is, it is intended to
support all types of languages and ap-

Objects can be active. An active object has one or more
processes associated with it that communicate with the exter-
nal world and handle housekeeping chores internal to the ob-
ject. For example, a process can monitor an object’s environ-
ment and can inform some other entity (another object) when
an event occurs. This feature is particularly useful in objects
that manage sensor-monitoring devices.

be used for almost every need - from general-purpose pro-
gramming to specialized applications - yet provide a simple
procedural interface to the rest of the system.

Objects are a simple concept with a major impact. They can

November 1991 35

Figure 1. A Clouds object.

plications, distributed or not. All appli-
cations can view the system as a mono-
lith, but distributed applications may
choose to view the system as composed
of several separate compute and data
servers. Each compute facility in Clouds
has access to all system resources.

The system structure is based on an
object-thread model. The object-thread
model is an adaptation of the popular
object-oriented programming model,
which structures a software system as a
set of objects. Each object is an instance
of an abstract data type consisting of
data and operations on the data. The
operations are called methods. The ob-
ject type is defined by a class. A class
can have zero or more instances, but an
instance is derived from exactly one
class. Objects respond to messages. Send-

ing a message to an object causes the
object to execute a method, which in
turn accesses or updates data stored in
the object and may trigger sending mes-
sages to other objects. Upon comple-
tion, the method sends a reply to the
sender of the message.

Clouds has a similar structure, imple-
mented at. the operating system level.
Clouds objects are large-grained encap-
sulations of code and data that are con-
tained in an entire virtual-address space.
An object is an instance of a class, and a
class is a compiled program module.
Clouds objects respond to invocations.
An invocation results from a thread of
execution entering the object to exe-
cute an operation (or method) in the
object.

Clouds provides objects to support

an abstraction of storage and threads to
implement computations. This decou-
ples computation and storage, thus main-
taining their orthogonality. In addition,
the object-thread model unifies the treat-
ment of I/O, interprocess communica-
tion, information sharing, and long-term
storage. This model has been further
augmented to support atomicity and re-
liable execution of computations.

Multics was the starting point for many
ideas found in operating systems today,
and Clouds is no exception. These ideas
include sharable memory segments and
single-level stores using mapped files.
Hydra first implemented the use of ob-
jects as a system-structuring concept.
Hydra ran on a multiprocessor and pro-
vided named objects for operating-
system services.

Clouds paradigm
This section elaborates on the object-

thread paradigm of Clouds, illustrating
the paradigm with examples of its use.

Objects. A Clouds object is a persis-
tent (or nonvolatile) virtual address
space. Unlike virtual-address spaces in
conventional operating systems, the con-
tents of a Clouds object are long-lived.
That is, a Clouds object exists forever
and survives system crashes and shut-
downs unless explicitly deleted - like a
file. As the following description of ob-
jects shows, Clouds objects are some-
what “heavyweight,” that is, they are
best suited for storage and execution of
large-grained data and programs because
of the overhead associated with invoca-
tion and storage of objects.

Unlike objects in some object-based
operating systems, a Clouds object does
not contain a process (or thread). Thus,
Clouds objects are passive. Since con-
tents of a virtual address space are not
accessible from outside the address space,
the memory (data) in an object is acces-
sible only by the code in the object.

A Clouds object contains user-defined
code, persistent data, a volatile heap for
temporary memory allocation, and a
persistent heap for allocating memory
that becomes a part of the object’s per-
sistent data structures (see Figure 1).
Recall that the data in the object can be
manipulated only from within the ob-
ject. Data can pass into the object when
an entry point is invoked (input param-
eters). Data can pass out of the object

36 COMPUTER

when this invocation terminates (result
parameters).

Each Clouds object has a global sys-
tem-level name called a sysname, which
is a bit string that is unique over the
entire distributed system. Therefore, the
sysname-based naming scheme in Clouds
creates a uniform, flat, system-name
space for objects. Users can define high-
level names for objects - a naming
service translates them to sysnames.
Objects are physically stored in data
servers but are accessible from all com-
pute servers in the system, thus provid-
ing location transparency to the users.

Threads. The only form of user activ-
ity in the Clouds system is the user
thread. A thread is a logical path of
execution that traverses objects and
executes the code in them. Thus, unlike
a process in a conventional operating
system, a Clouds thread is not bound to
a single address space. A thread is cre-
ated by an interactive user or under
program control. When a thread exe-
cutes an entry point in an object, it
accesses or updates the persistent data
stored in it. In addition, the code in the
object may invoke operations in other
objects. In such an event. the thread
temporarily leaves the calling object,
enters the called object, and commenc-
es execution there. The thread returns
to the calling object after the execution
in the called object completes and re-
turns results. These arguments and re-
sults are strictly data; they cannot be
addresses. This restriction is mandatory
because addresses in one object are
meaningless in the context of another
object. In addition, object invocations
can be nested as well as recursive. After
the thread completes execution of the
operation it was created to execute, it
terminates.

The nature of Clouds objects prohib-
its a thread from accessing any data
outside the current address space (ob-
ject) in which it is executing. Control
transfer between address spaces occurs
through object invocation, and data
transfer between address spaces occurs
through parameter passing.

Several threads can simultaneously
enter an object and execute concurrent-
ly. Multiple threads executing in the
same object share the contents of the
object’s address space. Figure 2 shows
thread executions in the Clouds object
spaces. The programmer uses system-
supported primitives such as locks or

November 1991

~~ ~ ~~ ~~

Distributed object space (persistent, virtual memory)

Stack

”r Thread

2J
Stack

Figure 2. Distributed object memory.

semaphores to handle concurrency con-
trol within the object.

Interaction between objects and
threads. The structure created by a sys-
tem, composed of objects and threads,
has several interesting properties.
Inter-object interfaces are procedural.
Object invocations are equivalent to
procedure calls on long-lived modules
that do not share global data. The
invocations work across machine
boundaries.

The storage mechanism used in Clouds
differs from those found in convention-
al operating systems. Conventionally,
files are used to store persistent data.
Memory is associated with processes
and is volatile (that is, the contents of
memory associated with a process are
lost when the process terminates). Ob-
jects in Clouds unify the concepts of
persistent storage and memory to cre-
ate a persistent address space. This uni-
fication makes programming simpler.
Persistent objects provide a structured
single-level store that is cosmetically
similar to mapped files in Multics and
SunOS.

Some systems use message-passing
for communicating shared data and co-
ordinating computations. Clouds shares

data by placing the data in an object.
Computations that need access to shared
data invoke the object where the data
exists. Clouds does not support messag-
es and files at the operating system lev-
el, although it does allow objects to
simulate them if necessary (see sidebar
titled “No files? No messages?”on the
next page).

In a message-based system, the user
must determine the desired level of
concurrency at the time of writing an
application, and program it as a certain
number of server processes. The object-
thread model of Clouds eliminates this
requirement. An object can be written
from the viewpoint of the functionality
it is meant to provide, rather than the
actual level of concurrency it may have
to support. At execution time, the level
of concurrency is specified by creating
concurrent threads to execute in the
objects that compose the user-level
application. The application objects,
however, must be written to support
concurrent executions, using synchro-
nization primitives such as semaphores
and locks.

To summarize:

The Clouds system is composed of
named address spaces called objects.

37

No files? No messages?

The persistent objects supported in an operating system
like Clouds provide a structured permanent storage mecha-
nism that can be used for a variety of purposes, including the
simulation of files and messages. An object can store data in
any form and invocations can be used to

Manipulate or process the stored data,
Ship data in and out of the object in forms not necessarily

Allow controlled concurrent access to shared data, without
the same as those used for storage, and

regard to data location.

There is no need for files in a persistent programming envi-
ronment. Conventional systems use files as byte-sequential
storage of long-lived data. When persistent shared memory is
available, there is no need to convert data into byte-sequen-
tial form, store it in files, and later retrieve and reconvert it.

Objects provide data storage, data ma-
nipulation, data sharing, concurrency
control, and synchronization.

Control flow is achieved by threads
invoking objects.

Data flow is achieved by parameter
passing.

Programming in the Clouds model.
For the programmer, Clouds has two
kinds of objects: classes and instances.
A class is a template used to generate
instances. An instance is an object invo-
cable by user threads. Thus, to write
application programs for Clouds, a pro-
grammer writes one or more Clouds
classes that define the application code
and data. The programmer can then

The data can be kept in memory in a form controlled by the
programs (for example, lists or trees), even when the data is
not in use.

In fact, objects that store byte-sequential data can simulate
files, and they can have read and write invocations defined to
access this data. Such an object will look like a file, even
though the operating system does not explicitly support files.

The same is true for messages. The functional equivalence
of messages and shared memory is well known. If desired, a
buffer object with defined send and receive invocations can
serve as a port structure between two (or more) communicat-
ing processes.

We feel that files, messages, and disk I/O are artifacts of
hardware structure. Given an object implementation, these
features are neither necessary nor attractive. New program-
ming paradigms based on object-oriented styles use persis-
tent memory effectively. They do not use files and messages.

create the requisite number of instanc-
es of these classes. The application is
then executed by creating a thread to
execute the top-level invocation that
runs the application.

The following is a simple example of
programming in the Clouds system. The
object Rectangle consists of x and y
dimensions of a rectangle. The object
has two entry points, one for setting the
size of the rectangle and the other for
computing the area. The object defini-
tion is shown in Figure 3a.

Once the class is compiled, any num-
ber of instances can be created either
from the command line or via another
object. Suppose the Rectangle class is
instantiated into an object called RectOl.

clouds-class rectangle;
int x, y;
entry rectangle;
entry size (int x, y)
entry int area ();
end-class

rectangle-ref rect;

rect.bind (“RectOl ”);

rectsize (5 , 10);
printf(“%d\n” rect.area());

//persistent data for rect.
//constructor
//set size of rect.
//return area of rect.

//“rect” is a class that refers to
//an object of type rectangle.

//call to name server,
//binds sysname to RectOl
//invocation of RectOl
Ilwill print 50

(b)

Figure 3. Example code for Clouds.

38

Now RectOl.size can be used to set the
size and RectOl.area can be called to
return the area of the rectangle. A com-
mand in the Clouds command line in-
terpreter can call the entry point in the
object. Entry points can also be invoked
in the program, allowing one object to
call another.

Objects have user names, which are
assigned by the programmer when ob-
jects are created (compiled or instanti-
ated). A name server then translates
the user name to a sysname. (Recall
that a sysname is a unique name for an
object, which is needed for invoking the
object.) The code fragment in Figure 3b
details the steps in accessing the Clouds
object Recto1 and invoking operations
on it.

Clouds provides a variety of mecha-
nisms to programmers. These include
registering user-defined names of ob-
jects with the name server, looking up
names using the name server, invoking
objects both synchronously and asyn-
chronously, and synchronizing threads.

I/O to the user console is handled by
read and write routines (and by printf
and scanf library calls). These routines
read/write ASCII strings to and from
the controlling user terminal, irrespec-
tive of the actual location of the object
or the thread.

User objects and their entry points
are typed by the language definition.
The compiler performs static type-check-
ing on the object and entry point types
at compile time. It performs no runtime
type checking. Clouds objects are coarse-

COMPUTER

grained, unlike the fine-grained entities
found in such object-oriented program-
ming languages as Smalltalk. Since an
object invocation in Clouds is at least an
order of magnitude more expensive than
a simple procedure call, it is appropri-
ate to use a Clouds object as a module
that may contain several fine-grained
entities. These fine-grained objects are
completely contained within the Clouds
object and are not visible to the operat-
ing system.

Currently, we support two languages
in the Clouds operating system. DC++
is an extension of C++ that systems
programmers use. Distributed Eiffel is
an extension of Eiffel that targets appli-
cation developers. The design of both
DC++ and Distributed Eiffel supports
persistent fine-grained and large-grained
objects, invocations, thread creation,
synchronization, and user-level object
naming.

Clouds environment

The Clouds system integrates a set of
homogeneous machines into one seam-
less environment that behaves as one
large computer. The system configura-
tion is configured as three logical cate-
gories of machines, each supporting a
different logical function. These are
compute servers, data servers, and user
workstations.

The system’s core consists of a set of
homogeneous machines of the compute
server category. Compute servers do
not have any secondary storage. These
machines provide an execution service
for threads. Data servers provide sec-
ondary storage. They store Clouds ob-
jects and supply the objects’ code and
data to the compute servers. The data
servers also support the distributed syn-
chronization functions. The third ma-
chine category, the user workstation,
provides user access to Clouds compute
servers. Compute servers, in turn, know
how and when to access data servers.

The logical machine categories do not
require a one-to-one scheme for map-
ping to physical machines. Although a
diskless machine can function only as a
compute server, a machine with a disk
can simultaneously act as a compute
and data server. This enhances comput-
ing performance, since data accessed
via local disk is faster than data access-
ed over a network. However, in our
prototype system, shown in Figure4, we

November 1991

Network
f t +

1

Objects -’: I

Figure 4. Clouds system architecture.

use a one-to-one mapping to simplify
the system’s implementation and con-
figuration.

A suite of programs that run on top of
Unix on Sun workstations provide the
user interface to Clouds. These pro-
grams include Distributed Eiffel and
DC++ compilers, a Clouds user shell
(under X Windows), a user I/O manag-
er, and various utilities. The user inter-
face with these programs is through the
familiar Unix utilities (including Unix
editors).

User environment. A user writes
Clouds programs in DC++ or Distribut-
ed Eiffel and compiles them on the Unix
workstation. The compiler loads the
generated classes on a Clouds data serv-
er. Now these classes are available to all
Clouds compute servers. Any node (or
user on a Unix machine) can create
instances of these classes and generate
invocations to the objects thus created.
Note that once created, the objects be-
come part of the persistent object mem-
ory and can be invoked until they are
explicitly deleted.

A user invokes an Clouds object by
specifying the object, the entry point,
and the arguments to the Clouds shell.
The shell sends an invocation request to
a compute server, and the invocation
proceeds under Clouds using a Clouds
thread. The user communicates to the
thread via a terminal window in the X
Window System. All output generated
by the thread (regardless of where it is
executing) appears on the user terminal
window, and input to the thread is pro-
vided by typing in the window.

System environment. As we men-
tioned earlier, the hardware environ-
ments consists of compute servers and
data servers with some nodes providing
both functions. Starting a user-level
computation on Clouds involves first
selecting a compute server to execute
the thread. This is a scheduling decision
and may depend on such factors as sched-
uling policies, the load at each compute
server, and the availability of resources
needed for the computation. Once this
decision has been made, the second task
is to bring into the selected compute

39

Distributed shared O r y

server the object in which the thread
executes. This requires a remote-pag-
ing facility. Coupled with this require-
ment is the fact that all objects are po-
tentially shared in the Clouds model;
therefore, the entity that provides the
remote-paging facility must also main-
tain the consistency of shared pages.
This is satisfied in Clouds by a mecha-
nism called distributed shared memory.
DSM supports the notion of shared
memory on a nonshared memory (dis-
tributed) architecture (see sidebar ti-
tled “Distributed shared memory”). The
data servers execute a coherence proto-
col that preserves single-copy seman-
tics for all the objects.’With DSM, con-
current invocation of the same object
by threads at different compute servers
is possible. Such a scenario would result
in multiple copies of the same object
existing at more than one compute serv-
er with DSM providing the consistency
maintenance.

Suppose a thread is created on com-
pute server A to invoke object 0,. The
compute server retrieves a header for
the object from the appropriate data
server, sets up the object space, and
starts the thread in that space. As the
thread executes in the object space, the
code and data of the object accessed by
the thread is demand-paged from the
data servers (possibly over the network).

If the thread executing in 0, gener-
ates an invocation to object 0,, the sys-
tem may choose to execute the invoca-

tion on either A itself or on a different
compute server, B. In the former case, if
the required pages of object 0, are at
other nodes, they have to be brought to
node A using DSM. Once the object has
been brought into A, the invocation
proceeds the same way as when 0, re-
sides at A. On the other hand, the sys-
tem may choose to execute the invoca-
tion on compute server B . In this case,
the thread sends an invocation request
to B, which invokes the object 0, and
returns the results to the thread at A.
This scenario is similar to the remote
procedure call found in other systems
such as the V system,’ but it is more
general because B does not have to be
the node where 0, currently resides.

The compute and data server scheme
makes all objects accessible to all com-
pute servers. The DSM coherence pro-
tocol ensures that the data in an object
is seen consistently by concurrent threads
even if they are executing on different
compute servers. The distributed syn-
chronization support provided by data
servers allows threads to synchronize
their actions regardless of where they
execute.

Clouds implementation
The Clouds implementation uses a

minimalist approach towards operating
system development (like the V system,
Amoeba, and Mach 3.0). With this ap-

proach, each level of the implementa-
tion consists of only those functions
that cannot be implemented at a higher
level without a significant performance
penalty. Traditional systems such as
Unix provide most operating-system
services in one big monolithic kernel.
Unlike such systems, we differentiate
between the operating-system kernel
and the operating system itself. This
approach makes the system modular,
easy to understand, more portable, and
convenient to enhance. High-level fea-
tures can be implemented as user-level
libraries, objects, or services that use
the low-level mechanisms in the oper-
ating system. Further, it provides a clean
separation of policy from mechanisms;
that is, the policies are implemented at
a high level using the lower level mech-
anisms.

The current Clouds implementation
has three levels. At the lowest level is
the minimal kernel, Ra, which provides
the mechanisms for managing basic re-
sources, namely, processor and memo-
ry. The next level up is a set of system
objects, which are trusted-software mod-
ules providing essential system servic-
es. Finally, other noncritical services
such as naming and spooling are imple-
mented as user objects to complete the
functionality of Clouds.

The Ra kernel. This native minimal
kernel supports virtual memory man-
agement and low-level scheduling. Ra
implements four abstractions:

Segments. A segment is a variable-
length sequence of uninterpreted bytes
that exists either on the disk or in phys-
ical memory. Segments have system-
wide unique names and, once created,
segments persist until they are explicit-
ly destroyed.

Virtualspaces. Avirtual spaceis the
abstraction of an addressing domain
and is a monotonically increasing range
of virtual addresses with possible holes
in the range. A segment can be mapped
to a contiguous range of addresses in a
virtual space.

ZsiBas. An IsiBa is the abstraction
of system activity and can be thought of
asa lightweight process. (Its name comes
from ancient Egyptian: Isi means light,
and Ba means soul.) An IsiBa is simply
a kernel resource that is associated with
a stack to realize a schedulable entity.
There are several types of stacks in the
system (for example, kernel, interrupt,

40 COMPUTER

and user), and an IsiBa can use an in-
stance of any stack type. A Clouds pro-
cess is an IsiBa in conjunction with a
user stack and a Ra virtual space. One
or more Clouds processes are used to
build a Clouds thread. IsiBas can also
be used for a variety of purposes
inside system objects, including inter-
rupt services, event notification, and
watchdogs.

*Partitions. A partition is an entity
that provides nonvolatile data storage
for segments. A Clouds compute server
has access to one or more partitions, but
a segment belongs to exactly one parti-
tion. To access a segment, the partition
containing the segment has to be con-
tacted. The partition communicates with
the data server where the segment is
stored to page the segment in and out
when necessary. Note that Ra only de-
fines the interface to the partitions. The
partitions themselves are implemented
as system objects.

Figure 5 shows the relationship be-
tween virtual spaces, segments, and par-
titions.

The implementation of Ra is separat-
ed into machine-dependent and ma-
chine-independent parts. All Ra com-
ponents use the class mechanisms of
C++, a scheme that enhances Ra’s ob-
ject structure. Ra consists of 6,000 lines
of machine-dependent C++ code, 6,000
lines of machine-independent C++ code,
and 1,000 lines of Sun (68020) assembly
code. It currently runs on the Sun-3
class machines. More details about the
implementation are in Dasgupta et aL8

System objects. Ra can be thought of
as the conceptual motherboard. Oper-
ating-system services are provided on
top of Ra by system objects. System
objects are independently compiled
modules of code that have access to
certain Ra-defined operations. Ra ex-
ports these operations as kernel classes
that are inherited by the system objects.
Conceptually, the system objects are
similar to Clouds objects that live in
their own virtual space. However, for
the sake of efficiency, system objects
live in the kernelspace, are linked to the
Ra kernel at system configuration time,
and are not directly invocable from the
user level. System objects are implicitly
invoked through a system-call interface
available to user-level objects.

Some system objects implement low-
level functions inside the operating sys-

November 1991

I
Figure 5. Virtual spaces, segments, and partitions.

tem; these functions include the buffer
manager, uniform I/O interface, and
Ethernet driver. Other system objects
implement high-level functions that are
invoked indirectly as a result of a sys-
tem call. These objects include the thread
manager, object manager, and user 110
manager.

The following bulleted paragraphs
describe some of the important system
objects.

Thread manager. As mentioned ear-
lier, a thread can span machine bound-
aries and is implemented as a collection
of Clouds processes. There is some in-
formation associated with a thread, such
as the objects it may have visited, the
user workstation from which it was cre-
ated, and the windows on the user work-
station with which it has to communi-
cate when I/O requests are made during
the computation. The thread manager
is responsible for the creation, termina-
tion, naming, and bookkeeping neces-
sary to implement threads.

User object manager. User-level
objects are implemented through a sys-
tem object called the object manager.
The object manager creates and deletes
objects and provides the object-invoca-
tion facility. An object is stored in a Ra
virtual space. The invocation of an ob-
ject by a thread is handled mainly by the
object manager in conjunction with the
thread manager. Briefly, when a thread
invokes an object, the stack of the in-
voking thread is mapped into the same

virtual address space as the object, and
the thread is allowed to commence exe-
cution at the entry point of the object.
When the execution of the operation
terminates, the object manager unmaps
the thread stack from the object and
remaps it in the object where the thread
was previously executing. If there was
no previous object, then the object man-
ager informs the thread manager, and
the thread is terminated.

DSM clients and servers. DSM cli-
ents and servers are partitions that in-
teract with the data servers to provide
one-copy semantics for all object code
and data used by the Clouds nodes.
When node A needs a page of data, the
DSM client partition requests it from
the data server. If the page is currently
in use in exclusive mode at node B , the
data server forwards the request to the
DSM server at node B , which supplies
the page to A . The DSM server allows
maintenance of both exclusive and
shared locks on segments and provides
other synchronization support.

User I/O manager. This system ob-
ject provides support for Clouds com-
putations to read from and write to user
terminals. A user terminal is a window
on a Unix workstation. When a thread
executes a write system call, the I/O
manager routes the written data to the
appropriate controlling terminal. Reads
are handled similarly. The user U0
manager is a combination of a Ra sys-
tem object and a server on each Unix
workstation.

41

Networking and RaTP. Two system
objects handle networking: the Ether-
net driver and the network protocol.
All Clouds communication uses a trans-
port layer protocol called the Ra trans-
port protocol. RaTP is similar to the
communication protocol VMTP9 used
in the V-system, and provides efficient,
reliable, connectionless message trans-
actions. A message transaction is a send/
reply pair used for client-server type
communications. RaTP has been im-
plemented both on Ra (as a system ob-
ject) and on Unix, allowing Clouds-to-
Unix communication.

Status and current performance. The
Clouds implementation and features
described thus far are in use. The kernel
performance is good. Context-switch
time is 0.15 milliseconds. The time to
service a page fault when the page is
resident on the same node costs 2.3 ms
for a zero-filled, 8-kilobyte page; it costs
1.5 ms for a nonzero-filled page.

Networking is one of Clouds' most
heavily used subsystems, especially since
our current implementation uses disk-
less compute servers. All objects are
demand-paged to the servers over the
network when used. The RaTP proto-
col handles the reliable data transfer
between all machines. The Ethernet
round-trip time is 1.59 ms; this involves
sending and receiving a short message
(72 bytes) between two compute serv-
ers. The RaTP reliable round-trip time
is 3.56 ms. To transfer an 8-kilobyte
page reliably from one machine to an-
other costs 12.3 ms, compared to 70 ms
using Unix file-transfer protocol and 50
ms using Sun-NFS.

Object invocation costs vary widely
depending upon whether the object is
currently in memory or has to be fetched
from a data server. The maximum cost
for a null invocation is 103 ms, while the
minimum cost is 8 ms. Note that due to
locality, the average cost is much closer
to the minimum than the maximum.

Clouds and distributed
systems research

The Clouds project includes continu-
ing systems research on several topics.

Using persistent objects. Persistent,
shared, single-level storage is the cen-
tral theme of the Clouds model. There-

fore, the thrust of several related re-
search projects was to effectively sup-
port and exploit persistent memory in a
distributed setting. Another area of re-
search is in harnessing the distributed
resources to speed up the execution of
specific applications compared to a sin-
gle-processor implementation. We sum-
marize some of these projects here.

Distributed programming. Using the
DSM feature of Clouds, centralized al-
gorithms can run as distributed compu-
tations with the expectation of achiev-
ing speedup. For example, sorting
algorithms can use multiple threads to
perform a sort, with each thread being
executed at a different compute server,
even though the data itself is contained
in one object. The threads work on the
data in parallel, and those parts of the
data that are in use at a node migrate to
that node automatically. We have shown
that even though the data resides in a
single object, the computation can be
run in a distributed fashion without
incurring a high overhead. These
experiments are helping us under-
stand the trade-off between computa-
tion and communication and the gran-
ularity of computations that warrant
distribution.

Types of persistent memory. Persis-
tent memory needs a structured way of
specifying attributes, such as longevity
and accessibility, for the language- level
objects contained in Clouds objects. To
this end we provide several types of
memory in objects. The sharable, per-
sistent memory is called per-object mem-
ory. We also provide per-invocation
memory that is not shared, yet is global
to the routines in the object and lasts for
the length of each invocation. Similarly,
per-thread memory is global to the rou-
tines in the object but specific to a par-
ticular thread, and lasts until the thread
terminates. Such a variety of memory
structures provides powerful program-
ming support in the Clouds system.1°

Lisp programming environment. If the
address space containing a Lisp envi-
ronment can be made persistent, sever-
al advantages accrue, including not hav-
ing to save/load the environment on
startup and shutdown. Further, invok-
ing entry points in remote Lisp inter-
preters allows interenvironment opera-
tions that a r e useful in building
knowledge bases. Other features that

naturally arise from the distributed na-
ture of the system include concurrent
evaluations and load sharing. An imple-
mentation of the Clouds Lisp Distribut-
ed Environment (Clide) is currently in
experimental usage.

Object-oriented programming envi-
ronment. Persistent memory is being
used to structure object-oriented pro-
gramming environments. These envi-
ronments support multigrained objects
inside Clouds objects and visibilitylmi-
gration for these language-defined ob-
jects within Clouds objects.

Reliability in distributed systems. One
goal of Clouds is to provide a highly
reliable computing environment. The
issue of reliability has two parts: main-
taining consistency of data in spite of
failures and assuring forward progress
for computations. A consistency prob-
lem can occur when a thread executes at
several nodes or several nodes supply
objects to a thread because of the DSM
abstraction. In that case, a node or com-
munication link failure causes the com-
putation results to be reflected at some
nodes but not at others. A consistency
mechanism should provide the atomic-
ity property guaranteeing that a thread
computation either completes at all
nodes or has no effect on system state.
Thus, if failures occur, the effects of all
partially completed computations are
undone.

Consistency by itself does not prom-
ise progress, because a failure undoes
the partially completed work. To en-
sure forward progress, objects and com-
putation must be replicated at nodes
with independent failure modes. The
following aspects of the Clouds system
address the consistency and progress
requirements.

Atomicity. The Clouds consistency-
preservation mechanisms present one
uniform object-thread abstraction that
lets programmers specify a wide range
of atomicity semantics. This scheme,
called Invocation-Based Consistency
Control, automatically locks and recov-
ers persistent data. Locking and recov-
ery are performed at the segment level,
not at the object level. (An object can
contain multiple data segments. The
layout and number of segments are un-
der the control of the user programmer.
The segments may contain intersegment
pointers, and objects support dynamic

42 COMPUTER

memory allocation on each segment.)
Because segments are user-defined, the
user can control the granularity of lock-
ing. Custom recovery and synchroniza-
tion are still possible but are unneces-
sary in many cases.

Instead of mandating customization
of synchronization and recovery for
applications that do not need strict ato-
micity, the new scheme supports a vari-
ety of consistency-preserving mecha-
nisms. The threads that execute are of
two kinds, namely, s-threads (or stan-
dard threads) and cp-threads (or consis-
tency-preserving threads). The s-threads
are not provided with any system-level
locking or recovery. The cp-threads, on
the other hand, are supported by well-
defined locking and recovery features.

When a cp-thread executes, all seg-
ments it reads are read-locked, and the
segments it updates are write-locked.
The system automatically handles lock-
ing at runtime. The updated segments
are written by a two-phase commit mech-
anism when the cp-thread completes.
Because s-threads do not automatically
acquire locks, nor are they blocked by
any system-acquired locks, they can free-
ly interleave with other s-threads and
cp-threads.

There are two varieties of cp-threads,
namely, the gcp-thread and the lcp-
thread. The gcp-thread semantics pro-
vide global (heavyweight) consistency
and the Icp-thread semantics provide
local (lightweight) consistency. All
threads are s-threadswhen created. Each
operation has a static label that declares
its consistency needs. The labels are S
(for standard), LCP (for local consis-
tency preserving), and GCP (for global
consistency preserving). Various com-
binations of different consistency labels
in the same object (or in the same thread)
lead to many interesting (as well as dan-
gerous) execution-time possibilities,
especially when s-threads update data
being readhpdated by gcp or Icp threads.
(For a discussion of the semantics, be-
havior, and implementation of this
scheme, see Chen and Dasgupta.”)

Fault tolerance. Transaction-process-
ing systems guarantee data consistency
if computations do not complete (due
to failures). However, they do not guar-
antee computational success. The Clouds
approach to fault-tolerant or resilient
computations is called parallel execu-
tion threads. PET tries to provide unin-
terrupted processing in the face of pre-

PET #1 PET #2
Replicated
copies 1 - 1

processing I I
Figure 6. Parallel execution threads.

existing (static) failures, as well as sys-
tem and software failures that occur
while a resilient computation is in
progress (dynamic failures).12

To obtain these properties, the basic
requirements of the system are

replication of objects, for tolerating
static and dynamic failures;
replication of computation, for tol-
erating dynamic failures; and
An atomic commit mechanism to
ensure correctness.

The PET system works by first repli-
cating all critical objects at different
nodes in the system. The degree of rep-
lication depends on the degree of resil-
ience required.

Initiating a resilient computation cre-
ates separate replicated threads (gcp-
threads) on a number of nodes. The
number of nodes is another parameter
provided by the user and reflects the
degree of resilience required. The sep-
arate threads (or PETS) run indepen-
dently as if there were no replication. A
thread invokes a replicated object by
choosing certain copies of the object, as
shown in Figure 6. The replica selection
algorithm tries to ensure that separate
threads execute at different nodes to
minimize the number of threads affect-
ed by afailure. After one or more threads
complete successfully by executing at
operational nodes, one thread is chosen
to be the terminating thread. All up-
dates made by this thread are propagat-
ed to a quorum of replicas, if available.

If there is a failure in committing this
thread, another completed thread is
chosen. If the commit process succeeds,
all the remaining threads are aborted.

This method allows a trade-off in the
amount of resources used (that is, num-
ber of parallel threads started for each
computation) and the desired degree of
resilience (that is, number of failures
the computation can tolerate, while the
computation is in progress).

he goal of Clouds was to
build a general-purpose, distrib-
uted, computing environment

suitable for a wide varietyof users in the
computer science community. We have
developed a native operating system
and an application-development envi-
ronment that is being used for a variety
of distributed applications.

Providing a conduit between Clouds
and Unix saved us considerable effort.
We did not have to port program devel-
opment and environment tools (such as
editors and window systems) to a new
operating system, and we can develop
applications that harness the new sys-
tem’s data and computation distribu-
tion capabilities in the familiar Unix
environment. The Clouds system has
been a fruitful exercise in providing an
experimental platform for determining
the worthiness of the object-thread par-
adigm. =

References
1. D.R. Cheriton, “The V Distributed Sys-

tem,” Comm. ACM, Vol. 31, No. 3, Mar.

2. S.J. Mullender et al., “Amoeba: A Dis-
tributed Operating System for the 1990s,”
Computer, Vol. 23, No. 5, May 1990, pp.
44-53.

3. B. Liskov, “Distributed Programming in
Argus,” Comm. ACM, Vol. 31, No. 3,
Mar., 1988, pp. 300-313.

4. R.E.Schantz,R.M.Thomas,andG.Bono,
“The Architecture of the Cronus Dis-
tributed Operating System,” Proc. Sixth
Int’l Con& on Distributed Computing
Systems, CS Press, Los Alamitos, Calif.,
Order No. 697,1986, pp. 250-259.

5. G.T. Almes et al., “The Eden System: A
Technical Review,” ZEEE Trans. Soft-
ware Eng., Piscataway, N.J., Vol. SE-11,
No. 1, Jan. 1985, pp 43-58.

1988, pp. 314-333.

hovember 1991 43

M. Accetta et al., “Mach: A New Kernel
Foundation for Unix Development,”
Proc. Summer Usenix Conf., Usenix, 1986,
93-112.

K. Li and P. Hudak, “Memory Coher-
ence in Shared Virtual Memory Systems,”
ACM Trans. Computer Systems, Vol. 7,
NO. 4, NOV. 1989, pp. 321-359.

P. Dasgupta et al., “The Design and Im-
plementation of the Clouds Distributed
Operating System,” Usenix Computing
Systems J . , Vol. 3, No. 1, Winter 1990, pp.
11-46.

D.R. Cheriton, “VMTP: A Transport
Protocol for the Next Generation of Com-
munication Systems.” Proc. SIGcomm,
1986, pp. 406-415.

10. P.Dasgupta and R.C. Chen, “Memory
Semantics in Persistent Object Systems,”
in Implementation of Persistent Object
Systems, Stan Zdonick, ed., Morgan Kauf-
mann Publishers,SanMateo,Calif., 1990.

11. R. Chen and P. Dasgupta, “Linking Con-
sistency with ObjectKhread Semantics:
An Approach to Robust Computations,”
Proc. Ninth Int’l Conf. Distributed Com-
puting Systems, IEEE CS Press, LosAlam-
itos, Calif., 1989, Order No. 1953, pp.

12. M. Ahamad, P. Dasgupta, and R.J. LeB-
lanc, “Fault-Tolerant Atomic Computa-
tions in an Object-based Distributed Sys-
tem,” Distributed Computing, Vol. 4, No.
2, May 1990, pp. 69-80.

121-128.

Partha Dasgupta is an associate professor at
Arizona State University. He was technical
director of the Clouds project at Georgia
Institute of Technology, as well as coprinci-
pal investigator of the institute’s NSF-Coor-
dinated Experimental Research award. His
research interests include distributed oper-
ating systems, persistent object systems, op-
erating system construction techniques, dis-
tributed algorithms, fault tolerance, and
distributed programming support.

Dasgupta received his PhD in computer
science from the State University of New
York at Stony Brook. He is a member of the
IEEE Computer Society and ACM.

Mustaque Ahamad is an associate professor
in the School of Information and Computer
Science at the Georgia Institute of Technol-
ogy, Atlanta. His research interests include
distributed operating systems, distributed
algorithms, fault-tolerant systems, and per-
formance evaluation.

Ahamad received his BE with honors in
electrical engineering from the Birla Insti-
tute of Technology and Science, Pilani, In-
dia. He obtained an MS and a PhD in com-
puter science from the State University of
New York at Stony Brook in 1983 and 1985.

Acknowledgments

This research was partially supported by
the National Aeronautics and Space Admin-
istration under contract NAG-1-430 and by
the NationalScience Foundation grants DCS-
8316590 and CCR-8619886 (CERIII pro-
gram).

The authors acknowledge Martin McKen-
dry and Jim Allchin for starting the project
and designing the earliest version of Clouds;
David Pitts, Gene Spafford, and Tom Wilkes
for the design and implementation of the
kernel and programming support for Clouds
version 1; Jose Bernabeu, Yousef Khalidi,
and Phil Hutto for their efforts in making the
version 1 kernel usable and for the design
and implementation of Ra; Sathis Menon R.
Ananthanarayanan, Ray Chen, and Chris
Wilkenloh for significant contribution to the
implementation of Clouds version 2, as well
as for managing the software development
effort. Ray Chen and Mark Pearsondesigned
and implemented IBCC and Clide, respec-
tively. We also thank M. Chelliah, Vibby
Gottemukkala, L. Gunaseelan, Ranjit John,
Ajay Mohindra, and Gautam Shah for their
participation in and contributions to the
project.

44

Richard J. LeBlanc, Jr. is a professor in the
School of Information and Computer Sci-
ence at the Georgia Institute of Technology.
As director of the Clouds project, he is study-
ing language concepts and software engi-
neering methodology for a highly reliable,
object-based distributed system. His research
interests include programming language de-
sign and implementation, programming en-
vironments, and software engineering.

LeBlanc received his BS in physics from
Louisiana State University in 1972 and his
MS and PhD in computer sciences from the
University of Wisconsin-Madison in 1974 and
1977. He is a member of the ACM, the IEEE
Computer Society, and Sigma Xi.

Umakishore Ramachandran is an associate
professor in the College of Computing at the
Georgia Institute of Technology. He is cur-
rently involved in several research projects,
including hardwarekoftware trade-off in the
design of distributed operating systems. He
participated in the design of several distrib-
uted systems, including Charlotte at Univer-
sity of Wisconsin-Madison, Jasmin at Bell-
Core, Quicksilver at IBM Almaden Research
Center, and Clouds. His primary research
interests are in computer architecture and
distributed operating systems.

Ramachandran received his PhD in com-
puter science from the University of Wiscon-
sin-Madison in 1986. In 1990, he received an
NSF Presidential Young Investigator Award.
He is a member of the ACM and the IEEE
Computer Society.

Readers may contact Partha Dasgupta at the Department of Computer Science and
Engineering, Arizona State University, Tempe, AZ 85287; e-mail partha@enuxha.eas.asu.edu.

COMPUTER

mailto:partha@enuxha.eas.asu.edu

