
Intrusion detection using autonomous agents

Eugene H. Spa�ord, Diego Zamboni *

Center for Education and Research in Information Assurance and Security, 1315 Recitation Building, Purdue University, West Lafayette,

IN 47907-1315, USA

Abstract

AAFID is a distributed intrusion detection architecture and system, developed in CERIAS at Purdue University.

AAFID was the ®rst architecture that proposed the use of autonomous agents for doing intrusion detection. With its

prototype implementation, it constitutes a useful framework for the research and testing of intrusion detection algo-

rithms and mechanisms. We describe the AAFID architecture and the existing prototype, as well as some design and

implementation experiences and future research issues. Ó 2000 Elsevier Science B.V. All rights reserved.

Keywords: Intrusion detection; Software agents; Distributed systems; Security; Perl

1. Introduction

The intrusion detection ®eld has grown con-
siderably in the last few years, and a large number
of intrusion detection systems have been developed
to address di�erent needs. Intrusion detection is
clearly necessary with the growing number of
computer systems being connected to networks.
We describe an architecture for intrusion detection
and system monitoring based on autonomous
agents that serves as a research framework for
intrusion detection techniques and algorithms.

We start by de®ning some common terms and
the motivation for using autonomous agents in an
intrusion detection system.

1.1. Intrusion detection

Intrusion detection is de®ned as ``the problem
of identifying individuals who are using a com-

puter system without authorization (i.e., `crack-
ers') and those who have legitimate access to the
system but are abusing their privileges (i.e.,
the `insider threat')'' [25]. We add to this de®nition
the identi®cation of attempts to use a computer
system without authorization or to abuse existing
privileges. Our working de®nition matches the one
given by Heady et al. [15], where an intrusion
is de®ned as ``any set of actions that attempt to
compromise the integrity, con®dentiality, or
availability of a resource'', disregarding the success
or failure of those actions.

The dictionary de®nition of the word intrusion
[24] does not include the concept of an insider
abusing his or her privileges to perform unautho-
rized actions, or attempting to do so. A more ac-
curate phrase to use is intrusion and insider abuse
detection. In this document we use the term in-
trusion to mean both intrusion and insider abuse.

An intrusion detection system is a computer
system (possibly a combination of software and
hardware) that attempts to perform intrusion de-
tection, as de®ned above. Most intrusion detection
systems try to perform their task in real time [25],

Computer Networks 34 (2000) 547±570

www.elsevier.com/locate/comnet

* Corresponding author.

E-mail addresses: spaf@cerias.purdue.edu (E.H. Spa�ord),

zamboni@cerias.purdue.edu (D. Zamboni).

1389-1286/00/$ - see front matter Ó 2000 Elsevier Science B.V. All rights reserved.

PII: S 1 3 8 9 - 1 2 8 6 (0 0) 0 0 1 3 6 - 5

but there are also intrusion detection systems that
do not operate in real time, either because of the
nature of the analysis they perform (e.g., [20]) or
because they are geared for forensic analysis [13,32].

Intrusion detection systems are usually classi-
®ed as host-based or network-based [25]. Host-
based systems base their decisions on information
obtained from a single host (usually audit trails),
while network-based systems obtain data by
monitoring the tra�c in the network to which the
hosts are connected.

The de®nition of an intrusion detection system
does not include preventing the intrusion from
occurring, only detecting it and reporting it to an
operator. There are some intrusion detection sys-
tems (for example, [6]) that try to react when they
detect an unauthorized action occurring. This re-
action usually includes trying to contain or stop
the damage, for example, by terminating a net-
work connection.

1.2. Desirable characteristics of an intrusion detec-
tion system

Crosbie and Spa�ord [10] de®ned the following
characteristics as desirable for an intrusion detec-
tion system:
· It must run continually with minimal human

supervision.
· It must be fault tolerant by being able to recover

from system crashes, either accidental or caused
by malicious activity. Upon startup, the intrusion
detection system must be able to recover its pre-
vious state and resume its operation una�ected.

· It must resist subversion. The intrusion detection
system must be able to monitor itself and detect
if it has been modi®ed by an attacker.

· It must impose a minimal overhead on the sys-
tems where it runs, to avoid interfering with
the systems normal operation.

· It must be con®gurable to accurately implement
the security policies of the systems that are being
monitored.

· It must be adaptable to changes in system and
user behavior over time. For example, new ap-
plications being installed, users changing from
one activity to another or new resources being

available can cause changes in system use pat-
terns.

As the number of systems to be monitored in-
creases and the chances of attacks increase we also
consider the following characteristics as desirable:
· It must be scalable to monitor a large number

of hosts while providing results in a timely and
accurate manner.

· It must provide graceful degradation of service.
If some components of the intrusion detection
system stop working for any reason, the rest of
them should be a�ected as little as possible.

· It must allow dynamic recon®guration, allowing
the administrator to make changes in its con®g-
uration without the need to restart the whole
intrusion detection system.

1.3. Distributed and centralized intrusion detection
systems

Intrusion detection systems are also usually
classi®ed by the way their components are dis-
tributed
· A centralized intrusion detection system is one

where the analysis of the data is performed in
a ®xed number of locations, independent of
how many hosts are being monitored. We do
not consider the location of the data collection
components, only the location of the analysis
components. Some intrusion detection systems
that we classify as centralized are: IDES
[11,12,22,23], IDIOT [7,21], NADIR [17] and
NSM [16].

· A distributed intrusion detection system is one
where the analysis of the data is performed in
a number of locations proportional to the num-
ber of hosts that are being monitored. Again, we
only consider the locations and number of the
data analysis components, not the data collec-
tion components. Some intrusion detection sys-
tems that we classify as distributed are: DIDS
[29,30], GrIDS [4,31], EMERALD [26] and
AAFID [1].

1.3.1. How centralized and distributed intrusion
detection systems compare

Table 1 comments on the advantages and dis-
advantages of centralized and distributed intrusion

548 E.H. Spa�ord, D. Zamboni / Computer Networks 34 (2000) 547±570

detection systems with respect to the desirable
characteristics described in Section 1.2.

We can see that centralized intrusion detection
systems have some advantages over distributed
intrusion detection systems, but these advantages
are not insurmountable through technical means.
Centralized intrusion detection systems, however,
have some fundamental limitations, such as their
lack of scalability and the di�culty to provide
graceful degradation of service. The intrusion de-
tection ®eld has been shifting in the last few years
towards designing and building distributed intru-
sion detection systems (e.g., [1,2,18,26,31]). In this
paper, we discuss one approach to building such a
system using autonomous agents.

1.4. Autonomous agents

A software agent can be de®ned as [3]:

. . .a software entity which functions continu-
ously and autonomously in a particular envi-
ronment. . .able to carry out activities in a
¯exible and intelligent manner that is respon-
sive to changes in the environment. . .Ideally,
an agent that functions continuously. . .would
be able to learn from its experience. In addition,
we expect an agent that inhabits an environ-
ment with other agents and processes to be able
to communicate and cooperate with them, and
perhaps move from place to place in doing so.

Table 1

Comparison between centralized and distributed intrusion detection systems with respect to the desirable characteristics described in

Section 1.2

Characteristic Centralized Distributed

Run continually A relatively small number of components need to

be kept running.

Harder because a larger number of components

need to be kept running.

Fault tolerant The state of the intrusion detection system is

centrally stored, making it easier to recover it after

a crash.

The state of the intrusion detection system is

distributed, making it more di�cult to store in a

consistent and recoverable manner.

Resist subversion A smaller number of components need to be

monitored. However, these components are larger

and more complex, making them more di�cult to

monitor.

A larger number of components need to be

monitored. However, because of the larger

number, components can cross-check each other.

The components are also usually smaller and less

complex.

Minimal overhead Impose little or no overhead on the systems,

except for the ones where the analysis components

run, where a large load is imposed. Those hosts

may need to be dedicated to the analysis task.

Impose little overhead on the systems because the

components running on them are smaller.

However, the extra load is imposed on most of

the systems being monitored.

Con®gurable Easier to con®gure globally, because of the smaller

number of components. It may be di�cult to tune

for speci®c characteristics of the di�erent hosts

being monitored.

Each component may be localized to the set of

hosts it monitors, and may be easier to tune to its

speci®c tasks or characteristics.

Adaptable By having all the information in fewer locations, it

is easier to detect changes in global behavior.

Local behavior is more di�cult to analyze.

Data are distributed, which may make it more

di�cult to adjust to global changes in behavior.

Local changes are easier to detect.

Scalable The size of the intrusion detection system is

limited by its ®xed number of components. As the

number of monitored hosts grows, the analysis

components will need more computing and

storage resources to keep up with the load.

A distributed intrusion detection system can scale

to a larger number of hosts by adding components

as needed. Scalability may be limited by the need

to communicate between the components, and by

the existence of central coordination components.

Graceful degradation

of service

If one of the analysis components stops working,

most likely the whole intrusion detection system

stops working. Each component is a single point

of failure.

If one analysis component stops working, part of

the network may stop being monitored, but the

rest of the intrusion detection system can continue

working.

Dynamic

recon®guration

A small number of components analyze all the

data. Recon®guring them likely requires the

intrusion detection system to be restarted.

Individual components may be recon®gured and

restarted without a�ecting the rest of the intrusion

detection system.

E.H. Spa�ord, D. Zamboni / Computer Networks 34 (2000) 547±570 549

For our purposes, we de®ne an autonomous
agent (henceforth agent) as a software agent that
performs a certain security monitoring function at
a host.

We term the agents as autonomous because they
are independently-running entities (i.e., their exe-
cution is scheduled only by the operating system,
and not by another process). Agents may or may
not need data produced by other agents to per-
form their work. Additionally, agents may receive
high-level control commands ± such as indications
to start or stop execution, or to change some op-
erating parameters ± from other entities. Neither
of these characteristics detriments our de®nition of
agent autonomy.

1.4.1. Using autonomous agents to build a better
distributed intrusion detection system

Because agents are independently-running enti-
ties, they can be added, removed and recon®gured
without altering other components and without
having to restart the intrusion detection system.
Agents can be tested on their own before intro-
ducing them into a more complex environment. An
agent may also be part of a group that performs
di�erent simple functions but that can exchange
information to derive more complex results
than any one of them may be able to obtain on their
own.

We analyze the performance of an intrusion
detection system built using autonomous agents
with respect to the desirable characteristics listed
in Section 1.2:

Continuous running: If an intrusion detection
system is constituted of a number of autonomous
agents, some of them may be taken o�-line for
maintenance or for other reasons while others
keep running, therefore providing intrusion de-
tection functionality on a continuous manner.

Fault tolerance: The storage and recovery of
global state is still problematic, as described in
Section 1.3 for distributed intrusion detection
systems. Autonomous agents, however, would
be able to keep local state and recover it upon
startup.

Resist subversion: Self-monitoring in autono-
mous agents is a di�cult problem, but it is also the
subject of current research (e.g., [14]). One possi-

bility is to have agents do cross-veri®cation, with
each agent being checked periodically by several
others.

If an agent collects network information related
to the host where it is running, we reduce the
possibility of insertion and evasion attacks [27],
which are also a form of subversion, and to which
network-based intrusion detection systems are
usually subject.

Minimal overhead: Well-designed agents can
impose a minimal load on the system where they are
running. Furthermore, agents can be enabled
and disabled dynamically, making it possible to
use resources only for the tasks needed at each
moment.

Con®gurable: An agent can be con®gured (or
even implemented) speci®cally for the needs of the
host where it will run. Autonomous agents there-
fore provide the possibility for ®ne-grained con-
®guration abilities.

Adaptable: Each agent has local knowledge that
makes it able to adapt to changes in local behav-
ior. By having a higher-level view of the system
state, it may be possible to adapt to changes in
global behavior as well. One way of adapting is to
automatically add or remove agents to monitor
things that are deemed interesting at a certain
point in time.

Scalable: Agents are deployed to the hosts that
need to be monitored. Therefore, an intrusion
detection system built using agents can grow
simply by deploying new agents as needed. The
bottleneck may be the communication mecha-
nisms between the agents and the central coor-
dination components, if they exist, as well as the
processing capabilities of those components.
Both of these problems can be solved, as has
been shown by proposed schemes to build in-
trusion detection systems without the need of a
central controlling entity [18,34] and that mini-
mize communication needed between components
[18].

Even when using traditional communication
schemes, the intrusion detection system can be
made scalable by organizing the agents in a hier-
archical structure. This idea was proposed by
Crosbie and Spa�ord [9] and was also used by
Staniford-Chen et al. [31].

550 E.H. Spa�ord, D. Zamboni / Computer Networks 34 (2000) 547±570

Graceful degradation of service: If one agent
stops working for any reason, one or two things
may happen
· If the agent produces results on its own, only its

results will be lost. All other agents will continue
to work normally.

· If the data produced by the agent was needed by
other agents, that group of agents may be im-
peded from working properly. Even in this case,
the data dependencies between agents are
known in advance, so the consequences of fail-
ure can be predicted.
In any case, the damage is restricted to at most

a set of agents. Thus, if the agents are properly
organized in mutually independent sets, the de-
gradation of the service provided by the intrusion
detection system will be gradual and proportional
to the number of agents that stop functioning.

Dynamic recon®guration: The ability to start
and stop agents independently of each other
creates the possibility of recon®guring the intru-
sion detection system without having to restart it.
If we need to start collecting a new type of data or
monitoring for a new kind of attacks, the appro-
priate agents can be started without disturbing the
ones that are already running. Similarly, agents
that are no longer needed can be stopped, and
agents that need to be recon®gured can be sent the
appropriate commands without having to restart
the whole intrusion detection system.

Additional bene®ts: Using agents as data col-
lection and analysis entities also provides the fol-
lowing desirable features:
· Because an agent can be programmed arbitrari-

ly, it can obtain its data from an audit trail, by
probing the system where it is running, by cap-
turing packets from a network, or from any oth-
er suitable source. Thus, an intrusion detection
system built using agents can cross the tradition-
al boundaries between host-based and network-
based intrusion detection systems.

· Because agents can be stopped and started with-
out disturbing the rest of the intrusion detection
system, agents can be upgraded as increased
functionality is required from them. As long as
their external interface remains compatible, oth-
er components need not even know that the
agent has been upgraded.

· If agents are implemented as separate processes
on a host, each agent can be implemented in the
programming language that is best suited for the
task that it has to perform.

2. The AAFID architecture

We propose an architecture called autonomous
agents for intrusion detection (AAFID) for
building intrusion detection systems that use
agents as their lowest-level element for data col-
lection and analysis.

2.1. History of the AAFID architecture

What was to become the AAFID architecture
was ®rst proposed by Crosbie and Spa�ord in 1994
[8]. In this paper, the authors proposed (for the
®rst time in the published literature) the idea of
using autonomous agents for performing intrusion
detection, and suggested that the agents could be
evolved automatically using genetic programming
so that the intrusion detection system would au-
tomatically adjust and evolve according to user
behavior.

The idea of using genetically programmed
agents was never fully implemented and tested.
However, the idea of using agents for intrusion
detection kept evolving, and between 1995 and
1996 the AAFID architecture was developed in the
COAST Laboratory. The initial architecture had
the hierarchical structure that remains to date,
included monitors, transceivers and agents, and
was used to implement the ®rst prototype of the
system.

From 1997 to date the AAFID architecture
evolved with the addition of ®lters and the sepa-
ration of the user interface from the monitor. The
new architecture has been used for the implemen-
tation of the latest prototype.

2.2. Overview

A simple example of an intrusion detection
system that adheres to the AAFID architecture is
shown in Fig. 1(a). This ®gure shows the four
components of the architecture: agents, ®lters,

E.H. Spa�ord, D. Zamboni / Computer Networks 34 (2000) 547±570 551

transceivers and monitors. We refer to each one of
these components as AAFID entities or simply
entities, and to the whole intrusion detection sys-
tem constituted by them as an AAFID system.

An AAFID system can be distributed over any
number of hosts in a network. Each host can
contain any number of agents that monitor for

interesting events occurring in the host. Agents
may use ®lters to obtain data in a system-inde-
pendent manner. All the agents in a host report
their ®ndings to a single transceiver. Transceivers
are per-host entities that oversee the operation of
all the agents running in their host. They have
the ability to start, stop and send con®guration

Fig. 1. Physical and logical representations of a sample intrusion detection system that follows the AAFID architecture (called an

AAFID system). (a) Physical layout of the components in a sample AAFID system, showing agents, ®lters, transceivers and monitors,

as well as the communication and control channels between them. (b) Logical organization of the same AAFID showing the com-

munication hierarchy of the components. The bidirectional arrows represent both the control and data ¯ow between the entities.

Notice that the logical organization is independent of the physical location of the entities in the hosts.

552 E.H. Spa�ord, D. Zamboni / Computer Networks 34 (2000) 547±570

commands to agents. They may also perform data
reduction on the data received from the agents.
The transceivers report their results to one or
more monitors. Each monitor oversees the opera-
tion of several transceivers. Monitors have access
to network-wide data, therefore they are able to
perform higher-level correlation and detect intru-
sions that involve several hosts. Monitors can be
organized in a hierarchical fashion such that a
monitor may in turn report to a higher-level
monitor. Also, a transceiver may report to more
than one monitor to provide redundancy and re-
sistance to the failure of one of the monitors. Ul-
timately, a monitor is responsible for providing
information and getting control commands from a
user interface. Fig. 1(b) shows the logical organi-
zation corresponding to the physical distribution
depicted in Fig. 1(a).

We now describe each component in greater
detail.

2.3. Components of the architecture

2.3.1. Agents
An agent is an independently-running entity

that monitors certain aspects of a host, and reports
to the appropriate transceiver. For example, an
agent could be looking for a large number of telnet
connections to a protected host, and consider their
occurrence as suspicious. The agent would gener-
ate a report that is sent to the appropriate trans-
ceiver. The agent does not have the authority to
directly generate an alarm. Usually, a transceiver
or a monitor will generate an alarm for the user
based on information received from agents. By
combining the reports from di�erent agents,
transceivers build a picture of the status of their
host, and monitors build a picture of the status of
the network they are monitoring.

Agents do not communicate directly with each
other in the AAFID architecture. Instead, they
send all their messages to the transceiver. The
transceiver decides what to do with the informa-
tion based on agent con®guration information.

The architecture does not specify any require-
ments or limitations for the functionality of an
agent. It may be a simple program that monitors a
speci®c event (for example, counting the number

of telnet connections within the last 5 min, which is
an existing agent in the current AAFID imple-
mentation), or a complex software system (for
example, an instance of IDIOT [7] looking for a set
of local intrusion patterns). As long as the agent
produces its output in the appropriate format and
sends it to the transceiver, it can be part of the
AAFID system.

Agents may perform any functions they need.
Some possibilities (which have not been used by
any existing AAFID agents) are:
· Agents may evolve over time using genetic pro-

gramming techniques, as suggested in [9].
· Agents may employ techniques to retain state

between sessions, allowing them to detect long-
term attacks or changes in behavior. Currently,
the architecture does not specify any mecha-
nisms for maintaining persistent state.

· Agents could migrate from host to host by com-
bining the AAFID architecture with some exist-
ing mobile-agent architecture.

Agents can be written in any programming lan-
guage. Some functionality (e.g., reporting, com-
munication and synchronization mechanisms) is
common to all the agents, and can be provided
through shared libraries or similar mechanisms.
Thus, a framework implementation, like the one
described in Section 3, can provide most of the
tools and mechanisms necessary to make writing
new agents a relatively simple task.

2.3.2. Filters
Filters are intended to be both a data selection

and a data abstraction layer for agents.
In the original AAFID architecture, each agent

was responsible for obtaining the data it needed.
When the ®rst prototype was implemented, this
approach showed the following problems:
· On a single system, there may be more than

one agent that needs data from the same data
source. This is common in Unix with multi-
function log ®les (such as /var/adm/mes-

sages). Having each agent read the data on
its own meant duplicating the work of reading
the ®le, parsing it and discarding unnecessary
records.

· There may be agents that can provide a useful
function under di�erent versions of Unix, or

E.H. Spa�ord, D. Zamboni / Computer Networks 34 (2000) 547±570 553

even under di�erent architectures (such as Win-
dows NT). However, the data needed by the
agent may be located in di�erent places in each
system and may be stored in di�erent formats.
This meant having to write a di�erent agent
for each system, that knows where to ®nd the
data and how to read it.
Both of these problems are solved through the

introduction of ®lters. Filters provide a subscrip-
tion-based service to agents, and have two func-
tions.

Data selection: There exists only one ®lter per
data source, and multiple agents can subscribe to
it. When an agent subscribes to a ®lter, it speci®es
which records it needs (using some criteria like
regular expressions), and the ®lter only sends to
the agent records that match the given criteria.
This eliminates duplicate work in reading and ®l-
tering data.

Data abstraction layer: Filters implement all
the architecture- and system-dependent mecha-
nisms for obtaining the data that agents need.
Therefore, the same agent can run under di�erent
architectures simply by connecting to the appro-
priate ®lter. This makes it easier to reuse code
and to run AAFID under di�erent operating
systems.

2.3.3. Transceivers
Transceivers are the external communications

interface of each host. They have two roles: con-
trol and data processing. For a host to be moni-
tored by an AAFID system, there must be a
transceiver running on that host.

In its control role, a transceiver performs the
following functions:
· Keeps track and controls execution of agents in

its host. The instructions to start and stop
agents can come from con®guration informa-
tion, from a monitor, or as a response to speci®c
events (for example, a report from one agent
may trigger the activation of other agents to per-
form a more detailed monitoring of the host).

· Responds to commands issued by its monitor by
providing the appropriate information or per-
forming the requested actions.

In its data processing role, a transceiver has the
following duties:

· Receives reports generated by the agents run-
ning in its host.

· Does appropriate processing on the information
received from agents.

· Distributes the information received from the
agents, or the results of processing it, either to
other agents or to a monitor, as appropriate.

2.3.4. Monitors
Monitors are the highest-level entities in the

AAFID architecture. They have control and data
processing roles that are similar to those of the
transceivers. The main di�erence is that monitors
can control entities that are running in several
di�erent hosts whereas transceivers only control
local agents.

In their data processing role, monitors receive
information from all the transceivers they control,
and can do higher-level correlations and detect
events that involve several di�erent hosts. Moni-
tors have the capability to detect events that may
be unnoticed by the transceivers.

In their control role, monitors can receive in-
structions from other monitors and they can
control transceivers and other monitors. Monitors
have the ability to communicate with a user in-
terface and provide the access point for the whole
AAFID system. Monitors implement an interface
that includes mechanisms for accessing the infor-
mation that the monitor has, for providing com-
mands to the monitor, or to send commands to
lower-level entities such as transceivers and
agents.

If two monitors control the same transceiver,
mechanisms have to be employed to ensure con-
sistency of information and behavior. The AAFID
architecture does not currently specify the mech-
anisms for achieving this consistency.

2.3.5. User interfaces
The most complex and feature-full intrusion

detection system can be useless if it does not have
good mechanisms for users to interact with it.

The AAFID architecture clearly separates the
user interface from the data collection and pro-
cessing elements. A user interface has to interact
with a monitor to request information and to
provide instructions.

554 E.H. Spa�ord, D. Zamboni / Computer Networks 34 (2000) 547±570

This separation allows di�erent user interface
implementations to be used with an AAFID sys-
tem. For example, a graphical user interface
(GUI) could be used to provide interactive access
to the intrusion detection system, while a com-
mand-line based interface could be used in scripts
to automate some maintenance and reporting
functions.

2.4. Communication mechanisms

The transmission of messages between entities is
a central part of the functionality of an AAFID
system. Although the AAFID architecture does
not specify which communication mechanisms
have to be used, we consider the following to be
some important points about the communication
mechanisms used in an AAFID system:
· Appropriate mechanisms should be used for dif-

ferent communication needs. In particular, com-
munication within a host may be established by
di�erent means than communication across the
network.

· The communication mechanisms should be e�-
cient and reliable in the sense that they should
(a) not add signi®cantly to the communications
load imposed by regular host activities, and (b)
provide reasonable expectations of messages
getting to their destination quickly and without
alterations.

· The communication mechanisms should be se-
cure in the sense that they should (a) be resistant
to attempts of rendering it unusable by ¯ooding
or overloading, and (b) provide some kind of
authentication and con®dentiality mechanism.

The topics of secure communications, secure dis-
tributed computation and security in autonomous
agents have been already studied [14,19], and
possibly some previous work can be used in
AAFID implementations to obtain communica-
tion channels that provide the necessary charac-
teristics.

3. The AAFID implementation

An implementation of the AAFID architecture
has been an important part of the project because

it enables us to test ideas on real situations. In this
section we describe the objectives, design and
implementation decisions that have been made in
the AAFID implementations.

3.1. History of implementations

The ®rst AAFID prototype was implemented
between 1995 and 1996, based on the ®rst speci®-
cation of the AAFID architecture. This prototype
was implemented by a combination of programs
written in C, Bourne shell, AWK and Perl. Its
main objective was to ``put something together'' to
test the initial feasibility of the architecture, and to
get some feedback on design and implementation
decisions. This ®rst implementation was only
tested internally in the COAST Laboratory.

The second implementation, which has evolved
into the current version of the AAFID prototype,
was started in late 1997, and has evolved to in-
corporate the more recent changes in the archi-
tecture, such as ®lters. This implementation is
referred to as the AAFID2 prototype. In Septem-
ber 1998, AAFID2 was released for the ®rst time to
the public. The ®rst release included the basic
system, a few agents, and had been tested under
Solaris.

In September 1999, a second public release was
made. The main change in the new release was the
introduction of a new event-processing mechanism
(see Section 3.4.5). The new release also included
improved development support, and was tested
under Linux as well as Solaris.

The latest version of AAFID2 is described in the
following sections.

3.2. Objectives of the current prototype

The AAFID2 prototype was designed with a set
of speci®c objectives in mind.

Road-test the architecture. The AAFID archi-
tecture seems adequate for an intrusion detection
system from a design point of view but we are
interested in getting feedback from its use in real
situations, in real networks, and facing real attacks
and problems. The main objective in the develop-
ment of AAFID2 was to be able to use it and ship
it to people and organizations that can put it to

E.H. Spa�ord, D. Zamboni / Computer Networks 34 (2000) 547±570 555

use, evaluate both the architecture and the imple-
mentation, and provide feedback that enables us
to identify weaknesses and possibilities for im-
provement.

Usability. One of our high priorities was to
make it as easy to use as possible. The di�erent
modules are as independent as possible, and each
one of them has a de®ned interface that allows
users to run and interact with it easily.

Con®gurability and extensibility. Another pri-
ority was to make it easy to con®gure the behavior
of the components of AAFID2, even at run time.
The modules themselves are easy to con®gure, and
the overall structure of the system (including the
layout of modules in the monitored systems,
and their interconnections) is easy to specify and
set up.

Minimum installation requirements. Many com-
ponents of AAFID2 are likely to change frequently
during the development and testing phases. For
this reason, we tried to make it possible to provide
a minimum set of programs that have to be pre-
installed in the monitored hosts, and have all the
other modules distributed automatically when they
are needed.

No focus on performance. Although we want
AAFID2 to be as e�cient as possible, our focus
during its development was not in performance,
but on identifying and evaluating the characteris-
tics that we want in an AAFID system. Once these
features are set, a more e�cient implementation
can be done based on them.

No focus on agent security. The use of autono-
mous agents poses security concerns, and ensuring
the integrity and authenticity of an agent is a dif-
®cult problem. We decided not to address this
problem in the implementation of the AAFID2

prototype, because it is a subject of current re-
search [14], and it does not a�ect the detection
capabilities of the AAFID architecture (although
it a�ects its applicability as a production system).

Provide an infrastructure for development. AA-
FID2 provides a simple intrusion detection system,
but more importantly it provides the infrastructure
for the implementation of more complex systems
by allowing the implementer to use all the under-
lying facilities (e.g., communications and syn-
chronization) to build complex features without

having to worry about the architectural mecha-
nisms.

3.3. Design notes

In this section, we describe some of the design
decisions that we took for the development of the
AAFID2 prototype.

3.3.1. Communication model
The logical organization of the AAFID archi-

tecture (see Fig. 1(b)) maps directly to a hierar-
chical model of communication. This model is
shown in Fig. 2, and based on it we make the
following terminology de®nitions:

De®nition 1 (Upstream, downstream, above and
below). From a given level in the AAFID com-
munication model as depicted in Fig. 2, we iden-
tify levels that are closer to the root of the
hierarchy as being upstream, and levels that are
closer to the leaves of the tree as downstream. One
entity is above another one if it can be reached by
following communication paths upstream, and it is
below if it can be reached by following communi-
cation paths downstream. For example, in Fig. 2,
entity A is above entities B, C, D and E; entities D
and E are below entities A and B, but not below
entity C, because there is no upstream-only or
downstream-only communication path from C to
D and E.

Fig. 2. Model of communication in AAFID2. The arrows

represent the communication channels (both for data ¯ow and

control) between the entities.

556 E.H. Spa�ord, D. Zamboni / Computer Networks 34 (2000) 547±570

De®nition 2 (Super-entities and sub-entities). With
respect to a speci®c entity, sub-entities are those
that are below it, and super-entities are those that
are above it. For example, in Fig. 2, entity A is a
super-entity of all the others and entities D and E
are sub-entities of both A and B.

De®nition 3 (Parent and child entities). For any
given entity, a super-entity that is in the level im-
mediately above it is called a parent entity. Simi-
larly, a sub-entity that is in the level immediately
below it is called a child entity. For example, in
Fig. 2, entity A is the parent of both C and B,
which are its children.

De®nition 4 (Up and down). When an entity sends
a message to an entity that is above it, we say that
it sends the message up. If it sends a message to an
entity that is below it, we say that the message is
sent down.

De®nition 5 (Controller entity). A controller entity
is one that can exert control over a set of other
entities. Usually the controller of an entity is its
parent entity.

In this model, we can identify layers of entities,
with the following properties:
· There is a single node at the top of the hierarchy

(the root).
· An entity can only have direct communication

with entities immediately above and below its
own. The only exception to this rule is the com-
munication between agents and ®lters, which
occurs between entities in the same layer.

· An entity can only have one parent, but it can
have multiple children.

· Agents and ®lters are in the leaves of the tree,
and thus can only send messages up. Agents
and ®lters can also send messages between them-
selves, but only when they are siblings (both are
children of the same transceiver).

· The entity in the root of the tree is always a
monitor. However, monitors can also appear
in intermediate levels.

· The only entity that may be above the root mon-
itor is a user interface, or some other program

that is used to control the whole intrusion detec-
tion system.

3.3.2. Functionality needed for each entity
One of the ®rst phases in the development of

AAFID2 was the identi®cation of the functionality
expected from each type of entity, as well as their
communication requirements.

3.3.2.1. All entity types. All entities in AAFID2

must be independently-running programs. It must
be possible for a user to start an entity from the
command line and interact with it by giving mes-
sages and commands from the keyboard, but it
must also be possible for the entity to be started by
its controller entity.

All entities have a unique identi®er and a de-
scription. The identi®er must provide a unique
way of referencing an entity. The description must
be a brief human-readable description of the entity
and its functionality.

All entities must react adequately to a set of
messages that allow basic operations such as
stopping the entity and querying it for informa-
tion. Additionally, each entity may de®ne its own
commands for implementing speci®c functionality.

All entities must be able to exchange messages
with their controller entity. Any messages received
from the controller entity must be processed as soon
as possible. The controller entity may be in the same
host (for example, a transceiver is the control-
ler entity for its agents), or in a di�erent host (for
example, a monitor is the controller entity for the
transceivers). Ideally, the implementer of an
entity should not have to worry about whether the
communication channel is local or over the
network.

We also decided that AAFID2 should include
facilities in the entity infrastructure for debugging
and generation of log messages.

3.3.2.2. Agents. Agents collect information from
the system where they run and monitor for speci®c
situations that may indicate a security problem.
The general behavior of an AAFID2 agent is de-
scribed by Algorithm 1. This structure allows
agents to react to di�erent types of events, in-
cluding timing, ®le and signal events.

E.H. Spa�ord, D. Zamboni / Computer Networks 34 (2000) 547±570 557

Algorithm 1. Generic behavior of an agent. Lines
in italics represent sections that have to be pro-
vided by the author of the agent.

{Instantiation of the agent}
{Instantiation-time initialization}
Set event handlers
{Execution of the agent}
Run-time initialization
Set more event handlers
Contact necessary ®lters
Enter Event loop

In the initial release of AAFID2, agents had a
much stricter structure based on a polling mecha-
nism. This structure is shown in Algorithm 2. The
polling structure is su�cient for many agents,
which periodically monitor for some activity or
event, and report their ®ndings. However, it also
has severe limitations. The general structure is able
to implement the simpli®ed structure.

Of the tasks in the algorithms, only the lines
shown in italics are speci®c to each agent. All the
other functions are provided by the infrastructure
to allow the creation of new agents in a minimum
amount of time.

Algorithm 2. Polling structure for an agent. Lines
in italics represent sections that have to be pro-
vided by the author of the agent.

{Instantiation of the agent}
Instantiation-time initialization
{Execution of the agent}
Run-time initialization
loop

Perform checks
if [abnormal condition detected] then

Generate STATUS_UPDATE message
with new status information

if [STOP message was received] then

Cleanup and exit
Process other inputs
Sleep for a certain amount of time (inter-
check period)

3.3.2.3. Filters. Filters are the only entities in the
AAFID architecture that can communicate with
another entity at their same level in the hierarchy

(see Fig. 1(b)). Filters are started by transceivers,
but receive commands from and provide data to
agents directly. Therefore, a ®lter needs to be able
to receive control data from two channels (not
only one, as all other entities), and must be able to
provide data through a ``side channel'' that is
di�erent from the normal communication link to
its controlling entity.

Filters are data sources. Therefore, they must
have facilities for accessing ®les and other sources
of data on the system where they run. On occasion,
a ®lter may need to run with increased privileges to
be able to access system data.

3.3.2.4. Transceivers. Transceivers are in charge of
controlling all the agents running in a host.
Therefore, they do not need remote communica-
tion capabilities downstream, but they need to be
able to communicate with a large number of local
entities. Agents may provide both data (in the
form of status updates) and commands (for ex-
ample, to request an additional module needed for
execution), and the transceiver may need to send
commands to the agents (for example, to set a
parameter value). Transceivers also need to be able
to respond to commands from monitors, as well as
provide them with status updates. Finally, if a
transceiver receives a message from an agent that it
is not able to interpret, the message should be
forwarded to the transceiver's parent entity for
further processing.

3.3.2.5. Monitors. Monitors are the most complex
entities with respect to communication capabilities.
A monitor must have all the functionality of a
transceiver, because it also needs to be able to
control local entities. Additionally it must be able
to start and control remote entities. In particular, it
must be able to start new transceivers or monitors
in remote hosts and communicate with them. The
monitor only communicates with monitors and
transceivers and not with all the agents that may be
running in a host. This abstraction corresponds
with the AAFID architecture and communication
model, and it helps scalability because it reduces the
number of entities that a monitor has to track.

A monitor must also be able to listen for con-
nections from remote entities. This is because a

558 E.H. Spa�ord, D. Zamboni / Computer Networks 34 (2000) 547±570

transceiver or monitor may be started on its own
in a host and need to be controlled by an already
existing monitor. The new entity must be able to
contact the monitor and register with it by sending
a CONNECT message.

Once a remote entity is started or a connection
request has been processed, the monitor must be
able to communicate with it in the same way as
with local entities.

Finally, monitors have the responsibility of
acting as repositories for all the information that
their sub-entities may need. For example, a
transceiver may be started with few local resourc-
es, and when it needs a module whose code is not
locally present, it will request it of its monitor. The
monitor must be able to locate the necessary code
and provide it to the transceiver. If the monitor
itself does not have the requested code, it must
forward the request to its own controller entity.
If the code eventually arrives, the original re-
quest from the transceiver must be immediately
ful®lled.

3.3.3. Object model
Based on the requirements and design decisions

described in Section 3.3.2 we designed the class
hierarchy shown in Fig. 3. These classes corre-
spond almost directly with the functionality
described in Section 3.3.2. In the Perl implemen-
tation, all the class names are pre®xed with AA-
FID:: (for example, the full name of Entity is
AAFID::Entity), but for the sake of space and
clarity we only make reference to them by their
distinctive name in the rest of this paper.

Subclasses inherit all the base functionality
from their subclass, and can extend it. For exam-
ple, a Monitor behaves essentially as a Control-
lerEntity, but it adds functionality and modi®es
some of the features of the base class.

3.3.4. Entity status
Each entity in AAFID2 is able to keep a status

value, which represents whether it has detected a
problem, and the seriousness of the problem. Each
entity must be able to report its status upon re-
quest. The status of the whole intrusion detection
system is computed from the status of all the
individual entities.

The status is kept using entity parameters. All
entities must keep its status as a numeric indicator
in a parameter called Status, and a textual de-
scription of it in a parameter called Message.

The value of Status must be a number between
0 and 10 inclusive, where 0 means ``all normal''
and 10 means ``extremely alarmed'', and the values
in between represent di�erent degrees of impor-
tance of the problem detected. No formal de®ni-
tions have been given for the values of the status
indicator, and in AAFID2 it is up to each entity to
assign them.

3.3.5. Messages and commands
Messages in the communication model ¯ow

through the edges of the graph shown in Fig. 2.
At the architectural level, we do not worry about
the semantic contents of the messages, so we
de®ned a message format with the following ®elds
for AAFID2 messages:

Fig. 3. Class hierarchy in AAFID2. Solid lines represent inheritance relationships between the object classes. Dashed lines represent

``uses'' relationships, meaning that a class uses another one internally. Grey ovals represent the classes in the main class hierarchy, that

implement the primary entity types. Dashed ovals represent auxiliary classes that are not instantiated as objects, but that contain

methods that are used by all the other classes.

E.H. Spa�ord, D. Zamboni / Computer Networks 34 (2000) 547±570 559

· Message type.
· Message subtype.
· Source identi®er.
· Destination identi®er.
· Time stamp.
· Data.

This generic structure can be used by entities to
represent any type of information. The kind of
message is denoted by the type ®eld. This ®eld also
implicitly determines the format of the data ®eld
(the receiving entity must know the message type
and must know how to interpret the data ®eld
accordingly). The subtype ®eld can be used to
provide additional information about the contents
of the message, as well as to indicate the speci®c
semantic interpretation that should be given to the
data ®eld.

The source and destination identi®ers must
contain information that uniquely identi®es
the sending and receiving entities. The destina-
tion ®eld may be empty if the message is
sent over a one-to-one communication channel,
where there is no ambiguity about who the
receiver is.

The time stamp contains a unique representa-
tion of the time when the message was generated.
AAFID2 uses the number of seconds elapsed since
the Unix epoch (1 January 1970), which is a
commonly available value in programming lan-
guages under Unix.

Table 2 describes the base message types that
we have de®ned for AAFID2. The content of the
data ®eld is speci®ed for each one.

The COMMAND message type provides en-
tities with the capability of de®ning their own
functionality, which can be accessed through
special commands by parent entities or users.
We have also de®ned a basic set of commands
to which any entity in AAFID2 must respond.
This standard set of commands is shown in
Table 3.

3.4. Implementation notes

We now describe some of the implementation
decisions and issues we faced while developing
AAFID2.

3.4.1. Selection of a programming language
AAFID2 is implemented in Perl 5 [28,33]. The

choice of this programming language was in¯u-
enced by the following factors:
· Ease of prototyping. Perl is a good language for

quickly prototyping and testing ideas. This was
one of our objectives for the AAFID2 proto-
type, so Perl was a good choice.

· Portability. Perl can be used in most versions of
Unix, as well as on Windows 95 and NT. This
makes it extremely attractive to program a dis-
tributed application that we eventually want to
run in a large number of systems.

· Extreme flexibility. Being an interpreted lan-
guage, Perl provides an unprecedented ¯exibility
in what a program can do. For example, we can
add code to a module at run time, even code
provided by the user. This allows the modi®ca-
tion of parameters, internal variables, and even
subroutines without the need to restart the pro-
grams. In our prototype, it also makes it easier
to distribute code over the network, because
the code can be shipped as source and evaluated
by the recipient.

AAFID2 was implemented using the object-
oriented features of Perl 5. This makes it possible
to directly implement the object model described
in Section 3.3.3.

During the development and testing of AAFID2

we came to also realize some of the disadvantages
of using Perl for the implementation:
· Big resource usage. The Perl interpreter is a large

program, and it has to be in memory whenever a
Perl program is executed. This results in large
memory and CPU usage footprints.

· Excessive flexibility. The ¯exibility that we
praised as an advantage can also be a problem.
For example, the lack of strict type checking and
the looseness with which Perl code can be writ-
ten can lead to programs that are di�cult to
maintain when their size grows. We found that
we had to be particularly careful in documenting
and structuring the code to avoid problems.
Additionally, the object model in Perl has signif-
icant di�erences with those of other object-
oriented programming languages, which can
lead to confusions and awkwardness in the
programs.

560 E.H. Spa�ord, D. Zamboni / Computer Networks 34 (2000) 547±570

· Security problems. Some of Perl's features, like
the ability to modify the code at run time, can
also lead to security problems. However, the
current implementation of AAFID2 is intended
as a proof of concept and not as a production
system, so this was a secondary concern for
our purposes.

We believe that the most signi®cant advantages of
using Perl are the ease of prototyping and the ca-
pability to modify the code at run time.

3.4.2. Entities and parameters
In Perl 5, objects are represented by blessed

references [33]. A reference can point to any kind
of Perl variable, including scalars, arrays, strings
or hashes. A common technique in Perl Object-
Oriented programming is to represent objects
with a reference to an anonymous hash [5].
Hashes in Perl are arrays where the indices can be
any value, not only numbers. In particular, the
indices of a hash can be strings, and can be used

Table 2

Standard message types de®ned in AAFID2

NOTYPE

Subtypes N/A

Description Indicates that the message has not been initialized. This value can also be used in the message subtype

®eld if that ®eld has no speci®c value, or its value is irrelevant

Data ®eld N/A

CONNECT

Subtypes CHILD, PARENT, FILTER, GUI

Description Sent by an entity when it starts. It can be sent upstream to a parent entity, downstream to children

entities, and by ®lters and user interfaces. The subtype ®eld indicates who is sending the message

Data ®eld Information about the entity. In AAFID2 it contains the entity's identi®er and description

DISCONNECT

Subtypes CHILD, PARENT, FILTER GUI

Description Signals termination of the entity that sends the message. The purpose of this message is to allow the

receiving entity to perform actions to maintain consistent internal information

Data ®eld Same as in CONNECT

STATUS_UPDATE

Subtypes Irrelevant

Description The message contains a status update that the sender wants the recipient to have

Data ®eld Current status and descriptive message in the form of two sub®elds called Status and Message that

contain the current numeric status and a descriptive message of the situation. The format of these ®elds

is the Perl syntax for hash speci®cation. For example Status�>0, Message�>``No problems''

COMMAND

Subtypes Command name or RESULT

Description Speci®es a command that the receiving entity must execute. The subtype ®eld contains the name of the

command to execute. If a command produces a result, it will be sent back to the entity that requested the

command in a message of type COMMAND and subtype RESULT. Each entity can de®ne its own

commands in addition to the standard set. See Table 3 for the list of standard commands de®ned in

AAFID2

Data ®eld Named parameters to the command, in Perl hash-speci®cation format (Key �> Value, separated by

commas). In a RESULT message, it contains the result produced by the command (which should also be

in the form of named parameters) plus a special parameter called Command that contains the name of

the command that produced the result

STOP

Subtypes Irrelevant

Description Stops the execution of the entity, performing any necessary cleanup actions. This should usually involve

at least sending a DISCONNECT message to any parent and children entities with which the entity has

communication

Data ®eld Irrelevant

E.H. Spa�ord, D. Zamboni / Computer Networks 34 (2000) 547±570 561

to store named values. An anonymous hash is a
hash that is not assigned to a variable, but that
can be accessed through a reference stored in a
variable. In our case, the reference to the anon-
ymous hash is stored as the representation of the
object.

Using an anonymous hash reference to repre-
sent an object has the advantage that the hash can
be used as the object's internal name space. This
makes up for the lack of data inheritance in Perl's
object model. Within its own hash reference (the
hash reference represents the object, so we nor-
mally say ``within itself'') the object can store any
kind of values by name, as if they were instance
variables.

In AAFID2 each entity object is represented by
an anonymous hash that contains the parameters
for that speci®c entity. The parameter names are

used as indices, and the value of each parameter is
stored in the corresponding element of the hash.
Because a single hash in Perl can store di�erent
types of elements simultaneously, each parameter
can be of a di�erent type without causing any
problems.

An example may make this mechanism clearer.
An agent may have the internal representation
shown in Fig. 4.

The notation Key �> Value is used in Perl to
specify the elements of a hash. Thus, we may de-
duct from the information in the ®gure that the
agent has a check period (CheckPeriod) of 10 sec-
onds and its current status (Status) is zero, among
other things.

Because each class instance has its own hash,
each entity can keep its own state separate from
others.

Table 3

Standard commands de®ned in AAFID2
a

STOP

Parameters None

Description Has the same e�ect as a STOP message

Returns N/A

EVAL

Parameters Code�> ``Perl code to execute''

Description Allows the execution of arbitrary code in the context of the entity that receives the message. This

command is mostly for experimental purposes, for two reasons: it is easy to implement in Perl, but

may be impossible to achieve in other languages; and it opens the possibility for security

problems. The Code parameter contains the code to execute

Returns If the code executes without problems, does not produce a return value. If an error occurs, the

result contains an ErrorMessage parameter that contains the description of the error

SET_PARAMS

Parameters Parameter �> Value pairs, separated by commas

Description Allows the speci®cation of values for internal entity parameters, as described in Section 3.4.2

Returns If the list of parameters and values contains an error, the command returns a description of the

error. Otherwise it produces no return value

GET_PARAMS

Parameters Params�> ``param1, param2,. . .''

Description Allows the retrieval of internal entity parameters. The Params parameter must be a string

containing a comma-separated list of parameter names

Returns A list of parameter name±value pairs containing the requested parameters and their values

DUMP_YOURSELF

Parameters None

Description Instructs the entity to produce an internal representation of its current state

Returns A string representation of the entity (which is actually the current values of all its parameters),

contained in the Me parameter. This representation can be used to examine the internal state of

the entity, or possibly to initialize another entity to the same state

a These commands are speci®ed as subtypes of a message of type COMMAND (see Table 2).

562 E.H. Spa�ord, D. Zamboni / Computer Networks 34 (2000) 547±570

The Entity class de®nes a number of methods
that can be used to set and query entity parame-
ters.

By convention, none of the parameters used
internally by the base classes in AAFID2 starts
with the pre®x ``My'', so authors of agents and
other entities can use paramaters starting with that
pre®x (for example, MyUsers and MyKeys) assured
that they will not have con¯icts with internal
parameters.

3.4.3. Messages
3.4.3.1. Format. Messages in AAFID2 are repre-
sented by objects of the class Message. The main
purpose of this class is to store the ®elds as de®ned
in Section 3.3.5, but also to allow its conversion to
and from a format suitable for sending over the
network. Inside an entity the messages are stored
as an object, but before sending them to another
entity, they are converted to a single line of text
with the following format:

TYPE SUBTYPE FROM TO TIME DATA

An entity that receives a message parses it and
converts it back into a Message object. Internally,
all the ®elds are represented as strings. The DATA
portion of the string representation may contain
spaces, depending on the contents of the DATA
®eld.

The utilization of strings to represent messages
was decided to make it simpler for human users
to provide messages by hand and to monitor the
¯ow of messages between entities. Future imple-
mentations may decide to use a more e�cient
format, particularly for sending messages over a
network.

3.4.3.2. Reacting to messages. The behavior of the
di�erent message types and commands is imple-
mented through regular Perl subroutines following
certain conventions, and thus is easy for someone
implementing a new entity type to add function-
ality.

To add support for a new message type (for
example NEWTYPE) a subroutine called mes-

sage_NEWTYPE (where the type name is in up-
percase) has to be implemented. When a message
of the new type is received, the subroutine will be
automatically invoked as an instance method of
the entity, which means that a reference to the
entity will be its ®rst argument. The second argu-
ment will be a Message object containing the
message that triggered the call. The subroutine is
free to do any processing that it needs. If no return
value is necessary, the function should return the
undef value. If a value is returned, it should be
another Message object, and it will be transmitted
as-is to the entity that sent the original message.

We have provided a simpler interface for im-
plementing new commands, rather than new mes-
sage types. For this reason we consider that most
extensions to the basic infrastructure functionality
should be done through new commands and not
new message types. For each command there must
be a subroutine called command_CMD, where
CMD is the command name, in uppercase. When
the command is received, the subroutine will be
called with three arguments: a reference to the
entity itself, the Message object that triggered the
call, and a hash containing all the parameter
name±value pairs passed in the data ®eld of the
message. Although the whole message is available,
most commands should only need to examine the
hash to extract the values of their parameters and
act accordingly. To produce a return value, the
command subroutine should return a hash refer-
ence containing name±value pairs that will be sent
to the entity that requested the command in a
message of type COMMAND and subtype RE-
SULT. If there is no return value, the subroutine
must return undef.

3.4.4. Communication mechanisms
The choice and implementation of the com-

munication mechanisms in AAFID2 was done

Fig. 4. Sample internal representation of an agent.

E.H. Spa�ord, D. Zamboni / Computer Networks 34 (2000) 547±570 563

with two main objectives in mind: transparency
and system independence. To the extent that it is
possible, entities do not have to know whether
they communicate over a network or within the
local host, even when completely di�erent mecha-
nisms may be used. We have put the portions of
code that deal with the implementation di�erences
in speci®c places so that it is easy to locate and
modify. Most of the mechanism-speci®c or plat-
form-speci®c code is in the Comm and Reactor
classes.

AAFID2 uses TCP connections for communi-
cation over the network, and Unix pipes for
communication within the same host. These
mechanisms were chosen because they are readily
available in any Unix system, and both provide
reliable end-to-end communication. The downside
is that none of them provide encryption or au-
thentication capabilities.

3.4.5. Event model
All entities in AAFID2 operate around a single

event loop that processes di�erent types of events.
Entities operate by de®ning the appropriate event
handlers and waiting for the corresponding events
to occur. The event mechanism is implemented by
the Reactor class.

In the latest implementation of AAFID2, an
entity can set handlers for the following types of
events:

File handles. In Unix systems most objects can
be accessed through ®le handles. For AAFID2, the
most relevant objects are sockets and pipes. An
entity can set a handler for a ®le handle, and the
event loop will cause it to block until data are
available. By blocking, the entity uses little re-
sources while it is waiting.

Files. A common application for an agent or a
®lter is to read data from a ®le. A ®le is also ac-
cessed through a ®le handle. However, because of
the way regular ®les are implemented in Unix, it is
not possible for a process to block on ®le handle
that represents a regular ®le. Therefore, the event
engine processes regular ®les di�erently, by polling
periodically from them instead of blocking.

Time. The event engine can also react to time
events. Both one-shot and repeating events can be
scheduled by an entity, and the event mechanism

causes the entity to block until the next time event
occurs.

Signals. Finally, the event mechanism can cause
an entity to react to Unix signals. The entity can
de®ne the appropriate handlers, and they are
called automatically when the corresponding sig-
nal occurs.

An entity can de®ne handlers for as many
events as it wants, including di�erent types of
events. The event engine, whenever possible,
causes the entity to block until the next event
occurs, to reduce resource usage.

3.4.6. Entity loading and execution
The ability to invoke a new local entity and

control it is implemented in the ControllerEntity
class, and thus is inherited by monitors and
transceivers (see Fig. 3). The Monitor class extends
this capability by allowing the invocation of re-
mote entities. Additionally each entity must be
able to run as a stand-alone program. We now
describe the mechanisms used for each of these
types of entity execution modes.

3.4.6.1. Entity execution. Every entity must have a
method called run that will be called as the entry
point for the execution of the entity. When the
run method returns, the execution of the entity is
considered ®nished.

For instantiation-time initialization, every entity
may have a method called Init, which will be
called at the time the object is created. For run-time
initialization, an entity may de®ne a method called
runtimeInit. The di�erence between the two
types of initialization can be seen in Fig. 5. In-
stantiation-time initialization occurs when the new
entity is created inside its corresponding trans-
ceiver, whereas run-time initialization occurs once
the entity starts executing in its own process.
Therefore, any initialization that a�ects the state of
the process (for example, opening ®les, or creating
other child processes) has to be done in the run-
time initialization to avoid a�ecting the transceiver.

For cleanup activities when its execution ter-
minates, an entity may de®ne a method called
Cleanup.

The Entity class provides the infrastructure for
a working entity, including placeholder methods

564 E.H. Spa�ord, D. Zamboni / Computer Networks 34 (2000) 547±570

for run, Init, runtimeInit and Cleanup, as
well as the code for automatically doing setup
activities such as generating an entity identi®er,
sending a CONNECT message up upon startup
and a DISCONNECT message upon termination.
These activities are done in the new method
(constructor) de®ned by Entity, and should be
inherited by all other entities. For this reason,
subclasses of Entity must not override the con-
structor, but provide their functionality through
Init and runtimeInit.

ControllerEntity and its subclasses recognize a
command called START, which receives a pa-
rameter called Class that contains a speci®cation of
the entity that needs to be started, in one of the
following forms:
· ``Classname'' requests the execution of a local

entity of the given class.
· ``Host:Classname'' requests the execution of an

entity of the given class in the host speci®ed.
Recognized only by Monitor.

3.4.6.2. Stand-alone entity execution. To allow an
entity to be loaded as a stand-alone program, there
must be a mechanism for automatically creating
an instance of the class and invoking its run

method when the entity is executed. However, this
code must not be executed when the entity is
loaded from another one.

In AAFID2, the mechanism used to solve this
problem is a subroutine called _EndOfEntity,
implemented by the Entity class, which must be
invoked in the last line in the source ®le of an
entity. This subroutine checks whether the ®le is
being loaded by itself or as a module from another
program. In the ®rst case, it creates an instance of
the entity, calls its run method, and exits when
execution terminates. In the second case, nothing
is done and a value of 1 is returned, which is the
customary way in Perl of signaling that a module
®le was loaded correctly.

When an entity is loaded stand-alone, its stan-
dard input and output are not redirected and the
user is able to type messages and see the results in
the terminal.

3.4.6.3. Local execution of an entity from another
program. When an entity needs to be executed
from another program (for example, a transceiver
loading an agent), the following steps are per-
formed:
1. Load the entity class using Perl's use state-

ment.
2. Create a new instance of the entity using its

new method.
3. Create a new process, where the new entity will

be executed.
4. Create two pipes between the parent and

child processes, one for sending messages
from the parent to the child, and one for mes-
sages from the child to the parent. In the
child process, the reading end of one pipe is
associated with standard input and the writ-
ing end of the other one is associated with
standard output, therefore establishing the
``up'' channel of the entity. In the parent pro-
cess, the corresponding ends of the pipes are
stored in an internal parameter for future
use, and to be able to receive messages from
the new entity.

Fig. 5. Steps for loading and executing a local entity, called

newEntity in this example. Time is represented along the ver-

tical axis, and each vertical layer represents changes in the state

of the entities as time passes.

E.H. Spa�ord, D. Zamboni / Computer Networks 34 (2000) 547±570 565

5. The child process executes the new entity by
invoking its run method. When it returns, the
process terminates.

These steps are illustrated in Fig. 5.

3.4.6.4. Remote execution of an entity. The Moni-
tor class provides the facilities for being able to
request the activation of an entity in a remote host.
The mechanism used by monitors to activate
remote entities is the following:
1. Check if a communication channel to a trans-

ceiver or a monitor in the requested host
already exists. If so, send to it a message to load
the required entity. Otherwise continue with the
following steps.

2. Execute in the remote host the Starter program,
with the appropriate parameters to tell it from
which host it was executed. AAFID2 uses ssh
(the Secure Shell) to execute Starter in the re-
mote host.

3. The monitor sets the appropriate ¯ags to indi-
cate that it is waiting for a connection from
the host where the Starter was executed, and
continues its normal execution.

4. In the remote host the Starter instantiates a
transceiver (class PlainTransceiver), then con-
tacts the server port in the monitor, establishes
a TCP connection, and redirects its standard
input and output to it.

5. The Starter runs the transceiver, which will then
communicate with the monitor (through its
standard input and output, as redirected in
the previous step) to register with it.

6. When the monitor receives the CONNECT
message from the newly created transceiver, it
identi®es it as the one in which an entity has
to be started, and sends the appropriate com-
mand to it.

These steps are shown in Fig. 6. It is important to
notice the following characteristics of this process:
· All entities are started locally (i.e., the transceiv-

er is started locally by the starter, and the new
entity is started locally by the transceiver). It is
a separate program called Starter which estab-
lishes the network connection and does the
appropriate redirection of handles. For this
reason the network connection is transparent
to both the new transceiver and the new entity.

The monitor knows about the network connec-
tion, because it receives the connection request
from the Starter in its server port.

· Once a network connection is established be-
tween the monitor and the transceiver, it is kept
open. Future requests to start entities in the
same host will stop at the ®rst step of the algo-
rithm described before, and simply cause the
appropriate START message to be sent.

3.4.6.5. Requests for missing code. When a con-
troller entity receives a request to start a new en-
tity, it may be that some or all the code necessary
to load that entity (for example, its class source
®le, or a module needed by it) is not present in the
local host. In this case, the controller entity sends a
NEEDMODULE message up, specifying the
name of the missing class. The entity above must
®nd the appropriate code (probably by sending a
NEEDMODULE message itself), and then send it
down in a NEWMODULE message.

Once the controller entity receives the NEW-
MODULE message containing the code it needs, it
saves it to a local ®le and tries to load it. If there is
still missing code (for example, the code received
needs another module that is not present), then the

Fig. 6. Execution of a remote transceiver and entity using the

Starter program.

566 E.H. Spa�ord, D. Zamboni / Computer Networks 34 (2000) 547±570

process is repeated until an entity of the appro-
priate class can be instantiated.

This mechanism allows the initial installation of
AAFID2 in the monitored systems to be limited to
the essential classes, and then have all the others
(such as agents) deployed as needed.

3.5. Experiences and future development

The AAFID2 prototype has several limitations,
and through its testing, we have identi®ed some of
them, and obtained other experiences. The main
ones we have identi®ed are in the following areas:

Data analysis. No standard mechanism exists
for implementing data analysis in the transceivers
or in the monitors. The implementation of data
analysis mechanisms is complicated by the fact
that data coming from a single agent may need to
be analyzed in several di�erent ways to look for
di�erent problems. Therefore, it is unclear how the
messages from the agents have to be processed.

Impact. One of the undesirable consequences of
implementing AAFID2 in Perl is that it has large
resource needs. In an experiment running nine
entities (counting agents and ®lters) on a Sparc
Ultra 1 with 128 MB of RAM, each entity con-
sumed an average of 2381.9 kB of memory, or
1.8%. This may not seem exceedingly expensive,
but for AAFID to be useful, we need to have a
large number of agents running on each host,
certainly in the tens and possibly in the hundreds.

Complexity. In some cases, the AAFID2 code
has grown more complex than apparently neces-
sary. For example, in our testing, we have not used
the automatic distribution of code that is possible
with AAFID2, because the whole prototype has
been available to all the machines in the network.
Having this feature makes the code more complex
and di�cult to maintain.

Scalability. Although the distribution of tasks
between the di�erent AAFID entities aids scala-
bility, there is still the possibility of bottlenecks at
the controller entities (particularly monitors, but
also transceivers) when there are a large number
of hosts being monitored, and a large number of
agents in each host. The bottleneck can be both in
terms of communication (many entities sending
messages to the same monitor) and processing

(the monitor having to process the information
coming from a large number of transceivers). We
have not experienced any of these situations be-
cause the AAFID2 implementation has not been
tested on a large network, but they could
conceivably occur. The AAFID architecture,
however, allows for hierarchical deployment of
monitors. By arranging monitors in a suitable
hierarchical fashion, most scalability problems
can be reduced by not allowing each monitor to
receive more information than that which it can
process without overloading the system in which it
is running.

Rigidity of the architecture. We have identi®ed
situations where it may be useful to allow more
¯exible communication between entities in the
AAFID architecture, for example to allow one
agent to communicate directly with another agent.
This might also help avoid the scalability problems
mentioned before.

None of these drawbacks invalidates the ap-
proach used by the AAFID architecture, because
they can be addressed by engineering e�ort or
further research, and because AAFID can be used
as a platform for performing the necessary re-
search.

To address these issues and some others, we
have determined some points for future work in
the AAFID2 prototype:

Reduction modules. We have designed a new
entity for the AAFID architecture called reduction
modules, which is intended to provide ¯exible data
analysis capabilities. A reduction module will be
designed to detect certain intrusions, and will
consist of a list of agents needed, plus analysis
code to execute on the transceivers and the moni-
tors. This allows the user to specify the capabilities
required from the intrusion detection system.

Use of threads in Perl. In the current AAFID2

prototype, agents and ®lters are implemented as
separate processes. We are considering making
each entity a thread within the corresponding
transceiver. This will reduce the resource usage
and the impact of AAFID2 on the systems where it
runs.

Porting AAFID2 to other architectures. Work is
underway to port AAFID2 to Windows NT.
The porting e�ort has provided insight into the

E.H. Spa�ord, D. Zamboni / Computer Networks 34 (2000) 547±570 567

inherent incompatibilities between Windows NT
and Unix, but progress has been made, and being
able to run AAFID2 under NT will allow us to
perform even more experimentation with di�erent
intrusion detection techniques.

Embedded sensors. We have also started work
on building sensors embedded into the code of the
operating system and its programs. This will make
it possible to obtain information at the point
where it is generated, and will also enable the
creation of sensors that are lighter and more re-
sistant.

Advanced architecture capabilities. Some of the
capabilities o�ered by the AAFID architecture (for
example, arranging monitors in a hierarchical
fashion) are not fully implemented in the latest
versions of AAFID2. We plan on fully imple-
menting the architecture in future versions of the
prototype.

4. Research directions

The main objective of the AAFID architecture
and its prototype is to serve as a platform for re-
search in innovative intrusion detection tech-
niques. As such, it has helped us identify questions
that have not been completely answered by past
intrusion detection research. We classify these
questions in the following areas:

Detection and data requirements. The ®rst step
in the design of an intrusion detection system is to
determine what it needs to detect. Research ques-
tions include:
· How do we express what we want to detect? (de-

termine the detection requirements).
· From the detection requirements, how do we de-

termine which data are needed? (determine the
data needs).

· How do we express the data needs?
· How do we verify that the data needs are su�-

cient to satisfy the detection requirements?
Data collection. Once we know what data are

needed, the next step is to collect it. In this area,
research questions include:
· Where and how to collect the data? Data may be

collected at di�erent points in the system (e.g.,
application level or kernel level), and di�erent

types of data may need to be collected at di�er-
ent points.

· How do we communicate the requirements and
the data between the collection and the analysis
mechanisms?

· How do we e�ciently collect data without dis-
turbing system operation?

· How do we represent and store the data?
Data analysis. Once we have the data, they must

be analyzed to detect intrusions. In this area we
have the following questions:
· Where do we analyze it? In a central location?

At the point of collection?
· How do we analyze it? Di�erent detection re-

quirements may need di�erent types of analysis.
However, we do not know how to determine
which analysis techniques are better suited for
detecting di�erent types of problems or for ana-
lyzing di�erent types of data.

· How do we measure ``better'' in the previous
question? It is not clear which criteria can be
used to compare analysis techniques.
Reaction. Assuming we have successfully ana-

lyzed the data, the question remains of how to
react when problems are detected. And this area
includes the following three points:
· How do we present the results? Ultimately, a hu-

man user must be able to see the results of the
analysis and take a decision. But if the intrusion
detection system is not capable of presenting its
results in a form that is understandable to the
user, then its whole purpose is defeated.

· Which control structure to use? In a distributed
intrusion detection system, some components
control others, and the user must be able to ex-
ert control to react to detected problems. Re-
search is needed to determine which control
structures are best for di�erent situations.

· Should the intrusion detection system react
automatically? It is possible for the intrusion
detection system to react automatically to
certain problems to try to contain or stop the
damage. However, automatic reaction creates
the possibility of further problems when false
positives occur. Further research is needed to
determine under which situations it is safe to
react automatically, and which types of reaction
are appropriate.

568 E.H. Spa�ord, D. Zamboni / Computer Networks 34 (2000) 547±570

These questions are only some of the most
relevant open research areas in intrusion detection.
It is a young ®eld, and we are only starting to
understand some of the problems involved.

References

[1] J.S. Balasubramaniyan, J.O. Garcia-Fernandez, E. Spaf-

ford, D. Zamboni, An architecture for intrusion detection

using autonomous agents, Technical Report 98-05,

COAST Laboratory, Purdue University, May 1998.

[2] K.A. Bradley, S. Cheung, N. Puketza, B. Mukherjee, R.A.

Olsson, Detecting disruptive routers: a distributed network

monitoring approach, in: Proceedings of the 1998 IEEE

Symposium on Security and Privacy, May 1998.

[3] J.M. Bradshaw, An introduction to software agents, in:

J.M. Bradshaw (Ed.), Software Agents, AAA1 Press/MIT

Press, Cambridge, MA, 1997, pp. 3±46 (Chapter 1).

[4] S. Cheung, R. Crawford, M. Dilger, J. Frank, J. Hoagland,

K. Levitt, J. Rowe, S. Staniford-Chen, R. Yip, D. Zerkle,

The design of GrIDS: a graph-based intrusion detection

system, Technical Report CSE-99-2, Department of Com-

puter Science, University of California at Davis, Davis,

CA, January 1999.

[5] T. Christiansen, Tom's object-oriented tutorial for Perl

manual page included with the Perl 5 distribution, April

1998.

[6] Cisco Systems, Cisco netranger. Web page at http://

www.wheelgroup.com/univercd/cc/td/doc/pcat/

nerg.htm, accessed in May 2000.

[7] M. Crosbie, B. Dole, T. Ellis, I. Irsul, E. Spa�ord, IDIOT ±

Users Guide, COAST Laboratory, Purdue University, 1398

Computer Science Building, West Lafayette, IN 47907-

1398. ftp://coast.cs.purdue.edu/pub/COAST/

papers/IDIOT/IDIOT_Users_Guide.ps, September

1996.

[8] M. Crosbie, E. Spa�ord, Defending a computer system

using autonomous agents, Technical Report 95-022,

COAST Laboratory, Department of Computer Sciences,

Purdue University, West Lafayette, IN 47907-1398, March

1994.

[9] M. Crosbie, E. Spa�ord, Defending a computer system

using autonomous agents, in: Proceedings of the 18th

National Information Systems Security Conference, Octo-

ber 1995.

[10] M. Crosbie, G. Spa�ord, Active defense of a computer

system using autonomous agents, Technical Report 95-008,

COAST Group, Department of Computer Sciences, Pur-

due University, West Lafayette, IN 47907-1398, February

1995.

[11] D.E. Denning, D.L. Edwards, R. Jagannathan, T.F. Lunt,

P.G. Neumann, A prototype IDES ± a real-time intrusion

detection expert system, Technical Report, Computer

Science Laboratory, SRI International, 1987.

[12] D.E. Denning, P.G. Neumann, Requirements and model

for IDES ± a real-time instrusion detection system,

Technical Report, Computer Science Laboratory, SRI

International, August 1985.

[13] D. Farmer, W. Venema, Computer forensics analysis class

handouts. Web page at http://www.fish.com/

forensics/, accessed in May 2000, August 1999.

[14] W.M. Farmer, J.D. Guttman, V. Swarup, Security for

mobile agents: issues and requirements, in: Proceedings of

the 19th National Information Sytems Security Confer-

ence, vol. 2, National Institute of Standards and Technol-

ogy, October 1996.

[15] R. Heady, G. Luger, A. Maccabe, M. Servilla, The

architecture of a network level intrusion detection system,

Technical Report, University of New Mexico, Department

of Computer Science, August 1990.

[16] L. Heberlein, G. Dias, K. Levitt, B. Mukherjee, J. Wood,

D. Wolber, A network security monitor, in: Proceedings of

the IEEE Symposium on Research in Security and Privacy,

May 1990.

[17] J. Hochberg, K. Jackson, C. Stallings, J.F. McClary,

D. DuBois, J. Ford, NADIR: an automated system for

detecting network intrusion and misuse, Computers and

Security 12 (3) (1993) 235±248.

[18] S.A. Hofmeyr, An immunological model of distributed

detection and its application to computer security, Ph.D.

thesis, University of New Mexico, May 1999.

[19] IEEE, IEEE Journal on Selected Areas in Communica-

tions (Special issue on Secure Communications), May

1989.

[20] G.H. Kim, E.H. Spa�ord, The design and implementataion

of Tripwire: a ®le system integrity checker, in: J. Stern

(Ed.), The Second ACM Conference on Computer and

Communications Security, ACM Press, Fairfax, VA,

November 1994.

[21] S. Kumar, Classi®cation and detection of computer intru-

sions, Ph.D. Thesis, Purdue University, West Lafayette, IN

47907, 1995.

[22] T.F. Lunt, R. Jagannathan, R. Lee, S. Listgarten, D.L.

Edwards, P.G. Neumann, H.S. Javitz, A. Valdes, Devel-

opment and application of IDES: a real-time intrusion

detection expert system, Technical Report, SRI Interna-

tional, 1988.

[23] T.F. Lunt, A. Tamaru, F. Gilham, R. Jagannathan, P.G.

Neumann, H.S. Javitz, A. Valdes, T.D. Garvey, A real-

time intrusion detection expert system (IDES) ± Final

Technical Report, Technical Report, SRI Computer Sci-

ence Laboratory, SRI International, Melno Park, CA,

February 1992.

[24] Merriam-Webster, Intrusion Merriam-Webster OnLine:

WWWebster Dictionary. http://www.m-w.com/

dictionary, accessed on 16 May 1998.

[25] B. Mukherjee, T.L. Heberlein, K.N. Levitt, Network

intrusion detection, IEEE Network 8 (3) (1994) 26±41.

[26] P.A. Porras, P.G. Neumann, EMERALD: Event monitor-

ing enabling responses to anomalous live disturbances, in:

Proceedings of the 20th National Information Systems

E.H. Spa�ord, D. Zamboni / Computer Networks 34 (2000) 547±570 569

Security Conference, National Institute of Standards and

Technology, 1997.

[27] T.H. Ptacek, T.N. Newsham, Insertion, evasion, and denial

of service: eluding network intrusion detection, Technical

Report, Secure Networks, January 1998.

[28] E. Siever, D. Futato, Perl Module Reference, vol. 1&2,

O'Reilly, Sebastopol, CA, included in the Perl Resource

Kit, November 1997.

[29] S.R. Snapp, J. Brentano, G.V. Dias, T.L. Goan, L.T.

Heberlein, C. Lin Ho, K.N. Levitt, B. Mukherjee, S.E.

Smaha, T. Grance, D.M. Teal, D. Mansur, DIDS (distrib-

uted intrusion detection system) ± motivation, architecture,

and an early prototype, in: Proceedings of the 14th

National Computer Security Conference, Washington,

DC, October 1991.

[30] S.R. Snapp, S. Smaha, D.M. Teal, T. Grance, The DIDS

(distributed intrusion detection system) prototype, in:

Proceedings of the USENIX Summer 1992 Technical

Conference, San Antonio, TX, June 1992.

[31] S. Staniford-Chen, S. Cheung, R. Crawford, M. Dilger,

J. Frank, J. Hoagland, K. Levitt, C. Wee, R. Yip, D.

Zerkle, GrIDS: a graph based intrusion detection system

for large networks, in: Proceedings of the 19th National

Information Systems Security Conference, vol. 1, Na-

tional Institute of Standards and Technology, October

1996.

[32] K.M.C. Tan, D. Thompson, A.B. Ruighaver, Intrusion

detection systems and a view to its forensic applications,

Technical Report, Department of Computer Science,

University of Melbourne, Parkville 3052, Australia.

http://www.securityfocus.com/data/library/

idsforensics.ps.

[33] L. Wall, T. Christiansen, R.L. Schwartz, Programming

Perl, 2nd ed., O'Reilly, Sebastopol, CA, September 1996.

[34] G.B. White, E.A. Fisch, U.W. Pooch, Cooperating security

managers: a peer-based intrusion detection system, IEEE

Network (1996) 20±23.

Eugene H. Spa�ord is a professor of
Computer Sciences at Purdue Univer-
sity, the University's Information Sys-
tems Security O�cer, and is Director
of the Center for Education Research
Information Assurance and Security.
CERIAS is a campus-wide multi-
disciplinary Center, with a broadly-
focused mission to explore issues
related to protecting information and
information resources. Spaf has
written extensively about information
security, software engineering, and
professional ethics. He has published

over 100 articles and reports on his research, has written or
contributed to over a dozen books, and he serves on the
editorial boards of most major infosec-related journals.
Dr. Spa�ord is a Fellow of the ACM, Fellow of the AAAS,
senior member of the IEEE, and is a charter recipient of the
Computer Society's Golden Core award. Among other activi-
ties, he is chair of the ACMs US Public Policy Committee, a
member of the Board of Directors of the Computing Research
Association, and is a member of the US Air Force Scienti®c
Advisory Board. He regularly serves as a consultant on
information security and computer crime to law ®rms, major
corporations, US government agencies, and state and national
law enforcement agencies around the world. More information
may be found at http://www.cerias.purdue.edu/homes/spaf. In
his spare time, Spaf wonders why he has no spare time.

Diego Zamboni is a Ph.D. student at
Purdue University, where he is work-
ing in CERIAS in Intrusion Detection
research. He obtained his M.S. in
Computer Science from Purdue Uni-
versity. Previously he obtained his
bachelor's degree in Computer Engi-
neering from the National Autono-
mous University of Mexico, where he
was in charge of the security for the
Unix machines at the Supercomputing
Department. He also established the
University's Computer Security Area,
one of the ®rst Computer Security
Incident Response Teams in Mexico.

570 E.H. Spa�ord, D. Zamboni / Computer Networks 34 (2000) 547±570

