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Abstract
In this paper we present a new approach for network intrusion
detection based on concise specifications that characterize nor-
mal and abnormal network packet sequences. Our specification
language is geared for a robust network intrusion detection by
enforcing a strict type discipline via a combination of static and
dynamic type checking. Unlike most previous approaches in net-
work intrusion detection, our approach can easily support new
network protocols as information relating to the protocols are
not hard-coded into the system. Instead, we simply add suit-
able type definitions in the specifications and define intrusion pat-
terns on these types. We compile these specifications into a high-
performance network intrusion detection system. Important com-
ponents of our approach include efficient algorithms for pattern-
matching and information aggregation on sequences of network
packets. In particular, our techniques ensure that the matching
time is insensitive to the number of patterns characterizing differ-
ent network intrusions, and that the aggregation operations typi-
cally take constant time per packet. Our system participated in an
intrusion detection evaluation organized by MIT Lincoln Labs,
where our system demonstrated its effectiveness (96% detection
rate on low-level network attacks) and performance (real-time de-
tection at 500Mbps), while producing very few false positives
(0.05 to 0.1 per attack).

1 Introduction
Network-based attacks have been increasing in frequency and
severity over the past several years. Consequently, many research
efforts have focussed on network intrusion detection techniques
aimed at identifying such attacks. This paper describes a new ap-
proach to detect such attacks. The centerpiece of our approach
is a domain-specific language that enables concise specification
of network packet contents under normal as well as attack con-
ditions. These specifications are compiled to produce a high-
performance network intrusion detection system. The main ben-
efits of our approach are:
� concise, easy-to-develop intrusion specifications. Using our

domain-specific language, we can specify network-based at-
tacks or other anomalous behavior easily and concisely. We
have encoded the signatures for most low-level network
probes and attacks using a specification that is about five lines
each. Such conciseness contributes to increased confidence in
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the correctness of specifications, and leads to reduced devel-
opment and debugging efforts.

� high-speed, large-volume monitoring. A central component
of our approach is a fast pattern matching algorithm whose
runtime is insensitive to the number of attack signatures. This
algorithm ensures that the same packet field is never exam-
ined more than once, regardless of the number of patterns
that refer to the field. This factor, combined with efficient
data aggregation mechanisms, enable our system to support
real-time performance at up to 500Mbps even when run on a
standard PC.

� robust and extensible. Since an attacker is likely to attempt to
disable the intrusion detection system by any means possible,
it is particularly important for the system to be robust under
all traffic conditions, e.g., malformed network packets should
not crash the system. We have developed a novel type system
that enables compact declarations of network packet struc-
ture and the constraints on their contents, so that these con-
ditions can be automatically checked at compile-time and/or
runtime without programmer involvement. Unlike previous
approaches such as [MJ92] that hardcode network protocol
specifics into the compiler for packet-filtering rules, our ap-
proach achieves robustness without compromising extensibil-
ity, as it is very easy to specify new packet structures (and
thus be able to deal with new protocols and network services)
without any modifications to the compiler.

� comprehensive evaluation of performance. This paper
presents a comprehensive evaluation of our IDS based on a
large set of intrusion training and test data provided by MIT
Lincoln Labs [GLCFKWZ98]. The data covers a period of
seven weeks, with each day’s data in the range of 0.4 to
1.2GB. The evaluation results indicate that our approach is
very effective (e.g., detects 96% of all network protocol re-
lated attacks in the test data), fast (approximate runtime of 15
seconds per GB of network traffic), and uses very little mem-
ory (less than 1MB).

1.1 Organization of the Paper
The rest of this paper is organized as follows. In Section 2 we de-
scribe our specification language. We illustrate this language with
several examples in Section 3. An overview of our implementa-
tion is given in Section 4. Detailed study of the effectiveness
and performance of our system are presented in Sections 5 and 6.
Comparison with related work is presented in Section 7. We then
conclude the paper with Section 8.

2 Specification Language
Intrusion specifications consist of variable and type declarations,
followed by a list of rules. The rules are of the form �����	�
��
���
���� , where ����� captures a pattern on sequences of network
packets, and ��
���
���� denotes the actions to be taken when we have
a match for ����� . Each of these components of the language are
described in more detail below. We confine these descriptions to
features that are unique to our language.



2.1 Declarations
The declarations consist of type and variable declarations. Types
may be primitive or user-defined. Primitive data types in the lan-
guage include bool, bit, byte, short, int, long, float,
and string. For integral types, both signed and unsigned ver-
sions are supported. The compound types supported include
event types (used to capture transmission or reception of pack-
ets or other events ), packet types (used to capture the structure
and content of network packets), lists, arrays and tuples. Below,
we describe the event and packet types that are unique to our lan-
guage.

2.1.1 Events
Events may be primitive or user-defined. Primitive events are
generated by external systems and constitute the input to our de-
tection system. Primitive event declarations are of the form

event ����� � � � ������� ����	����
� ����	
��� 
������
where ����	������ ����	���� 
���� is a list of declarations specifying the
types of the parameters to the event ����� � � � ����� . In a system
with a single network interface, we may have just two events (say,
tx and rx), corresponding to the transmission and reception of
packets on this interface. On systems with multiple interfaces,
we may still have the two event types, but have then take an addi-
tional argument that specifies the interface, e.g.,

event rx(int deviceId, ether_hdr p)

In addition to capturing reception or transmission of raw pack-
ets, events may provide higher level information as well. For
instance, the declaration

event telnetConn(
�� 
�� � ��������	�����	���������	�� ����� )
may denote an event that is generated by a telnet server on com-
pletion of a telnet connection. Similarly, additional events may be
used to describe information available from intermediate protocol
layers, such as packet contents after IP fragment assembly.

User-defined events are abstract events that correspond to
the occurrence of (potentially complex) sequences of primitive
events. They take the form

event ����� � � � ������� ����	�������� � �����

where ����� is an event pattern described in Section 2.2. All of the
variables in ����	������ must appear in ����� .

Similar to naming event patterns, our language also permits
naming of arbitrary expressions. Named expressions are defined
using the syntax

��! �"	 � ���
��� ���#	��������$�%��! �"	
where ��! �&	 is an expression over the variables in ����	��#��� .
2.1.2 Packets
An obvious way to access the contents of a network packet is to
treat it as a sequence of bytes. Then, a reference to the proto-
col field of an Ethernet header in an Ethernet packet in buffer
p may be expressed using C-like syntax as (short)p[12].
Drawbacks of the byte sequence approach are that the type infor-
mation for each field is lost and type casting is needed for most
data references. Type-unsafety leads to several problems. For
instance, a simple programming bug may cause access using an
offset that is outside the packet boundaries which may cause a
memory protection fault. Or, another simple programming bug
using explicit type casting, such as (int)p[15], may lead to a
memory-related error on architectures that require integers to be

aligned on a four or eight byte boundary. Semantic errors may
arise even more frequently than access errors, since we may ac-
cess an offset believing that it contains certain information, but
in fact, the packet may be of a totally different type and contain
completely different information. Language features that min-
imize the likelihood of these common errors are needed, since
errors such as those mentioned above can crash the intrusion de-
tection system, which may in turn bring down the entire system
or leave it open to attacks.

Type systems used in most imperative, object-oriented or
declarative programming languages are not sufficiently expres-
sive to model network packets. In particular, a type system for
network packets needs to deal with the following problems:
� the compiler or runtime system for the language does not have

the freedom to choose a runtime representation; rather, the
representations are prespecified as part of protocol standards

� the complete type of a network packet can be determined only
at runtime, so type checking cannot be completed at compile-
time

One way to deal with these problems is to hand-craft a type
checker that is developed explicitly for a prespecified set of net-
work protocols. This approach, used in BPF [MJ92] hard-codes
the structure of packets for the prespecified protocols into the
compiler, thereby requiring a redesign of the compiler to accom-
modate protocols that are not already built into the compiler, e.g.,
ATM, SNMP, and IPv6. We have developed an alternative ap-
proach that is more extensible. It is based on a flexible and ex-
pressive type system that can capture complex packet structures,
while providing the capabilities to dynamically identify packet
types at runtime and perform all relevant type checks before the
packet fields are accessed.

We begin the description of packet types with a simple exam-
ple of the type declaration for an Ethernet header. We use syntax
that is similar to that of the C-language.

ETH_LEN = 6
ether_hdr {
byte e_dst[ETH_LEN]; /*Ethernet destination*/
byte e_src[ETH_LEN]; /*and source addresses*/
short e_type; /*protocol of carried packet*/

}

To capture the nested structure of protocol headers, we employ
a notion of inheritance. For instance, an IP header can be con-
sidered as a subtype of ether hdr with extra fields to store IP
protocol information.

ip_hdr: ether_hdr {
bit version[4]; /* ip version */
bit ihl[4]; /* header length */
byte tos; /* type of service */
unsigned short tot_len; /* total length */
unsigned short id; /* Id for IP packet */
bit flag[3]; /* Various flags */
bit frag_offset[13];
byte time_to_live;
byte protocol; /* high-level protocol */
unsigned short checksum;
unsigned int saddr, daddr;
/* Source and destintion IP addresses */

}

Similarly, a TCP header inherits all of the data members from
IP header and Ethernet header. However, simple inheritance by
itself is not powerful or flexible enough to satisfy our needs. In
particular, the structure describing a lower layer protocol data unit
(PDU) typically has a field identifying the higher layer data that
is carried over the lower layer protocol. For instance, the field
e_type specifies whether the upper layer protocol is IP, ARP, or



some other protocol. To capture such conditions, we augment in-
heritance with constraints. The structure for IP and TCP headers
with the constraint information is as follows.

ETHER_IP = 0x0800
ip_hdr: ether_hdr with e_type=ETHER_IP {
... /* all fields same as beore */

}
IP_TCP = 0x0006
tcp_hdr: ip_hdr with protocol=IP_TCP {

short tcp_sport; /*source port */
short tcp_dport; /*destination port */
int tcp_seq; /*sequence number */
int tcp_ackseq /*acknowledge number*/
.... /*other fields, omitted here */
byte tcp_data[tot_len-ihl];

}

Finally, we need to deal with the fact that the same higher layer
data may be carried in different lower layer protocols. For this
purpose, we develop a notion of disjunctive inheritance as fol-
lows. To capture the fact that IP may be carried within either an
Ethernet or a token ring packet, we modify the constraint associ-
ated with ip_hdr into:

(ether_hdr with e_type=ETHER_IP) or
(tr_hdr with tr_type=TOKRING_IP)

It is instructive to compare disjunctive inheritance with traditional
notions of single and multiple inheritance. In single inheritance,
a derived class inherits properties from exactly one base class.
In multiple inheritance, a derived class inherits the properties of
every one of the (several) base classes. In contrast, disjunctive
inheritance asserts that the derived class inherits properties from
exactly one of many base classes. Viewed alternatively, multi-
ple inheritance would correspond to a conjunction of constraints,
whereas disjunctive inheritance corresponds to an exclusive-or
operation.1

The semantics of the constraints is that they must hold before
fields corresponding to a derived type are accessed. In particu-
lar, note that at compile time, we will not know the actual type
of a packet received on a network interface, except for the lowest
layer protocol. For instance, all packets received on an Ether-
net interface must have the header given by ether_hdr, but we
do not know whether they carry an ARP or IP packet. To en-
sure type safety, the constraint associated with the ip_hdr must
be checked (at runtime) before accessing the IP-relevant fields.
More generally, before a field in a structure of a particular type �
is accessed, all constraints associated with all of the base types of
� need to be checked.

2.2 Patterns
Patterns on packet sequences are used to specify normal network
traffic as well as intrusions. The simplest pattern captures the oc-
currence of a single event, and is of the form ����!���������� � !��"��� 
 ���
	 ,
where � denotes an event (typically the reception or transmis-
sion of a packet on a network interface) and !���������� � !�� denote
the event arguments (typically the packet content). 
����
	 denotes
a boolean-valued expression involving ! � ������� � ! � and possibly
other variables. It may contain standard arithmetic, comparison
and logical operations, and make use of external functions pro-
vided by the runtime environment. Patterns denoting the occur-
rence of several events can be combined using the ��� operator to
denote the occurrence of one of these events. We can use the
negation operator 
 to denote nonoccurrence of events. The term

1From the point of view of describing packet structures, there seems to be little
need for supporting multiple inheritance, as protocol layering typically ensures that
a single PDU of a lower layer protocol carries a packet corresponding to exactly one
higher layer protocol.

primitive pattern denotes a pattern obtained using the operator ���
and possibly containing a single negation operator at the outer-
most level. Two examples of primitive patterns are:

rx(p)|(p.daddr=129.186.44.33)&&(p.tcp_dport=80)
!(rx(p)|p.protocol in KNOWN_PROTOCOLS ||
tx(p)|p.protocol in KNOWN_PROTOCOLS)

The first pattern captures a TCP packet addressed to port
80 on the host with IP address 129.186.44.33. The second pat-
tern captures any transmitted or received packet that is a non-IP
packet, or has the protocol field in the IP-header set to a value
different from those contained in the list KNOWN PROTOCOLS.

To capture sequencing or timing relationships among events,
we use several operators to compose primitive patterns into com-
plex patterns. The basic composition operators are:
� Sequential composition: � ��� �
� denotes pattern � � immedi-

ately followed by pattern � � .
� Alternation: ������� � � denotes the occurrence of either ��� or � � .
� Repetition: ��� denotes zero or more repetitions of the pattern
� .

� Real-time constraints: � within � ����� � ��� denotes the occur-
rence of events corresponding to pattern � occurring over a
time period ����� ��� � � . � over � is a shorthand for � within
� ����� � , while � within � is a shorthand for � within � �#� � � .

Note that most of these operators are similar to those used in regu-
lar expressions — the only difference is that we are trying to cap-
ture patterns on sequences of events with arguments, whereas reg-
ular expressions capture patterns on sequences of symbols. For
this reason, we call our pattern language as regular expressions
over events (REE).

To avoid excessive use of parenthesis, we define the following
associativity and precedence for the sequencing operators. The
operators ��� and “ � ” associate to the left. The operator 
 has the
highest precedence, “ � ” has the next lower precedence, “ � ” has
the next lower precedence and ��� has the lowest precedence. As
a convenient shorthand, we use the notation ������� � � to stand for
� ��� ��
 � � � ��� ����� ��� � �
� , i.e., occurrence of � � followed by �
� without
intervening occurrences of either pattern. Since we only permit
negation of primitive patterns, the “ ��� ” operator is also applicable
only for primitive patterns. To illustrate general patterns, con-
sider:

rx(p1);tx(p2)*;rx(p3)|(p3.daddr=p1.daddr)

which denotes a sequence of two inbound IP-packets addressed
to the same host with zero or more outbound packets in between.
We will look at additional examples in the subsequent sections.

2.3 Data Aggregation Operations
In order to identify network attacks, it is often necessary to collect
and aggregate information across many network packets, and act
on the basis of this information. This operation needs to be more
sensitive to recently received packets. Our language supports two
principal abstractions for such aggregation, namely, counters and
tables. We describe these abstractions below.

2.3.1 Counters
Counters keep track of the number of times a particular event
pattern occurs. They are characterized by
� an aging function that assigns lower weights to events based

on how far in the past they occurred
� higher and lower thresholds for the counter value
� high and low limit functions that are invoked when the

counter value exceeds or falls below the high and low thresh-
olds respectively



Desirable properties of a counter abstraction are that (a) it use
constant space, and (b) the increment and decrement operations
be performed in constant time. With arbitrary choice of aging
functions, we cannot hope to satisfy these properties. For in-
stance, suppose that we want the counter to weight event oc-
currences in a manner inversely proportional to how far in the
past they occurred. Let ���
��� ��� � � � denote all of the times when the
counter was incremented, with � � ��������� � � . Then we end up
with an equation such as the following one for the counter value
at time � � � � : � � � � � �� � 	 ��

� � 
���� � � ��� �

�
� �

Given the value of
� � � � and that another increment operation is

invoked at time ��� , there is no apparent way to compute
� � �����

short of reevaluating the above equation. Clearly, a reevalua-
tion requires us to use � � � � storage and � � � � time where

�
is the number of occurrences of the increment operation in the
past. Consequently, we focus on aging functions that can be im-
plemented efficiently.

Our choice for aging function uses exponential weighting. In
addition, since we may not be interested in occurrences of an
event more than � units of time in the past, we may want to ig-
nore such events. This leads us to the following equation for the
value of the counter at time � , where � is smallest number such
that � ��� ��� � � � . � � � � � ��� 	 � �����������! 
While there is no apparent way to compute

� � � � incrementally
in this case either, we can use approximations. In particular, we
divide the interval � into � windows of size � �"� each. For each
window, we maintain two quantities

�$#
and � # that correspond

respectively to the contribution of the window to the total count
and the ending period of the window, i.e.,� # � �"%�� 	 �'& �(�)������*,+- 
where � ������� � � � � correspond to all occurrences of the increment
operation within the time window . . Now,

� � � � can be computed
using � � � � �0/�# 	 � ����*,+
�1�! 
� � #
which takes only � � � � time. Choosing a small � makes this op-
eration fast, at the expense of losing some accuracy. In practice,
a choice of � �32 seems to work well enough.

The syntax for specifying counters is as follows:

������ ����	 
 ����� � ��	 � �#�
��� ��� � � � �54$� � �5687"�5689 �where � � � and � have the meanings described above. The

high and low thresholds are given by 4 and � , and the cor-
responding functions to be invoked are given by 6:7 and 6
9 .
These counters support operations to increment, decrement or re-
set the counter, invoked using the syntax 
������ ����	 � ���
� � 
�� 

��� ,

 ����� � ��	 � ����� � 	�� 

��� and 
 ����� � ��	 � ����� � 
���� ��	 ��� . The first two
functions take an optional parameter that allows incrementing or
decrementing by a number other than 1.

Typically, the functions 6 7 and 6 9 print something to a log
file or generate an event that is to be processed by a higher level
system. To avoid repetitive generation of the same message, we
incorporate “hysteresis” into the process of invoking the threshold
functions. In particular, 6:7 is invoked the first time the counter
value crosses 4 after being below � . Subsequent crossings of 4 do
not result in invocation of 6"7 unless the counter value goes below
� . A similar condition applies to the invocation of 6"9 .

2.3.2 Tables
Tables are used to keep track of counts of many events simultane-
ously. They are similar to the histograms proposed in [Ranum97],
but generalize it in the following ways: information stored in the
table can be indexed using arbitrary types, “stale” entries in the
table are automatically purged, and prespecified functions can be
automatically invoked when the number of entries in the table go
above or fall below specified thresholds. Purging stale entries is
particularly important, as it enables us to remember information
relevant for detecting attacks while using only a small amount of
memory.

Each entry in a table is characterized by:
� � �
; �<; � � : type of the key using which the entry will be ac-

cessed from the table
� 	���� � �<; � � : type of additional data stored in the entry
� a counter associated with the entry, characterized by
� ��� � � ��4 � � �56 7 and 6 9 as before

In addition, the following parameters are shared by all entries in
a table:
� �

: the maximum number of entries that can be stored in the
table

� 6,=���6"> : functions to be invoked when an entry is deleted from
the table ( 6
= ) and when the table gets full ( 6"> )

When the number of entries in the table reaches the maximum
number permitted, the entries associated with lowest counts are
deleted from the table. This operation has the effect of retain-
ing entries that have been accessed more often. The aging aspect
of the counters ensures that among the entries that have been ac-
cessed the same number of times, those that have been accessed
more recently have higher counts than those accessed earlier.

Rather than identifying and deleting only the entries with
lowest counts, which may result in repeated invocation of this
deletion operation, we prefer to select a fraction 6 and delete� �@?A6 � �CB entries with the lowest counts. This approach
ensures that the deletion operation is invoked at most once ev-
ery � �D� � � � increment operations. Moreover, note that we can
identify the lowest � entries in � � � � expected time2. This means
that the (expected) amortized cost of the deletion operation is just� � 
 � .The syntax for declaration of tables is as follows. Suitable
defaults are used for unspecified arguments. The default for � is
1, while the default for � is 4.

� �FE���� ��� � � ����	 ��� � � � � � � � ��4 � � �-6"7 ��689 �56,=��-6">��where � � � � � and 	 � denote the table name, key type and data type
for the entries in the table.

Tables may optionally be initialized with certain entries. We
refer to these entries as static entries to distinguish them from
entries inserted dynamically in the table in response to receiving
certain packets. Counts associated with static entries are main-
tained as with dynamically inserted entries, but static entries are
never deleted from the table.

3 Examples
3.1 Very Small IP Fragments
We begin with a simple example to identify unusual network
packets that can often be used to launch attacks. For instance,
very short IP fragments that are smaller than TCP headers can
be used to bypass packet-filtering firewalls. We can detect such
packets using:

2A standard algorithm for accomplishing this is based on the quicksort algorithm
— the difference being that instead of operating recursively on both halves obtained
after partitioning, the modified algorithm confines itself to the half that holds the G th
smallest element.



MY_NET = 129.186.44.0
MY_NET_MASK = 255.255.255.0
my_net_addr(a) = ((a&MY_NET_MASK)=MY_NET)
is_frag(p) = (p.more_frags)||(p.frag_offset!=0)

Table tcpFrag(
unsigned int, /*key is IP address, no data*/
100, 30, /*size 100, time window 30 sec*/
1, 0, /* hi, lo thresholds */
tcpFragBegin, tcpFragEnd) /*threshold fns */

rx(p)|my_net_addr(p.daddr) &&
is_frag(p) && p.protocol=IP_TCP &&
p.tot_len < 48 -> tcpFrag.inc(p.saddr)

The functions tcpFragBegin and tcpFragEnd write
records to a log file. They both take an argument that is the value
of the key field corresponding to the table entry for which the
action is being executed.

The threshold values in the example make attack detection
to be very deterministic: an attack is recognized even if a single
packet matching the criteria is received. The reasons for using
a table in such a case (as opposed to directly invoking a func-
tion that generates an attack report) are as follows. First, we are
able to distinguish among packets received with different source
addresses and treat them as separate attacks. Second, the attack-
ing host may generate a large number of fragmented packets that
match this criteria. Rather than generating many attack messages,
we may generate just two messages that indicate the beginning
and end of the attack.

3.2 TCP SYN-Flood Attack
SYN-flood attack, otherwise known as neptune attack, involves
sending a TCP connection initiation packet to a victim host with
a nonexistent source address. The victim host sends back a SYN-
ACK packet, but since the source address of the first packet is
non-existent, the victim does not receive the ACK packet to com-
plete the connection. As a result, the connection remains in a
half-established state until a timeout occurs after a period of more
than a minute. Since implementations of TCP limit the number
of such half-open connections to a small number, the ability of
the victim host to accept further TCP connections on a socket can
be effectively eliminated by an attacker that sends in such attack
packets, even at a relatively slow speed. We detect this attack
using the following set of rules:

same_session(p, q) =
p.daddr=q.saddr && p.tcp_dport=q.tcp_sport &&
p.saddr=q.daddr && p.tcp_sport=q.tcp_dport

event tcp_syn(p) =
rx(p)| my_net_addr(p.daddr) &&

p.tcp_syn && !p.tcp_ack
event tcp_synack(p, q) =
tx(q)| same_session(p,q) && q.tcp_syn &&
q.tcp_ack && p.tcp_seqnum+1 = q.tcp_acknum

event tcp_ack(q, r) =
rx(r)| same_session(q,r) && !r.tcp_syn &&
r.tcp_ack && q.tcp_seqnum+1 = r.tcp_acknum

Table neptune(
(unsigned int, unsigned short)
/*key: (IP address,port) pair, no data field*/
1000, 120, /*size 1000, window 120 seconds */
4, 1, neptuneBegin, neptuneEnd
/* thresholds and associated functions*/)

(tcp_syn(p1)..tcp_synack(p1,p2));
((!tcp_ack(p2,p3))* over 60) ->

neptune.inc((p1.daddr, p1.tcp_dport))

Each time a TCP SYN packet is received by a victim host (which
may be any host within the network being monitored for intru-

sion), and a subsequent SYN-ACK packet generated by the vic-
tim host, this pattern monitors for the receipt of an ACK packet
signaling the completion of the 3-way handshake. If this does not
happen within sixty seconds, then the neptune table is incre-
mented. If the increment operation is invoked sufficiently many
times over a short period (e.g., four times within 120 seconds)
then the neptuneBegin function would be invoked, which
may in turn generate an alarm or record a message in a log file.

To avoid false alarms due to connection attempts with a host
that may be down or temporarily disabled for other reasons, the
neptune pattern counts only those TCP connection attempts for
which the victim responded with a SYN-ACK packet. If alter-
native means to verify the health of the victim host were avail-
able, then we may count all TCP connection attempts that do not
progress within sixty seconds or so.

For simplicity, the above pattern does not account for the fact
that TCP connection attempts may be aborted in the middle, e.g.,
on receiving the FIN or RST packets. They can be dealt with by
incorporating such packets into the above pattern.

3.3 Teardrop Attack
The teardrop attack involves fragmented IP packets that overlap.
The following pattern captures any such overlap, without flagging
those cases where a fragment is simply duplicated.3

frag_begin(p) = p.frag_offset*8
frag_end(p) = frag_begin(p)+p.tot_len-20
same_pkt(p,q) =
p.daddr=q.daddr && p.saddr=q.saddr && p.id=q.id
event overlapping_frag(p1,p2) =
rx(p2)| same_pkt(p1,p2) &&

frag_begin(p2) < frag_end(p1) &&
frag_begin(p1) < frag_end(p2) &&
!(frag_begin(p1)=frag_begin(p2) &&
frag_end(p1)=frag_end(p2))

(rx(p1)|is_frag(p1);(rx|tx)*;
overlapping_frag(p1,p2)) within 60 -> ...

The pattern matches any sequence of packets that spans a pe-
riod less than sixty seconds (one may choose a larger or smaller
time frame), begins and ends with fragments of the same IP
packet, and these fragments overlap partially.

4 Implementation
Our implementation consists of a compiler and a runtime system.
The compiler is responsible for translating the intrusion speci-
fications into C++ code. The aspects of compilation unique to
our system include type-checking for packet data types and the
compilation of pattern-matching. The C++ code produced by our
compiler is compiled by a C++ compiler and linked with the run-
time system to produce our IDS.

4.1 Type-checking for Packet Types
Type checking tasks that are specific to packet types involve name
resolution and constraint enforcement. Name resolution refers to
the problem of identifying the entity referred by an expression
such as “a.b”. Name resolution is complicated by the fact that
in an expression of the form a.b, we may not know the exact type
of a, but only the base class to which a belongs. To illustrate the
problem, suppose that we have declarations of the form:

event ethRx(ether_hdr p)
event tokRx(tr_hdr p)

3Not all overlaps correspond to teardrop attacks, but we used this pattern since
it is simpler than the one that would permit legitimate fragment overlaps, and since
overlapping IP fragments never appeared in the environments where our IDS was
tested.



The intuition here is that we associate an event type to denote
packet reception on each type of network interface. Reception of
a packet will result in the generation of this event, with the packet
contents passed as a parameter to the event. Now consider the
rule:

ethRx(p)|p.tot_len<20 && p.tcp_sport=80 -> ...

At compile time, based on the declaration of the event ethRx, we
only know that the type of p is ether_hdr. With this informa-
tion, if we attempt to resolve p.tot_len, there will be an error,
since the ether_hdr contains no such field. Reporting such an
error is clearly not the desired result, so we extend the name res-
olution process so that it uses the field name information to infer
the runtime type of p. Specifically, when we see an expression
of the form a.b, we search for the field b in the (declared) type
of a and all its subtypes. Using this process on the expression
p.tot len, we can infer that the type of p is ip hdr. On en-
countering the expression p.tcp sport, we will further refine
the type of p to be a tcp hdr. When the type of p cannot be
determined uniquely using this process, the type checker will re-
turn an error. This would happen only when the declared type of
T is such that two (or more) descendent classes of T use a field
with the same name. To disambiguate such cases, the event argu-
ments can be further qualified to indicate the runtime type of an
argument:

ethRx(tcp_hdr p)|p.tot_len<20 ...

Finally, although a pattern may assume that packets being pro-
cessed by that pattern are of a certain type, we need to verify
this fact at runtime. More generally, before accessing a field f
in a packet, we need to check all constraints associated with the
type T containing f and all its ancestor types. For instance, in
the above pattern, before we access the field p.tot_len, which
is a field in the class ip_hdr, we need to verify the constraint
p.e_type = ETHER_IP associated with this type. As part of
type checking, we explicitly add these constraints to the event pat-
terns. We also introduce checks to ensure that the packet length
is large enough that all offset accesses fall within the packet.

To ensure that the preconditions are indeed checked at run-
time before accessing a particular field, the ordering among the
newly introduced conditions and the original conditions in the
pattern have to be maintained. We do this by introducing a new
ordered conjunction operation &&& as follows. The semantics of
ordered conjunction a &&& b is that the condition a needs to be
checked first, and only if it is true, b will be checked4 . The result
of applying these type-checking operations on the above pattern
is:

ethRx(p)|length(p)>=offset(p.tcp_data) &&&
(p.e_type=ETHER_IP &&& p.tot_len<20) &&
(p.e_type=ETHER_IP &&& p.protocol=IP_TCP
&&& p.tcp_sport = 80) -> ...

Note that the same constraint may appear multiple times in the
pattern at this point, but later stages of the compiler will ensure
that no constraint is checked more than once.

In the presence of disjunctions in the constraint, such
as tcp hdr: ether hdr with e type=ETHER IP or
tr hdr with tr type=TOKRING IP, recall that the alter-
natives in the condition are mutually exclusive. For instance, in
the above example of ethRx, we will be able to determine stati-
cally that the packet type is ether hdr and not tr hdr. Based
on this, the constraint regarding tr hdr is not applicable and can
be discarded.

4This contrasts with the semantics of &&, which does not require us to order
the tests. The reordering permitted by && plays an important role in improving the
performance of pattern-matching algorithms.
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Figure 1: A NEFA and its equivalent DEFA

4.2 Compilation of Pattern-Matching
Efficient pattern-matching is key to the performance of our IDS.
Our approach to pattern-matching is based on compiling the pat-
terns into a kind of automaton in a manner analogous to compil-
ing regular expressions into finite-state automata. We call these
automata as extended finite-state automata (EFSA). EFSA are
simply standard finite state automata (FSA) that are augmented
with a fixed number of state variables, each capable of storing
values of a bounded size. Every transition in the EFSA is asso-
ciated with an event, an enabling condition involving the event
arguments and state variables, and a set of assignments to state
variables. The final states of the EFSA may be annotated with
actions, which, in our system, will correspond to the response ac-
tions given in our rules. For a transition to be taken, the associated
event must occur and the enabling condition must hold. When the
transition is taken, the assignments associated with the transition
are performed.

An EFSA is normally nondeterministic. The notion of ac-
ceptance by a nondeterministic EFSA (abbreviated as NEFA) is
similar to that of an NFA. A deterministic EFSA (DEFA for short)
is an EFSA in which at most one of the transitions is enabled in
any state of the EFSA. A NEFA for the pattern ����!�� � E�� � E���!�� is
shown in Figure 1. The equivalent DEFA is also shown in the
same figure.

We have shown that translating a NEFA to a DEFA can result
in an unacceptable blowup in the size of the automaton. There-
fore we have developed a new approach that is based on translat-
ing NEFA into what we call as quasi-deterministic extended finite
state automata (QEFA). QEFA eliminate most of the sources of
nondeterminism that are present in the NEFA, while still ensur-
ing that their sizes are acceptable. A complete treatment of QEFA
and the compilation algorithm can be found in [SU99].

4.3 Runtime System
The runtime system provides support for capturing network pack-
ets either from a network interface or from a file. The code for
doing this is currently based on the Berkeley packet filter code.
This code is used to read all network packets (either from a file
or a network interface), leaving the actual filtering and other pro-
cessing to the code generated by our compiler. The runtime sys-
tem also provides the implementation of the data structures men-
tioned earlier for performing data aggregation.

5 Effectiveness
Our IDS participated in a comprehensive evaluation of in-
trusion detection systems conducted by MIT Lincoln labs
[GLCFKWZ98]. To the best of our knowledge, this was the
first comprehensive and comparative evaluation of intrusion de-
tection systems to date. Participants in the evaluation included
research groups from UC at Santa Barbara, Columbia University,
RST Corporation, and two groups from SRI. A baseline system
comparable to commercial intrusion detection systems was also
included in the evaluation. It was determined that all of the sys-
tems participating in the evaluation provided significantly better
detection rates over the baseline system, while reducing false pos-



09:51:21 Portsweep attack began : 207.136.086.223 --> 172.016.114.050
09:51:21 Portsweep attack ended : 207.136.086.223 --> 172.016.114.050
13:49:52 Ping of death attack began : 172.016.114.050
15:08:16 UDPIP Fragment Too Small attack began : 172.016.113.050
15:08:17 Teardrop attack began : 172.016.113.050
15:08:18 Teardrop attack ended : 172.016.113.050
13:49:52 Ping of death attack ended : 172.016.114.050
15:08:18 UDPIP Fragment Too Small attack ended : 172.016.113.050
07:32:04 Portsweep attack began : 153.107.252.061 --> 172.016.114.050
07:40:15 Portsweep attack began : 195.073.151.050 --> 172.016.114.050
07:34:15 Portsweep attack ended : 153.107.252.061 --> 172.016.114.050
07:40:15 Portsweep attack ended : 195.073.151.050 --> 172.016.114.050
09:11:37 Neptune attack began : 172.016.114.050
09:14:52 Neptune attack ended : 172.016.114.050
17:15:57 Neptune attack began : 172.016.113.050
17:16:05 Portsweep attack began : 166.102.114.043 --> 172.016.113.050
18:07:54 Neptune attack ended : 172.016.113.050
18:05:55 Portsweep attack ended : 166.102.114.043 --> 172.016.113.050
10:14:27 Portsweep attack began : 207.253.084.013 --> 172.016.118.020
15:30:05 UDPIP Fragment Too Small attack began : 172.016.113.050
15:30:05 Teardrop attack began : 172.016.113.050
15:30:07 Teardrop attack ended : 172.016.113.050
15:30:07 UDPIP Fragment Too Small attack ended : 172.016.113.050
02:03:29 Portsweep attack ended : 207.253.084.013 --> 172.016.118.020

Figure 2: Sample output produced by our IDS.

itive rates by an order of magnitude or more.
The evaluation organizers set up a dedicated network to con-

duct a variety of attacks. Care was taken to ensure the accuracy
of normal traffic as well. All of the network traffic was recorded
in tcpdump format and provided to the participants of the evalua-
tion. The data provided consisted of seven weeks of training data,
plus two weeks of test data. The tcpdump files were 0.4 to 1.2GB
in length per day.

The participants were required to tag each TCP session and
each non-TCP packet in the tcpdump file as representing an at-
tack or not. Optionally, a probability could be assigned to indicate
the likelihood of an attack. For TCP, entire sessions were tagged
as opposed to individual packets. These “raw results” were then
processed by MIT Lincoln labs to produce standardized scores for
all the participants. Thus the results presented below have been
independently verified [GLCFKWZ98]. Although the format of
the raw results was verbose, the upside was that being so large
(about 100K sessions per day), it was impossible to use manual
approaches to cross-check the results produced by the IDS sys-
tems before they were scored by Lincoln Labs. In addition to the
raw results, our system is capable of producing human-friendly
attack reports, a sample of which is shown in Figure 2.

The attacks were classified into four categories. Of these,
only two categories related to low-level network attacks for which
our system is designed5. These two categories were probing and
denial-of-service.

Figure 3 shows the list of attacks that are currently identified
by our system. The attacks are identified using rules that are gen-
erally similar to the examples discussed earlier. However, in the
process of training and debugging the system, we have found that
the rules tend to get a bit more complicated than the examples.
At times, we have also had to change the rules due to certain id-
iosyncrasies or artifacts in the test data.

Figure 4 shows the overall scores assigned to our system by

5Attacks on higher-level software such as buffer overflows, race conditions and
vulnerabilities in setuid programs are not detected by the system described in this
paper. This is because it is much harder to piece together low-level information
contained in network packets to identify these higher level attacks. Instead, we rely
on a different subsystem that intercepts and monitors system calls made by processes
to identify such attacks.

Lincoln Labs [GLCFKWZ98]. The scoring scheme assigned
fractional credit to each attack based on the percentage of the
attack-containing packets (or sessions) identified by the IDS be-
ing evaluated. For instance, a port sweep may occur over hun-
dreds or thousands of packets. Any IDS is able to identify only a
subset of these packets as being part of a port sweep. This scoring
procedure is not favorable for systems such as ours that empha-
size low false positives. Such systems tend to err on the side of
not identifying individual packets as attack-bearing, as long as
a substantial number of packets within the attack can be tagged.
Nevertheless, our system finished among the top two in both cate-
gories at low false-positive rates of 0.05 to 0.1 false alarms per at-
tack. At much higher false-positive rates, e.g., 2 to 3 false alarms
per attack, some of the other systems start performing better than
us.

Figure 5 shows the scores obtained by our IDS for each kind
of attack. Since it omits some of the higher-level probing and de-
nial of service attacks that are not addressed by our system, the
aggregate score shown in this table is an improvement over that
given in Figure 4. This table also shows the result under a differ-
ent scoring scheme that attempts to identify whether each an at-
tack is completely missed by a system. If a substantial fraction of
the attack-bearing packets (say, 50%) are detected by the system,
then we treat the attack as having been detected. Otherwise, we
treat the attack as having been missed. Our system demonstrated
excellent detection capability (96%) when using this criteria. The
only attacks missed were due to the fact that the tcpdump con-
tained only packets arriving into the network from outside, while
we had assumed that it contained all of the internal traffic as well.
As such, the explosion in the number of packets expected by our
system as part of a UDP loop attack was not present in the tcp-
dump data, and hence the attack was missed by our system.

6 Performance
Our emphasis on efficiency of implementation paid off in terms
of performance, as shown by the CPU and memory usage of our
IDS for the ten days of test data as shown in Figure 6. While run-
ning on a 450MHz Pentium II PC running RedHat Linux 5.2, our
system can sustain intrusion detection at the rate of 15s/GB, or



Attack name Description
ipsweep Surveillance sweep performing port sweep or

ping on multiple hosts
land Denial of service using TCP packet with

the same source and destination address
neptune Syn flood denial of service
pod Denial of service using oversized ping packets
teardrop, nestea Overlapping IP fragments
portsweep Sweep through many ports to determine

available services on a single host
smurf ICMP echo reply flood, caused by an ICMP echo

packet with spoofed address (of victim) sent to
a network broadcast address

UDP loop Denial of service, created by sending UDP
packets with source address of a simple UDP
service and destination address of another

pingflood Flood of icmp packets (but no smurf present)
ipspoofing Attempt to establish a TCP connection

with a spoofed source address
smurf int site Intermediate site for a smurf attack
fraggle Like smurf, but uses UDP rather than ICMP
ipversion, Unknown protocol or version
protocol
tcpfragtoosmall TCP packet that is very small,

yet has been fragmented at the IP level
udpfragtoosmall Similar to above, but for UDP
broadcast Packets sent to broadcast addresses

for simple UDP services
udpdataflood unusually large volume of data for a UDP port
nmap, satan, surveillance tools, produce many different
saint, mscan variations of port and ip sweeps,

as well as attacks on higher level services

Figure 3: Attack Repertoire

Attack Category Number of False Our Score Best score
Attacks positives in evaluation

Probe 17 1 86% 86%
Denial of service 43 4 60% 65%

Figure 4: Overall scores by category of attacks.

equivalently, over 500Mb/second. (In measuring the CPU time,
we considered only the time spent within the intrusion detection
system, and ignored the time for reading packets from the tcp-
dump file.) Its memory consumption is also low, largely the re-
sult of our choice of data aggregation operations. The high per-
formance is the result of our emphasis on the following aspects:
� insensitivity of the pattern-matcher to the number of rules.

Our IDS currently contains about 75 rules, so any pattern-
matching approach that involves checking each of this pat-
terns individually will be slow. By compiling the patterns
into an automaton, we are able to identify all pattern-matches,
while spending essentially constant time per packet that is
independent of the number of patterns. Thus the pattern-
matching time remains independent of the number of rules.

� fast implementation of data aggregation operations. As de-
scribed earlier, we have implemented the weighted counter
and table data structures so that operations on them have an
amortized � � 
 � cost per operation. As a result, detection time
increases only linearly (and slowly) with the number of at-
tacks.

We note that the time for detection does not monotonically in-
crease with the number of rules. This is because of the fact that
the addition of a new rule can reduce the frequency with which

Attack Number Misses Score

Smurf 8 0 100%
Teardrop 4 0 100%
Land 2 0 100%
Ping of Death 5 0 99%
IP Sweep 3 0 96%
satan 2 0 94%
Port Sweep 5 0 90%
saint 2 0 89%
nmap 4 0 78%
Neptune 7 0 70%
mscan 1 0 55%
UDP loop 2 2 0%

Total 45 2 85%

Figure 5: Scores on low-level network attacks.

Week Day Data file Time/GB Memory
size (GB) of data (sec) (MB)

1 Mon 0.41 7.6 � 1
1 Tue 0.84 21.4 � 1
1 Wed 0.46 12.2 � 1
1 Thu 0.76 21.8 � 1
1 Fri 0.43 17.4 � 1
2 Mon 1.20 21.4 � 1
2 Tue 0.45 15.3 � 1
2 Wed 0.54 8.7 � 1
2 Thu 0.60 13.0 � 1
2 Fri 0.50 10.6 � 1

Figure 6: Runtime and memory usage for detection.

an earlier rule was matching. This factor can lead to the situation
where the addition of rules decreases the execution time.

7 Related work
Historically, intrusion detection systems have been classified into
two broad categories: host-based systems, which are aimed at
protecting individual hosts and operate on the basis of informa-
tion contained in audit logs or other similar sources of data, and
network-based systems, which operate by monitoring network
traffic. The system described in this paper falls in the second
category.

Although network intrusion detection systems
[Heberlein90, PN97, Hochberg93, LPS99, MHL94, Paxson98,
VK98, Ranum97] operate by inspecting IP (or lower level)
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packets, most of them attempt to reconstruct the higher level
interactions between end hosts and remote users, and identify
anomalous or attack behaviors. Based on this, they attempt
to identify a broad class of attacks, focussing particularly on
malicious attacks on network servers and other processes running
on the target system. We place a different emphasis in our system
— we are particularly interested in detecting low-level attacks
that do not target specific processes, but exploit vulnerabilities
in the design and implementation of host operating systems
and network protocols. Most surveillance, probing and a large
number of denial-of-service attacks in existence fall into this cat-
egory of low-level network attacks. This approach complements
host-based approaches that can identify higher-level attacks by
examining audit logs or system calls.

A completely different approach is taken for intrusion de-
tection in [LPS99], where techniques based on data mining are
employed. Several previous works such as [Heberlein90] also
employed statistical and expert-system based techniques for de-
tecting anomalous behaviors that could be indicative of attacks.
These techniques largely complement pattern-matching based
schemes such as ours. In particular, the benefits of our approach
are speed, specificity and reduction of false positives. The down-
side is that unknown attacks, hitherto not captured, may go unde-
tected. The anomaly detection systems are typically better at de-
tecting unknown attacks, but their downsides include high false-
positive rates, nonspecific attack indicators, and need for exten-
sive training. Combination approaches, such as those envisioned
in EMERALD, can give us the benefits of both approaches while
largely avoiding their drawbacks.

We earlier developed a specification language for capturing
behaviors in terms of UNIX system calls [SBS99], and also an
algorithm for fast matching of behavioral patterns [SP99]. The
pattern component of the language presented in this paper is the
same as that work, but the type system and data aggregation ab-
stractions presented in this paper are new. Moreover, the imple-
mentation, experimentation and analysis results presented in this
paper focus on network-based attacks, as opposed to attacks on
processes.

7.1 Related Work in Languages for Network
Intrusion Detection and Packet Filtering

The use of special-purpose languages for network intrusion de-
tection has been studied earlier. The choices range from script-
ing languages that make it easier to write intrusion detection
code [Ranum97], C-like-but-strongly-typed languages such as
that used in Bro [Paxson98], to a pattern-matching language in
NetSTAT [VK98]. A common feature of these languages is that

they are based on an imperative programming paradigm, whereas
our language is declarative. Moreover, our language permits us to
more easily capture patterns on sequences of packets, as opposed
to other languages where patterns can characterize only individ-
ual events. This capability, together with the data aggregation
features provided by our language, contributes to the conciseness
of intrusion specifications. Another important distinction of our
approach is that our language is designed to support efficient im-
plementations of the pattern-matching and data aggregation oper-
ations.

Most previous approaches for network intrusion detection (or
packet filtering) hard-coded the details of TCP/IP packet formats
in their implementations, whereas our language supports a type
system to specify the structure and content of the packets. Our
approach makes it easy to support new protocols — the effort
involved is that of declaring the type for the packets formats cor-
responding to the new protocol. The rest of the work, including
dynamic type-checking to identify packet types at runtime and
offset calculations to access specific fields, are automated by the
compiler for our language.

Our type system for network packets, originally described in
[Guang98], is similar to packet types that have been developed in-
dependently in [CM99]. Their notion of type refinement is simi-
lar to our notion of inheritance for packets in that both approaches
make use of constraints to augment the traditional notion of inher-
itance. This gives both approaches the ability to model layering
of protocols. However, there are several significant differences
as well. In particular, the approach of [CM99] affords increased
expressive power in the following ways:
� layering is captured in our approach purely in terms of in-

heritance with constraints, with the contents of a higher layer
PDU viewed as an extension of the header for the lower layer
PDU. In contrast, [CM99] uses two distinct concepts, namely,
refinement of a base type by which the values of certain fields
are specified, and an overlay construct that overlays the data
portion of the lower-layer PDU with that of the higher layer.
The approach of [CM99] offers more power in that it can cap-
ture protocols that use a header as well as trailer for packet
content, while our approach trades off this power for simplic-
ity.

� processing of packets by protocol software can be captured
using a becomes relation in [CM99], which maps the contents
of packets before processing by a layer of protocol software to
the contents after processing. For instance, a mapping could
be provided between IP packets before and after reassembly
of fragments. In our approach, this mapping relation is not
captured by the type system.

Our approach provides the following features that are not sup-
ported in [CM99]:
� disjunctive inheritance that can capture the layering of a

higher layer protocol on multiple lower layer protocols
� capabilities for type resolution even when complete type in-

formation is not provided (but only a base type) for a packet
� a general purpose algorithm that avoids repetition of con-

straint checking operations even if they are repeated along
an inheritance chain or within rules

We remark that since both approaches are founded on the notion
of inheritance and constraints, it should be easy to combine the
features provided by the two approaches.

8 Conclusions
In this paper we presented a new approach for network intrusion
detection. A key feature of our approach is a domain-specific lan-



guage for capturing patterns on normal and/or abnormal network
packet sequences. We illustrated our language with several exam-
ples. As shown by these examples, our language supports concise
and easy-to-write attack patterns. This in turn increases our con-
fidence in attack specifications and reduces the development and
debugging times needed for defending against new attacks.

We have developed convenient and expressive abstractions for
aggregating data across multiple network packets. We have also
developed efficient implementation of these abstractions. In addi-
tion, we have developed efficient implementation of the pattern-
matching operations needed in the language. A key feature of
this implementation is that the pattern-matching time is insensi-
tive to the number of rules, thus making the approach scalable to
large number of rules, and consequently, to a large number of at-
tacks. The high performance also enables us to perform network
intrusion detection without packet drops on high speed networks
– sustaining detection at gigabit rates appears quite feasible.

A contribution of this paper is a new type system for network
packets that makes it convenient to operate on network packets,
while also enhancing the robustness of the systems operating on
those packets by protecting against a variety of memory access
and other type-related errors. Moreover, the high-level type in-
formation makes it easier to achieve robustness without compro-
mising on efficiency. Finally, this approach makes our system
easily extensible to support new network protocols.

We presented the results of a comprehensive evaluation of our
system by MIT Lincoln Labs [GLCFKWZ98] as part of a larger
effort to compare current IDS. These results show that our ap-
proach is effective and efficient for detecting low-level network
attacks, while producing a very small number of false positives.
In the near future, we plan to integrate the IDS described in this
system with a second system that operates by intercepting and
examining system calls made by processes. Together, we expect
the system to provide robust defenses against most attacks known
today.
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