
Network Firewalls
Computer security is a hard problem. Security on networked
computers is much harder. Firewalls (barriers between two
networks), when used properly, can provide a significant increase
in computer security.

Steven M. Bellovin and William R. Cheswick

STEVEN M. BELLOVIN
works at AT&T Bell Labora-
tones, where he does research
in networks and securily

WILLIAM R CHESWICK
serves as an assirtantpro-
gammer trainee and member
of the technical staff at Bell
Laboratories.

Much of this article was
taken ?om “Firewalls and
Internet Security: Repelling
the Wiky Hacker” by
William R. Cheswick and
Steven M. Bellovin,
Addison Wesley Publishing
Company, ISBN 0-201-

Bell Laboratories.
63357-4, 0 1994 AT&T

omputer security is a hard problem.
Security on networked computers
is much harder. The administra-
torofasingle hostcan-withagreat
deal of care and attention to details,
luck in the choice of vendor soft-

ware, and a careful and educated user community
- probably do an adequate job of keeping the
machine secure. But if the machine is connected
to a network, the situation is much difficult.

First, many more entry points to the host than
a simple l og in prompt must be secured. The
mailer, the networked file system, and the database
servers are all potential sources of danger. Fur-
thermore, the authentication used by some proto-
cols may be inadequate. Nevertheless, they must
be run, to provide adequate service to local users.

Second, there are now many more points from
which an attack can be launched. If a computer’s
users are confined to a single building, it is dif-
flcult for an outsider to try to penetrate system
security. A network-connected computer, on the
other hand, can be reached from any point on the
network - and the Internet reaches tens of mil-
lions of users in every part of the globe.

Finally, networks expose computers to the prob-
lem of transitive trust. Your computersmay be secure,
but you may have users who connect from other
machines that are lesssecure. Thisconnection-even
ifdulyauthorizedandimmune todirect attack-may
nevertheless be the vehicle for a successful penetra-
tion ofyour machines, if the source of the connection
has been compromised.

The usual solution to all of these problems is afire-
wall: abanier thatrestrictsthe freeflowofdatabetween
the inside and the outside. Used properly, a firewall
can provide asignificantincreaseincomputersecurity.

Stance
Akey decisionwhen developing a security policy is the
stanceofthe firewalldesign. Thestance is the attitude
of the designers. It is determined by the cost of fail-
ure of the firewall and the designers’ estimate of that
likelihood. It is also basedon the designers’ opinions
of their own abilities. At one end of the scale is a phi-
losophy that says, “we’ll run it unless you can show

me that it’s broken.” People at the other end say, “show
me that it’s both safe and necessary; otherwise, we
won’trun it.”Thosewho arecompletelyoff the scale
prefer to pull the plug on the network, rather than
take any risks at all. Such a move is too extreme, but
understandable. Why would a company risk losing
its secrets for the benefits of network connection?

We do not advocate disconnection for most sites.
Our philosophy issimple: there areno absolutes. One
cannot have complete safety; to pursue that chimera
is to ignore the costs of the pursuit. Networks and
internetworks have advantages; to disconnect from
anetworkis to deny oneself those advantages. When
all is said and done, disconnection may be the
right choice, but it is a decision that can only be made
by weighing the risks against the benefits.

We advocate caution, not hysteria. For reasons
that are spelled out below, we feel that firewalls are
an important tool that can minimize the danger, while
providingmost-butnot necessarily all-of the ben-
efits of a network connection. However, a paranoid
stance is necessary for many sites when setting up
a firewall.

Most computing professionals realize that most
large software systems are buggy. If the system is
security-sensitive - that is, if it provides any sort
of network service at all - one runs the risk that
the bugs will manifest themselves as security holes.
The most practical solution is to run as few programs
as possible, and to make sure that these are as small
and simple as possible. A firewall can do this. It is
not constrained to offer generalcomputing services
to ageneral user population. It need not run networked
file systems, distributedusernamedatabases,etc. The
very act of eliminating such programs automatical-
ly makes a firewall more secure than the average host.

We also feel that any program, no matter how
innocuous it seems, can harbor security holes. (Who
would have guessed that on some machines, integer
divide exceptions couldlead to system penetrations?)
We thus have a firm belief that everything is guilty
until proven innocent. Consequently, we configure
our firewalls to reject everything, unlesswe have explic-
itly made the choice - and accepted the risk - to
permit it. Taking the opposite tack, of blocking only
known offenders, strikes us as extremely dangerous.

50 IEEE Communications Magazine September 1994

Figure I . Schematic of a firewall.

Furthermore, whether or not a security policy is
formally spelled out, one always exists. If nothing
else is said or implemented, the default policy is “any-
thing goes.”Needless tosay, thisstance i5 rarely accept-
able in a security-conscious environment. If one does
not make explicit decisions, one will have made
the default decision to allow almost anything.

Host Security
To some people, the very notion of a firewall is anath-
ema. In most situations, the network is not the resource
at risk rather, the endpoints of the network are threat-
ened. By analogy, con artists rarely steal phone ser-
vice per se; instead, they use the phone system as a
tool to reach their real victims. So it is, in a sense,
with network security. Given that the target of the
attackers is the hosts on the network, should they
not be suitably configured and armored to resist attack?

The answer is that they should be, but proba-
blycannot. Such attempts areprobablyfutile. There
will be bugs, either in the network programsor in the
administration of the system. It is this way with com-
puter security: the attacker only has to win once. It
does not matter how thick are your walls, nor how
loftyyourbattlements; ifan attacker findsone weak-
ness - say, a postern gate, to extend our metaphor
-your systemwill be penetrated. And if one machine
falls. its neighbors are likely to follow.

Types of Firewalls
e define afirewall as acollectionofcomponents W placed between two networks that collectively

have the following properties:
All traffic from inside to outside, and vice-
versa, must pass through the firewall.
Only authorized trafflc, as defined by the local
security policy, will be allowed to pass.
The firewall itself is immune to penetration.
We should note that these are design goals; a fail-

ure in one aspect does not mean that the collection
is not a firewall, simply that it is not a very good one.

That firewalls are desirable follows directly from
our earlier statements. Many hosts-and more like-
ly, most hosts - cannot protect themselves against
a determined attack. Firewalls have several dis-
tinct advantages.

First, ofcourse, afirewall is likely to be more secure
than an average host. The biggest single reason
for that is simply that it is not a general-purpose
machine. Thus, features that are of doubtful secu-
rity but add greatly to user convenience - Net-
work Information Service (NIS), rlcgin, etc. - are
not necessary. For that matter, many features of
unknown security can be omitted if they are irrele-
vant to the firewall’s functionality.

A second benefit comes from having professional
administration of the firewall machines. We do
not claim that firewall administrators are necessarily

more competent than your average system admin-
istrator, but they may be more security conscious.
However, they are almost certainly better than
nonadministrators who must nevertheless tend to
their own machines. This category would include
physical scientists, professors, etc., who (rightly)
prefer to worry about their own areas of responsi-
bility. It may or may not be reasonable to demand
more security consciousness from them; never-
theless, it is obviously not their top priority.

Fewer normal users is a help as well. Poorly
chosen passwords are a serious risk; if usersand their
attendant passwords do not exist, this is not a
problem. Similarly, one can make more or less
arbitrary changes to various program interfaces if
that would help security, without annoying a pop-
ulation accustomed toa differentway ofdoing things.
One example would be the use of hand-held authen-
ticators for logging in. Many people resent them,
or they may be too expensive to be furnished to
an entire organization; a gateway machine, how-
ever, should have a user community that is restrict-
ed enough so that these concerns are negligible.

More subtly, gateway machines need not, and should
not, be trusted by any other machines. Thus, even if
the gateway machine has been compromised, no oth-
ers will fall automatically. On the other hand, the
gateway machinecan, if theuserwishes(and decides
against using hand-held authenticators), trust other
machines, thereby eliminating the need for most
passwordson the few accounts it should have. Again,
something that is not there cannot be compromised.

Gateway machines have other, nonsecurity advan-
tages as well. They are a central point for mail and
madministration, for example. Only one machine
need be monitored for delayed mail, proper header
syntax, return-address rewriting (i.e., to f irstname
. lastname@org . dminformat), etc. Outsiders have
a single point of contact for mail problems and a
single location to search for files being exported.

Our main focus, though, is security. And for all
that we have stated about the benefits of a firewall,
it should be stressed that we neither advocate nor
condone sloppy attitudes toward host security. Even
if a firewall were impermeable, and even if the admin-
istrators and operators never made any mistakes, the
Internet isnot theonlysource ofdanger. Apart from
the risk of insider attacks and in some environments,
that is a serious risk - an outsider can gain access
by other means. In at least one case, a hacker
came in through a modem pool, and attacked the
firewall from the inside [7]. Strong host securitypoli-
cies are a necessity, not a luxury. For that matter,
internal firewallsare agood idea, toprotectverysen-
sitive portions of organizational networks.

Afirewall, ingeneral, consistsofseveral different
components (Fig. 1). The “filters” (sometimes called
“screens”) block transmission of certain classes of traf-
fic. A gateway is a machine or a set of machines that
provides relay services to compensate for the effects
of the filter. The network inhabited by the gateway
isoftencalled the demilitarizedzone (DMZ). Agate-
way in the DMZ is sometimes assisted by an internal
gateway. Typically, the two gateways will have more
open communication through the inside filter than
the outside gateway has to other internal hosts. Either
filter,orforthatmatterthegatewayitself,maybeomit-
ted; the details will vary from firewall to firewall. In
general, the outside filter can be used to protect the
gateway from attack, while the inside filter is used

-
Everything is
guilty until
proven
innocent.
Thus, we
configure our
firewalls
to reject
everything,
unless
we have
explicitly
made the
choice -
and accepted
the risk - to
permit it.

IEEE Communications Magazine September 1994 51

-
Even autho-
rized users
should pass
through a
security
gateway
when crossing
the firewall;
otherwise, if
their home
machines are
compromised,
the equip-
ment on the
inside could
be next.

to guard against theconsequencesof acompromised
gateway. Either or both filters can protect the
internal network from assaults. An exposed gateway
machine is often called a bastion host.

We classify firewalls into three main categories:
packet filtering, circuit gateways, and applicationgate-
ways.Commonly,more thanoneoftheseisusedatthe
same time. Asnotedearlier,mailisoftenrouted through
a gateway even when no security firewall is used.

Our examples and discussion unabashedlyrelate
to UNIX systems and programs. The majority of mul-
tiuser machines on the Internet run some version of
the UNIX operating system. Most application-level
gateways are implemented in UNIX. This is not to
say that other operating systems are more secure; how-
ever, there are fewer of them on the Internet, and they
are less popular as targets for that reason. But
the principles and philosophy apply to network gate-
ways built on other operating systems as well.

Our focus is on the TCP/IP protocol suite, espe-
ciallyasusedon the Internet.Again, thisisnot because
TCP/IP has more security problems than other pro-
tocol stacks (we doubt that very much), rather, it is a
commentary on the success of TCPIIP. By far, it is the
heterogeneous networking protocol of choice- not
onlyonworkstations,forwhich it is thenative tongue
-but on virtually all machines, ranging from desktop
personal computers to the largest supercomputers.
Many intemdcorporate networks are based onTCP/IP
some - but not all -of these are connected to the
Internet. And the Internet links most major uni-
versitiesin theunited States (andmanyothersaround
the world),research labs, many government agencies,
and even a fair number of businesses. We believe,
though, that our advice is applicable to any net-
work with similar characteristics. We have read of
serious attacks on computers attached to public X.25
data networks. Firewalls are useful there, too,
although naturally they would differ in detail.

Traditionally, firewalls are placed between an
organization and the outside world. But a large orga-
nization may need internal firewalls as well to iso-
late security domains (also known as administrative
domains). A security domain is a set of machines
under common administrative control, with a
common security policy and security level.

There are many good reasons to erect internal fire-
walls. In many largecompanies, most employees are
not (or should not be) privy to all information. In
othercompanies, thecash business(1ike thefactory,or
a phone company‘s telephone switches) needs to be
accessible to developers or support personnel, but
not to the general corporate population. Even autho-
rized users should pass through a security gate-
way when crossing the firewall; otherwise, if their
home machines, which live outside of the firewall,
are compromised, the sensitive equipment on the
inside could be next. The firewall controls the access
and the trust in a carefully predictable way.

Packet-Filtering Gateways
acket filters can provide a cheap and useful level P of gateway security. Used by themselves, they are

cheap: the filtering abilities come with the router soft-
ware. Since you probably need a router to connect
to thelnternet inthe firstplace, there isnoextracharge.
Even if the router belongs to your network service
provider, you will probably find that they will install
any filters you wish.

Packet filterswork by dropping packets based on
their source or destination addresses or service (i.e.,
port number). In general, no context is kept; decisions
are made only from the contentsof the current pack-
et. Depending on the type of router, filtering may be
doneat inputtime,atoutputtime,orboth.Theadmin-
istrator makes a list of the acceptable machines and
services and a stoplist of unacceptable machines or
services. It is easy to permit or deny access at the host
or network level with a packet filter. For example,
one can permit any IP access between host A and B,
or deny any access to B from any machine but A.

Most security policies require finer control than
this; they need to define access to specific ser-
vices for hosts that are otherwise untrusted. For exam-
ple, one might want to allow any host to connect
to machine A, but only to send or receive mail. Other
services may or may not be permitted. Packet fil-
teringallowssomecontrolatthislevel, but itisadan-
gerous and error-prone process. To do it right, one
needs intimate knowledge of TCP and UDP port uti-
lization on a number of operating systems. This is
one of the disadvantages of packet filters: if you get
these tables wrong you may inadvertently let in
the Bad Guys [SI. But even with a perfectly imple-
mented filter, some compromises can be dangerous.
We discuss these in a section to follow.

Configuring a packet filter is a three-step process.
First,ofwurse,onemust knowwhat shouldand should
not be permitted. That is, one must have a securi-
ty policy. Next, the allowable types of packets
must be specified formally, in terms of logical expres-
sions on packet fields. Finally - and this can be
remarkablydifflcult-the expressionsmust be rewrit-
ten in whatever syntax your vendor supports.

An example is helpful. Suppose that one part of
your security policywas to allow inbound mail (SMTF’,
port 25), but only to your gateway machine. How-
ever, mail from some particular site SPIGOT is
to be blocked, because of their penchant for try-
ing to mail several gigabytes of data at a time. A
filter that implemented such a ruleset might looklike
ruleset A in the text box on the following page.

The rules are applied in order from top to bottom.
The “*” in a field matches anything. Packets not
explicitly allowed by a filter rule are rejected, i.e.,
every ruleset is followed by an implicit rule reading
like ruleset B in the textbox above. This fits with
our general philosophy: all that is not expressly
permitted is prohibited.

Note carefully the distinction between ruleset A
and ruleset C, which is intended to implement the
po1icy“any inside host can send mail to the outside.”

The call may come from any port on an inside
machine, but will be directed to port 25 on the outside.
This ruleset seems simple and obvious. It is also wrong.

The problemis that therestriction we have defined
is based solely on the outside host’s port number.
While port 25 is indeed the normal mail port, there
is no way we can control that on a foreign host. An
enemy can access any intemal machine and port byorig-
inating his call from port 25 on the outside machine.

A better rule would be to permit outgoing calls
to port 25, i.e., we want to permit our hosts to
make calls to someone else’s port 25, so that we know
what’sgoingon: mail delivery. An incoming call from
port 25 implements some service of the caller’s choos-
ing. Fortunately, the distinction between incom-
ing and outgoing calls can be made in a simple packet
filter if we expand our notation a bit.

52 IEEE Communications Magazine September 1994

A TCP conversation consists of packets flow-
ing in two directions [19]. Even if all of the data is
flowing one way, acknowledgment packets and
control packets must flow the other way. We can
accomplish what we want by paying attention to
the direction of the packet, and by looking at
some of the control fields. In particular, an initial
open request packet in TCP does not have the set
in the header; all other TCP packets do. Thus,
packets with ACK set are part of an ongoing con-
versation; packets without it represent connec-
tion establishment messages, which we will permit
only from internal hosts. The idea is that an out-
sider cannot initiate a connection, but can contin-
ue one. One must believe that an inside kernel
will reject a continuation packet for a TCP ses-
sion that has not been initiated. To date, this is a
fair assumption. Thus, we can write our ruleset as
seen in ruleset D, keying our rules by the source
and destination fields, rather than the more neb-
ulous “OURHOST” and “THEIRHOST”:

The notation “{our hosts}” describes a set of
machines, anyone of which is eligible. In a real pack-
et filter, youcouldeither list themachinesexplicitly,
or you could specify a group of machines, proba-
bly by the network number portion of the IP address.

Filtering FTP Sessions
Some services are not handled well by packet filters.
We use the File Transfer Protocol (FTF’) [20] as an
example here; other problematic protocols include
x11 and the Domain Name System (DNS) [12,16,
17. 231.

For FIT, files are transferredviaasecondarycon-
nection. If the control channel to a server on
THEIRHOST uses the connection

(ou rhos t , ou rpor t , t h e i r h o s t , 2 1) ,

file transfers will occur on

(ou rhos t , ou rpor t , t h e i r h o s t , 2 0)

by default. Furthermore, the server must initiate the
file transfer call. We thus have the problem we
saw earlier, but without the ability to screen
based on the direction of the call.

One idea is to use the range of ourport to make

filtering decisions. Most servers, and hence most attack
targets, live on low-numbered ports; most outgoing
calls tend to use higher numbered ports, typically above
1023. Thus, a sample ruleset might be ruleset E in
the text box, where packets are passed under one
of three circumstances:

They originated from one of our machines.
They are reply packets to a connection initiated

They are destined for a high-numbered port on

Actually, the last two rules apply to all packets, not
just packets originating from outside. But any pack-
ets from the inside would be accepted by the first rule,
and would not be examined by the later rules.

Unfortunately, this ruleset does not accom-
plish what we really want, which is to block incom-
ing calls to our servers. We said “most servers”
live on low-numbered ports, not “all.” A number
of tempting targets, especially ~11, inhabit high-
numbered ports. Presumably, one could filter out
known dangerous ports; unfortunately, new ones
could be added without notice. Thus, a cautious
stance dictates that this heuristic not be adopted.

Under certain circumstances, a bypass is avail-
able if you have the source code to the FTP client
programs. You can modify the programs to issue
a PA= command to the server, directing it to do
a passive open, and thus permitting an outgoing
call through the firewall for the data channel.

This variant is not without its problems. The data
channel, though an outgoing call, is to a random port.
Such calls are generally barred by sites that wish
to restrict outbound data flow. You also have the
obvious problem of distributing modified clients
to all inside machines. Also, not all servers under-
stand the PASV command, even though they
should. The issues are discussed further in [3].

Protocols Without Fixed Addresses
Some services are problematic for packet filters
because they can involve random port numbers. On
occasion the situation is evenworse: a number of ser-
vices always use random port numbers, and rely on
a separate server to supply the current contact infor-
mation.

Twoexamplesofthisare the tcpmuxprotocol[13]
and the portmapper [26] used by SunOS for RPC

by one of our machines.

our machines.

-
A TCP
conversation
consists of
packets
flowing in
two directions.
Even ifall
the data
is flowing
one way,
acknowledg-
ment packets
and control
packets must
flow the
other way.

IEEE Communications Magazine September 1994 53

-
Filtering TCP
circuits is
dificult.
Filtering
UDP pa ckets
while still
retaining
desired
functionality
is all but
impossible.

[25]. In both cases, client programs contact the map-
ping program rather than the application.The portmap-
per also processes registration requests from
applications, informing it of their currentport num-
bers. On the other hand, tcpmux will invoke the appli-
cation directly, passing it the open connection.

This difference gives rise to different filter-based
protection mechanisms. With tcpmux, one can block
access to either all such services, or none, simply
by controlling access to the tcpmux port. With
the portmapper, each service has its own port
number. While one can deny easy access to them
by filtering out portmapper requests, an intruder can
bypass the portmapper and simply sweep the port
number space looking for interesting applica-
tions. We have seen evidence of this happening. The
only cure is to block access to all possible port
numbers used by RPC-based servers - and there
is no easy way to know what that range is.

Packet Filters and UDP
Filtering TCP circuits is difficult. Filtering UDP
packets [18] while still retaining desired function-
ality isall but impossible. The reason liesin the essen-
tial difference between TCP and UDP: the former is
avirtualcircuit protocol, and assuch hasretainedcon-
text; the latter is a datagram protocol, where each
message is independent. As we saw earlier, filter-
ing TCP requires reliance on the ACK bit, in order
to distinguish between incoming calls and return
packets from an outgoing call. But UDP has no
such indicator: we are forced to rely on the source
port number, which is subject to forgery.

An example illustrates the problem. Suppose
an internal host wishes to query the UDP echo
server on some outside machine. The originating
packet would carry the address

where localport is in the high-numbered range.
But the reply would be

(remotehost, 7, localhost, localport) ,

and the firewall would have no idea that localport
was really a safe destination. An incoming packet

(remotehost, 7, localhost, 2049),

is probably an attempt to subvert our NFS server;
and, while we could list the known dangerous
destinations, we do not know what new targets
will be added next week by a system administra-
tor in the remote corners of our network. Worse yet,
the RPC-based services use dynamic port num-
bers, sometimes in the high-numbered range. As with
TCP, indirectly named services are not amenable
to protection by packet filters.

A conservative stance therefore dictates that
we ban virtually all outgoing UDP calls. It is not
that the requests themselves are dangerous;
rather, i t is that we cannot trust the responses.
The only exceptions are those protocols where there
is apeer-to-peerrelationship. Agood example is the
NetworkTime Protocol (NTP) [15]. Innormal oper-
ation, messages are both from and to port 123. It
is thus easy to admit replies, because they are to a
fixed port number, rather than to an anonymous
high-numbered port. But one use of NTP - set-

ting the clock when rebooting - will not work,
because the client program will not use port 123. (Of
course, a booting computer probably should not
ask an outsider for the time.)

Typical Configurations
We cannot provide readerswith the exact packet fil-
ter for a particular site, because we do not know what
itspolicies are. Butwecangivesomereasonable sam-
ples that may serve as a starting point.

Universities tend to have an open policy about
Internet connections. Still, they should block
some common services, such as NFS and TFTP.
There is no need to export these services to the world.
Also, there might be a PClab in a dorm that has been
the source of some trouble, so they do not allow
that lab access the Internet. (The users have to go
through one of the main systems that require an
account, which gives some accountability.) Final-
ly, there is to be no access to the administrative
computers except for access to a transcript man-
ager. That service should use strong authentica-
tion and encryption.

On the other hand, a small company with an
Internet connection might wish to shut out most
incoming Internet access, while preserving most
outgoing connectivity. A gateway machine receives
incoming mail and provides name service for the
company’s machines. Only access to that machine,
and to the necessary services, should be permitted.

Application-Level Gateways
n application-level gateway represents the oppo- A site extreme in firewall design. Rather than using

a general-purpose mechanism to allow many dif-
ferent kinds of traffic to flow, special-purpose
code can be used for each desired application.
Although this seems wasteful, it is likely to be far
more secure than any of the alternatives. One
need not worry about interactions among differ-
ent sets of filter rules, nor about holes in thou-
sands of hosts offering nominally secure services
to the outside. Only a chosen few programs need
to be scrutinized.

Application gateways have another advantage
that in some environments is quite critical: it is
easy to log and control all incoming and outgoing
traffic. The SEAL package [21] from Digital
Equipment Corporation takes advantage of this.
Outbound FTP traffic is restricted to authorized
individuals, and the effective bandwidth is limit-
ed. The intent is to prevent theft of valuable com-
pany programs and data. While of limited utility
against insiders, who could easily dump the
desired files to tapes or floppies, i t is a powerful
weapon against electronic intruders who lack
physical access.

Electronic mail is often passed through an appli-
cation-level gateway, regardless of what technolo-
gy is chosen for the rest of the firewall. Indeed,
mail gateways are valuable for their other proper-
ties, even without a firewall. Userscan keep the same
address, regardless of which machine they are
using at the time. The gateway machines also
worry about mail header formats and logging
(mail logging is a postmaster’s friend) and pro-
vide a centralized point for monitoring the behav-
ior of the electronic mail system.

I t is equally valuable to route incoming mail

54 IEEE Communications Magazine September 1994

through a gateway. One person can be aware of
all internal connectivity problems, rather than
leaving it to hundreds of random system adminis-
trators around the net. Reasonably constant mail
addresses can be accepted and processed. Different
technologies, such as uucp, can be used to deliver
mail internally. Indeed, the need for incoming
mail gateways is so obvious that the DNS has a
special feature - MXrecords - defined to support
them. No other application has a defined mecha-
nism for indirect access.

These features are even more valuable from a
security perspective. Internal machine names can
be stripped off, hiding possibly valuable data.
Trafflc analysis and even content analysis and
recording can be performed to look for informa-
tion leaks. But these abilities should be used with
the utmostreluctance,forbothlegalandethicalrea-
sons.

Application gateways are often used in con-
junction with the other gateway designs, packet
filters and circuit-level relays. An application
gateway can be used to pass ~ 1 1 through a fire-
wall with reasonable security [27]. The semantic
knowledge inherent in the design of an applica-
tiongateway canbe usedinmoresophisticatedfash-
ions. Gopher servers [l] can specify that a file is
in the format used by the uuencode program.
But that format includes a file name and mode. A
clever gateway could examine or even rewrite this
line, thus blocking attempts to force the installa-
tion of bogus . rhosts files or shells with the
setuid bit turned on.

The type of filteringused depends on local needs
and customs. A location with many PC users
might wish to scan incoming files for viruses.

We note that the mechanisms described here-
in are intended to guard against attackfrom the out-
side. A clever insider who wanted to retrieve such
files certainly would not be stopped by them. But
it is not a firewall’s job to worry about that class
of problem.

The principal disadvantage of application-
level gateways is the need for a specialized user
program or variant user interface for most ser-
vices provided. In practice, this means that only
the most important services will be supported.
This may not be entirely bad-again, programs that
you do not run cannot hurt you -but it does
make it harder to adopt newer technologies.
Also, use of such gateways is easiest with applica-
tions that make provision for redirection, such as
mail and ~ 1 1 . Otherwise, new client programs
must be provided.

Circuit-Level Gate ways
he third type of gateway - our preference for T outgoing connections - is circuit level. Cir-

cuit gateways relay TCP connections. The caller con-
nects to a TCP port on the gateway, which connects
to some destination on the other side of the gateway.
During the call the gateway’s relay program(s)
copy the bytes back and forth: the gateway acts as
a wire.

In some cases a circuit connection is made
automatically. For example, we have a host out-
side our gateway that needs to use an internal
printer. We have told that host toconnect to the print
service on the gateway. Our gateway is configured

to relay that particular connection to the printer port
on an internal machine. We use an access control
mechanism to ensure that only that one external host
can connect to the gateway’s printer service. We
are also confident that this particular connection will
not provide a useful entry hole should the exter-
nal host be compromised.

In other cases, the connection service needs to
be told the desired destination. In this case, there
is a little protocol between the caller and the
gateway. This protocol describes the desired des-
tination and service, and the gateway returns
error information if appropriate. In our imple-
mentation, called proxy, the destination is a host
name. In socks (discussed later), it is the numer-
ic IP address. If theconnection is successful, thepro-
tocol ends and the real bytes start flowing. These
services require modifications to the calling program
or its library.

In general, these relay services do not examine
the bytes as they flow through. Our services do
log the number of bytes and the TCP destination.
These logs can be useful. For example, we recent-
ly heard of a popular external site that had beenpen-
etrated. The Bad Guys had been collecting
passwords for over a month. If any of our users
used these systems, we could warn them. A quick
grep through the logs spotted a single unfortu-
nate (and grateful) user.

The outgoing proxy TCP service provides most of
the externalconnectivity our internalusers need. As
noted, though, protocols such as FIT and ~ 1 1 require
incoming calls. But it is too much of a security
risk to permit the gateway to make an uncon-
trolled call to the inside.

Any general solution is going to involve the
gateway machine listening on some port. Ths
approach demonstrates a subtle problem with the
notion of a circuit gateway: uncooperative inside
users can easily subvert the intent of the gateway
designer, by advertising unauthorized services. It
is unlikely that, say, port 25 could be used that
way, as the gateway machine is probably using it
for its own incoming mail processing, but there
are other dangers. What about an unprotected
telnet service on a nonstandard port? An NFS
server? Amultiplayer game? Logging can catch some
of these abuses, but probably not all.

Clearly, some sorts of controls are necessary.
These can take various forms, including a time
limit on how long such ports will last (and a delay
before they may be reused), a requirement for a
list of permissible outside callers to the port, and
even user authentication on the setup request
from the inside client. Obviously, the exact crite-
ria depend on your stance.

The other big problem with circuit relays is
the need to provide new client programs. Although
thecode changes are generally not onerous, they are
a nuisance. Issues include availability of applica-
tion source code for various platforms, version
control, distribution, and the headache to users
of having to know about two subtly different pro-
grams.

Several strategies are available for making the
necessary changes. The best known is the socks
package [8]. It consists of a set of almost-compat-
ible replacements for various system calls: sock-
e t , connect, bind, etc. Converting an application
is as simple as replacing the vanilla calls with the

-
The principal
disadvantage
of applica-
tion - level
gateways is
the need for
a specialized
user program
or variant
user in ter3ca ce
for most
services
provided.

IEEE Communications Magazine September 1994 55

-
Regardless of
the firewall
design, it is
generally
necessary to
support
various
incoming
services.
Naturally,
access to any
of these must
be blessed by
the filter and
the gateway.

socks equivalents. A version of it has been
implemented via a replacement shared library,
similar to that used in securelib [111 and 3-D FS [lo].
This would permit existing applications to run
unchanged. But such libraries are not portable,
and it may not be possible to include certain of
the security features mentioned earlier.

Application and circuit gateways are well suit-
ed for some UDP applications. The client pro-
grams must be modified to create a virtual circuit
to some sort of proxy process; the existence of the
circuit provides sufficient context to allow secure
passage through the filters. The actual destina-
tion and source addresses are sent in-line. How-
ever, services that require specificlocal port numbers
are still problematic.

Supporting Inbound Services
egardless of the firewall design, it is generally R necessary to support various incoming ser-

vices. These include things like e-mail, FTP, logins,
and possibly site-specific services. Naturally,
access to any of these must be blessed by the fil-
ter and the gateway.

The most straightfonvardwayto do thisis topro-
vide these services on the gateway itself. This is the
obvious solution for mail and FTP. For incoming
logins, we provide a security server: users must
have one-time password devices to gain access to
inside machines. If they pass that test, the gate-
way program will connect them to an inside
machine, using some sort of preauthenticated
connection mechanism such as rlogin.

Ganesan has implemented a gateway that uses
Kerberos[4,9,14,24] to authenticatecalls[6]. Once
the gateway has satisfied itself about the identity
of the caller, it will pass the connection on to the
desired internal server. With this design, the Ker-
beros server should be run by the same group that
administers the firewalls, since the party that con-
trols the server controls the authenication, and
hence the ability to make calls through the firewall.

Regardless of the scheme used, all incoming calls
carry some risk. The telnet call that was authenticated
via a strong mechanism could be the product of a
booby-trapped command. Consider, for example,
a version that. after a few hundred bytes, displays
“Destination Unreachable” on the console and
exits - but before doing that, it forks, and retains
the open session to your inside machine. Similar-
ly, a legitimate user who connects for the purpose
of reading mail takes the risk that some of those mes-
sages contain sensitive information, information that
can now be read by anyone monitoring the unpro-
tected, untrustworthy outside network.

Tunnels Good and Bad
lthough firewalls offer strong protection, tun- A nels can be used t o bypass them. As with

most technologies, tunnels can be used in good or
bad ways.

Tunneling refers to the practice of encapsu-
lating a message from one protocol in another,
and using the facilities of the second protocol to
traverse some number of network hops. At the
destination point, the encapsulation is stripped
off, and the original message is reinjected into
the network. In a sense, the packet burrows under

the intervening network nodes, and never actual-
ly sees them. The re a re many uses for such a
facility, such as enclypting links and supporting mobile
hosts. More are described in [2].

In some cases, a protocol may be encapsulated
within itself. That is, I P may be buried within
either IP or some part of its own protocol suite,
such as TCP or UDP. That is the situation we are
concerned about here. If a firewall permits user pack-
ets to be sent, a tunnel can be used to bypass the
firewall. The implications of this are profound.

Suppose that an internal userwith a friend on the
outside dislikes the firewall, and wishes to bypass
it. The two of them can construct (dig?) a tunnel
between an inside host and an outside host, there-
by allowing the free flow of packets. This is far worse
than a simplc outgoing call, since incoming calls
are permitted as well.

Almost any sort of mechanism can be used to
build a tunnel. At least one vendor of a Point-to-
Point Protocol (PPP) package [22] supports TCP
tunneling. There are reports of telnet connec-
tions and even DNS messages being used to carry
IP packets. Almost any gateway that supports
anything more powerful than mail relays can be
abused in this fashion (yet see RFC 1149 1281).
Even pairs of FTP file transfer connections can
provide a bidirectional data path.

The extent of the damage done by a tunnel depends
on how routing information is propagated. Sup-
pression of routing information is almost as effec-
tive as full isolation. If the tunnel does not leak
your routes to the outside, the damage is less
than might be feared at first glance. On the other
hand, routing filters are difficult to deploy in
complex topologies; if the moles choose to pass
connectivity information, it is hard to block them. In
the Internet, the backbone routers do, in fact,
perform filtering. Thus, if your internal networks
are not administratively authorized for connec-
tion to the Internet, routes to them will not prop-
agate past that point. Even so, you are exposed to
anyone using the same network provider as the
tunnel exit.

Often, suchasituationcanbedetected. Ifyouare
using an application- or circuit-level gateway, and an
external router knowsapath to any internalnetwork
except the gateway’s, something is leaking. This argues
strongly that a gateway net should not be a subnet
of an internal net. Rather, it should have its own, sep-
arate, Class C address. Standard network man-
agement tools may be able to hunt down the source,
at which time standard people management tools
should be able to deal with the root cause. Unau-
thorized tunnels are, in the final analysis, a man-
agement problem, not a technical one. If insiderswill
not accept the need for information security, fire-
walls and gateways are likely to be futile. (Ofcourse,
it is worth asking if one’s protective measures are too
stringent. Certainly. that happens as well.) Once sus-
pected o r spotted, the gateway logging tools
should be able to pick out the tunnels.

Tunnels have their good side aswell. When prop-
erly employed, they can be used to bypass the limi-
tationsof a topology. For example, a tunnel could link
two separate sites that areconnected onlyvia a com-
mercial network provider. Firewalls at each location
would provide protection from the outside, while the
tunnel provides connectivity. If the tunnel traffic is
encrypted, the risks are low and the benefits high.

56 IEEE Communications Magazine September 1994

What Firewalls Cannot Do Conclusions
irewalls are a powerful tool for network secu- F rity. However, there are things they cannot

do. It is important to understand their limitations
as well as their benefits.

Consider the usual network protocol layer cakc.
By its nature, a firewall is avery strong defense against
attacks at a lower level of the protocol stack. For exam-
ple, hosts behind a circuit-level relay are more or less
immune to network-lcvel attacks, such as IP address-
spoofing. The forged packets cannot reach them; the
gateway will only pass particular TCP connec-
tions that have been properly set up.

I n contrast, firewalls provide almost no pro-
tection against problems with higher level protocols,
except by peeking. The best TCP relay in the
world is no protection if the code that uses it is buggy
and insecure. You only get protection at this level
if your gateway refuses to connect you to certain ser-
vices (i.e., x11), and even that decision is apply-
ing application-layer knowledge to make that
decision. (Ifyou thinkof the standard protocol stack
as an onion rather than as a layer cakc, peering
up through the layers may be referred to as “look-
ing through a glass onion.”)

The most interesting question is what degree
of protection a firewall can provide against threats
at its own level. The answer turns entirely on how
carefully the gateway code - the permissive part
- is written. Thus, a mail gateway, which runs at
the application level, must be exceedingly careful
to implement all of the mail protocols, and all of
the other mail delivery functions, absolutely cor-
rectly. To the extent that it is insecurely written
- sendmail comes to mind - it cannot serve a s
an adequate firewall component.

The problems, however, do not stop there. Any
information that passes inside can trigger problems,
if a sensitive component should lay hands (or sili-
con) on it. We have seen files that,when transferred
over a communications link, effectively brought down
that link, because of bit pattern sensitivity in
some network elements. Were that deliberate,
we would label it a denial-of-service attack.

Arecent sendmail bugprovidesa sterlingexam-
ple. Problems with certain mail header lines
could tickle bugs in delivery agents. Our firewall, and
many others. paid almost no attention to headers,
believing that they were strictly a matter for mail
readers and composers (known as user agents in
the e-mail business). But that meant that the fire-
walls provided no protection against this prob-
lem, because undercertaincircumstances, s e n h i 1
-which is run on many internal machines here
-does look at the headers, and certain entries made
it do evil things.

Furthermore, even ifwe had implemented defens-
es against the knownflaws, wewouldstillbe~lnerable
to next year’s. If someone invented anew header line
that was implemented poorly - and this particu-
lar problem did involve a nonstandard header -
we would still be vulnerable. We could have pro-
tected ourselves if and only if we had refused to
pass anything but the minimal subset of headers
we did know of, and even then there might have
been danger if some aspect of processing a legiti-
mate, syntactically correct header was implemented
poorly. At best. a firewall provides aconvenient sin-
gle place to apply a corrective filter.

etworks are very powerful tools. Like all N tools, they can be misused. Firewalls, though
not perfect, provide a strong measure of protec-
tion for computers connected to networks. There
are a number of firewall technologies to choose
from, each with its own advantages. Regardless of
which is selected, careful configuration is neces-
sary. But if one have a good security policy, and a
correct implementation of it, one can enjoy most
of the benefits of networking, while minimizing
the risks.

References
111 F. Anklesaria et al., The Internet gopher protocol (A distributed

document search and retrieval protocol) RFC 1436, March 1993.
[215 M. Bellovin. Pseudo-networkdriversandvirtual networks. In USENIX

Conf. Proc.. pp. 229-244. Washington, D.C.. Jan 22-26.1 990
131 S M. Bellovin, Firewall-friendly FTP. RFC 1579, Feb. 1994.
141 B Bryant, Designing an authentication system: A dialogue in four

scenes, Feb 8. 1988, Draft.
151 D. B. Chapman, Network (in)security through IP packet filtering. In

Proceedings of the Third Usenix UNlX Security Symposium, pp.
63-76. Baltimore, MD. Sept 1992.

161 R. Ganesan. BAfirewall: A modern design, Proc. of the Internet
SocietySymposiumon Networkan dDistributed System Security, San
Diego, CA, Feb. 3, 1994.

17lK.HafnerandJ. Markoff,Cyberpunk:Outlawsand Hackersonthecom-
puter Frontier (Simon & Schuster. 1991)

I81 D. Koblas and M . R. Koblas, Socks, UNlX Security 111 Symposium,
pp. 77-83. Baltimore, MD, Sept. 14-17.1992. USENIX.

191 J. Kohl and C. Neuman. The Kerberos network authentication ser-
vice (V5). RFC 151 0, Sept. 1993.

I101 D. G. Korn and E . Krell, The 3-d file system, USENIX Conf. Proc..
pp 147-156, Baltimore, MD, Summer 1989.

I111 W. LeFebvre, Restricting network access t o system daemons
under SunOS. UNlX Security Ill Symposium, pp . 93-103. Balti-
more, MD. Sept. 14-17.1992. USENIX.

I121 M Lottor. Domain administrators operations guide. RFC 1033,
Nov. 1987.

1131 M. Lottor,TCPportservicemultiplexerUCPMUX), RFC1078, Nov. 1988.
[141 S . P. Miller e t al.. Kerberos authentication and authorization sys-

tem, Project Athena Technical Plan, MIT. Dec. 1987, Section E.2.1.
I151 D. Mills. Network time protocol (version 3) specification, imple-

mentation and analysis. RFC 1305, March 1992.
11 61 P Mockapetris, Domain names ~ concepts and facilities, RFC

1034, Nov. 1987
11 71 P. Mockapetris, Domain names ~ implementation and specifica-

tion. RFC 1035, Nov. 1987.
[181 J. Postel. User datagram protocol, RFC 768, Aug. 28, 1980.
1191 J. Postel, Transmission control protocol, RFC 793, Sept.1981
[201 J. Postel and 1 Reynolds, File transfer protocol. RFC 959, Oct. 1985.
I21 I M. 1. Ranum. A network firewall. Proc. World Conference on Sys-

tem Administration and Security, Washington. D.C., July 1992.
1221 William Simpson. The point-to-point protocol (PPP) for the trans-

mission of multi-protocol datagrams over point-to-point links.
RFC 1331, May 1992.

L231 M. Stahl, Domain administrators guide. RFC 1032, Nov. 1987.
[241 J . Steiner. B. Clifford Neuman, and 1. I. Schiller. Kerberos: An

authentication service for open network systems, Proc. Winter USENIX
Conf.. pp. 191-202. Dallas, TX. 1988.

1251 Sun Microsystems. RPC: Remote procedure call protocol specifica-
tion: Version 2. RFC 1057, June 1988.

L261 Sun Microsystems, Network Interfaces Programmer’s Guide,
Mountain View, CA, March, 1990. SunOS 4 1

[271 W. Treese and A. Wolman. X through the firewall, and other appli-
cation relays, USENIXConf. Proc., pp.87-99,Cincinnati.OH.June 1993.

L281 D. Waitzman, Standard for the transmission of IP datagrams on
avian carriers. RFC 1149, April 1, 1990

Biographies
STEVENM.BELLOV~N receivedaB.A.fromColumbiaUniversity,and M.S.and
Ph D degrees in computer science from the University of North Carolina
at Chapel Hill. While a graduate student, he wrote the original version
of pathalias and helped create netnews. However, the former is not
an indictable offense, and the statute of limitations on the latter ha5
expired. Since 1982 he has been at AT&T Bell Laboratories, Murray Hill,
New Jersey, where he does research in networks and security. and why
the two don’t get along. He is also the co-author of the recent book
Firewalls and Internet Security: Repellmg the Wily Hacker. His e-mail
address is smb@research.att.com.

WILLIAM R. CHESWICK was graduated from Lehigh University in the mid-
1970s with a computer science degree. He pursued a random career
of technical support, teaching, and system administration at a variety of
universities in the northeast. For the past seven years he has served as
an assistant programmer trainee and member of the technical staff at
Bell Laboratories in Murray Hill, New Jersey. He recently coauthored,
with Steve Bellovin. Firewalls and Internet Security. Repelling the Wily
Hacker. His e-mail address is ches@research.att.com

-
What degree
of protection
can a firewall
provide
against
threats at its
own level?
The answer
turns entirely
on how
carefully the
gateway
code - the
pemissive
part - is
written.

IEEE Communications Magazine September 1994 57

mailto:smb@research.att.com
mailto:ches@research.att.com

