2102.06972v1 [cs.CR] 13 Feb 2021

arxXiv

BPFCONTAIN: Fixing the Soft Underbelly of Container Security

William Findlay

Carleton University

Abstract

Linux containers currently provide limited isolation guaran-
tees. While containers separate namespaces and partition
resources, the patchwork of mechanisms used to ensure sepa-
ration cannot guarantee consistent security semantics. Even
worse, attempts to ensure complete coverage results in a
mishmash of policies that are difficult to understand or audit.
Here we present BPFCONTAIN, a new container confine-
ment mechanism designed to integrate with existing container
management systems. BPFCONTAIN combines a simple yet
flexible policy language with an eBPF-based implementation
that allows for deployment on virtually any Linux system
running a recent kernel. In this paper, we present BPFCON-
TAIN’s policy language, describe its current implementation
as integrated into docker, and present benchmarks comparing
it with current container confinement technologies.

1 Introduction

Linux containers have become the preferred unit of appli-
cation management in the cloud, forming the foundation of
Docker [11], Kubernetes [20], Snap [46], Flatpak [14], and
others. By including just the binaries, libraries, and configura-
tion files needed by an application, containers enable simpli-
fied deployment of vendor-packaged applications, rapid hori-
zontal application scaling, and direct developer-to-production
DevOps workflows, all without the overhead of hypervisor-
based virtual machines (HVMs).

Many have recognized that containers currently offer weak
isolation guarantees [25, 49, 50]. Weak container confine-
ment is less of a risk when all containers on a given host
are deployed by the same party. However, strong container
isolation mitigates privilege escalation attacks and is a critical
requirement in multi-tenancy environments where attacker-
controlled containers co-exist with benign containers.

The key to improving container isolation lies in recognizing
that isolation is not the same as virtualization. Virtualization
can exhibit isolation characteristics as a side effect; however,

David Barrera

Carleton University

Anil Somayaji

Carleton University

such isolation is rarely enough on its own to serve a security
barrier. In networking, network address translation (NAT)
virtualizes IP addresses so one IP address can be shared by an
entire network of systems. While this many-to-one mapping
provides a significant degree of isolation to systems behind
the NAT, it is no substitute for a network firewall, especially
one that is configured, e.g., to block outbound connections.
Linux containers are virtualized using cgroups [5] and names-
paces [18], while confinement is enforced through seccomp-
bpf [29] and mandatory access control mechanisms such as
SELinux [45] and AppArmor [10]. While these confinement
mechanisms are powerful and flexible, container isolation
was not their primary design goal, and currently they can only
accomplish the task with complex policies that are difficult to
write and audit.

To properly isolate containers, the kernel requires clear
rules about what interactions are permissible, whether be-
tween containers or with the host OS. Much like firewall
rules specify which packets may traverse it, OSes need un-
ambiguous, auditable rules to determine what kernel-level
operations are and are not allowed based on container bound-
aries. Following Unix tradition, the Linux kernel provides
only security mechanisms and abstractions for defining secu-
rity policies, but leaves policies themselves to be managed in
userspace. However, unlike processes, files, and network con-
nections, the Linux kernel has no unified abstraction around
containers.

We assert that the lack of strong isolation guarantees for
containers arises from a semantic gap between the security
mechanisms that currently exist in the Linux kernel and the
policies that we wish to define to isolate containers. As long
as the kernel does not implement container-level access con-
trol mechanisms, the result will be complex, circumventable
container isolation.

The Linux kernel has recently gained an alternative way
to implement security abstractions: eBPF. An extension of
the Berkeley Packet Filter [33], Linux’s eBPF now allows for
complex monitoring and manipulation of kernel-level events.
Thanks to implicit load-time verification of eBPF bytecode,

eBPF provides strong performance, portability, and safety
guarantees. More recent improvements to eBPF [9] have en-
abled interfacing with Linux Security Module (LSM) hooks,
allowing eBPF code to implement new kernel-level security
mechanisms.

This paper proposes BPFCONTAIN, a novel approach to
container security under the Linux kernel, rectifying over-
privileged and insecure containers. Leveraging eBPF, BPF-
CONTAIN uses runtime security instrumentation to implement
container-aware policy enforcement and harden the host ker-
nel against privilege escalation attacks mounted from within
containers. Specifically, BPFCONTAIN attaches eBPF pro-
grams to LSM hooks and critical functions within the kernel
to enforce per-container policy in kernelspace.

Thanks to eBPF’s dynamic instrumentation capabilities,
this integration occurs at runtime and requires no modifica-
tion or patching of the kernel. BPFCONTAIN addresses the
container userspace/kernelspace semantic gap by defining a
new YAML-based policy language for container confinement
that allows for simple default deny and default allow policies,
high-level semantically meaningful permissions, and (where
necessary) fine-grained control over the LSM API, all at the
level of containers.

While BPFCONTAIN can co-exist with seccomp-bpf,
SELinux, and other existing Linux security mechanisms, it
does not rely on them, and in fact in the context of container
isolation, BPFCONTAIN makes them redundant. It also has
modest userspace requirements, consisting only of a small
daemon and a control program, both of which are written in
Rust. In summary, we make the following contributions:

* We present the design, implementation, and evaluation
of BPFCONTAIN, a container-aware security enforce-
ment mechanism for Linux. BPFCONTAIN is available'
under a GPLv2 license, and installation requires only a
5.10 or newer Linux kernel. While there is past work on
using eBPF for process sandboxing [13], BPFCONTAIN
is both more general and more deployable, implementing
mechanisms and a policy language specific to container
confinement and built using tools such as BPF CO-RE
and Rust that have much lower space and runtime over-
head.

* We design a flexible policy language for confining con-
tainers that offers optional layers of granularity to meet a
wide range of real world container use cases. The policy
language is YAML-based, and expressive enough that
it can be used to confine individual system resources,
yet simple enough that it affords ad-hoc confinement use
cases.

* We discuss integrating BPFCONTAIN with existing con-
tainer management frameworks without modifying their
source code, offering significant security advantages

Uhttps://github.com/willfindlay/bpfcontain-rs

over traditional approaches to container isolation and
least-privilege.

The rest of this paper proceeds as follows. Section 2
presents background and our motivation for implementing
an eBPF-based container security mechanism. Section 3
presents an overview of BPFCONTAIN and discusses our
threat model and design goals. Section 4 describes BPFCON-
TAIN’s policy language. Section 5 discusses the design and
implementation of its userspace components and enforcement
engine. Section 6 presents an evaluation of BPFCONTAIN’s
security and performance. Section 7 covers related work and
Section 8 discusses limitations and opportunities for future
work. Section 9 concludes.

2 Background and Motivation

This section reviews current techniques for achieving virtual-
ization, isolation, and least privilege on Linux containers. It
also provides background on the classic and extended Berke-
ley Packet Filters (BPF and eBPF), and discusses the moti-
vation behind a new container-focused security enforcement
mechanism.

A container is a userspace representation of a set of pro-
cesses that share the same virtualized view of files and system
resources. Containers run directly on the host operating sys-
tem and share the underlying OS kernel, and thus do not
require a full guest operating system or hypervisor to pro-
vide the virtualized view of the system to applications (see
Figure 2.1). To support security beyond basic process isola-
tion, modern container runtimes rely on a variety of low-level
Linux kernel facilities to enforce virtualization, isolation, and
least-privilege. Note that by relying on a disparate set of
mechanisms and corresponding policies, a failure in the en-
forcement or policy in any single mechanism exposes the
container to attacks.

2.1 Container Security

Namespaces and Control Groups (cgroups). These
mechanisms allow for further confinement of processes by
restricting the system resources that a process or group of pro-
cesses can access. Namespaces isolate access by providing
a process group a private, virtualized naming of a class of
resources, such as process IDs, filesystem mountpoints, and
user IDs. Cgroups (control groups) limit available quantities
of system resources, such as CPU, memory, and block device
I/0. Namespaces and cgroups on their own cannot enforce
fine-grained access policies (e.g., to resources within a names-
pace), and thus require additional mechanisms as described
below.

POSIX Capabilities. These provide a finer-grained alter-
native to the all-or-nothing superuser privileges required by

https://github.com/willfindlay/bpfcontain-rs

Virtual Machine 1 Virtual Machine 7.
[Pmcess] [Process] [Process] [Process]
Virtual Machine 1 i |

E[Process] [Prm:ess] [Process] [Process] [Guest 0S] [Guest 0S]

[Guest 0S] [Guest 0S] Hypervisor

Virtual Machine 1

Hypervisor Host OS

Hardware Hardware

(a) Type | Hypervisor (b) Type Il Hypervisor

Container 1 Container 12

MAC LSMs
Least-Privilege Layer
seccomp-bpf

Virtualization Layer Cgroups

Host 0S Namespaces

Hardware

(c) Containers

Figure 2.1: Comparison of virtual machine and container architec-
tures. Type I hypervisors (a) virtualize and control the underlying
hardware directly, but require full guest operating systems on top of
the virtualization layer. Type II hypervisors (b) run on top of a host
operating system but still require full guest operating systems above
the virtualization layer. Containers (c¢) achieve virtualization using a
thin layer provided by the host operating system itself. They share
the underlying operating system kernel and resources, requiring no
guest operating system.

certain applications[7, 8, 27]. POSIX capabilities can be used
to grant limited additional privileges to specific processes,
overriding existing discretionary permissions. Further, a priv-
ileged process may drop specific capabilities that it no longer
needs, retaining those it does. POSIX capabilities add com-
plexity to the already complex Linux permission model [7,
8]. It is challenging to create a default set of capabilities
that work for most use cases. For example, Docker provides
containers with 15 Linux capabilities by default, including
CAP_DAC_OVERRIDE, which allows a container to override all
discretionary access control checks [11, 49].

System Call Filtering. Linux’s seccomp-bpf [29] is a com-
mon approach for reducing the set of system calls available
to an application. Container runtimes will often ship with
a seccomp-bpf policy that prevents containers from making
calls that are known to be dangerous. Despite the high degree
of control that seccomp-bpf offers to applications, it is not
without its own usability and security concerns. seccomp-bpf
policy is easy to misconfigure, resulting in potential security
violations; for instance, an attacker may entirely circumvent
a policy that specifies restrictions on the open(2) system call
but not openat(2).

Mandatory Access Control (MAC). The Linux Security
Modules (LSM) API [51] provides an extensible security

framework for the Linux kernel, allowing for the implementa-
tion of kernelspace security mechanisms that can be chained
together. SELinux [45] and AppArmor [10] use the LSM API
to provide fine-grained mandatory access control throughout
the system. Container runtimes often ship default MAC poli-
cies for their containers, and requesting enforcement if such
a MAC system is enabled. To our knowledge, no container
runtime will refuse to run if no LSM is loaded, effectively
failing open. MAC policies are also known to be difficult to
maintain and audit [42].

2.2 Classic and Extended BPF

The original Berkeley Packet Filter (BPF) [33], hereafter re-
ferred to as Classic BPF, was a packet filtering mechanism im-
plemented initially for BSD Unix. Classic BPF implemented
a simple register-based virtual machine language and efficient
buffer data structures to minimize the context switches while
making filtering decisions. As an efficient packet filtering
mechanism, Classic BPF quickly gained traction in the Unix
community and has since been ported to many Unix-like op-
erating systems, most notably Linux [26], OpenBSD [36],
and FreeBSD [15]. On Linux, the seccomp sandboxing fa-
cility has been extended to use BPF to make security deci-
sions about system calls in a confined process (c.f., seccomp-
bpf [12, 29]).

A complete rewrite of the Linux BPF engine, dubbed Ex-
tended BPF (eBPF), was merged into the mainline kernel [48]
in 2014. eBPF expands on the original BPF specification
by introducing: an extended instruction set, 11 registers (10
of which are general-purpose), access to allow-listed kernel
helpers, Just-in-time (JIT) compilation to native instruction
sets, a program safety verifier, specialized data structures,
and new program types which can be attached to a variety of
system events in both userspace and kernelspace.

These extensions to the Classic BPF engine effectively turn
eBPF into a general-purpose execution engine in the kernel
with system introspection and kernel extension capabilities.
eBPF programs execute in the kernel but are limited by a
restricted execution context and pre-checked for safety by an
in-kernel verification engine. In particular, eBPF programs
are limited to a 512-byte stack, cannot access unbounded
memory regions, must not have back-edges in their control
flow, and must provably terminate [16]. As a consequence of
these restrictions, eBPF programs are not Turing-complete.
Where necessary, an eBPF program can make calls to a set
of allow-listed kernel helpers to obtain additional function-
ality, such as access to external memory regions and various
kernel facilities such as signalling or random number genera-
tion [16].

A privileged userspace process may load an eBPF program
into the kernel using Linux’s bpf(2) system call (see Fig-
ure 2.2). While it is possible to write eBPF bytecode by hand
[16], several front-ends exist for compiling eBPF bytecode

s LLVM

C Source File BPF Bytecode

bk @ ® co

eBPF Front Ends

System bpf(2)
Events mmap(2)

7,/ B

.

HeBPF
Verifier

I/
HeBPF HeBpPF
JIT Compiler Programs

Figure 2.2: Linux kernel eBPF architecture.

from a restricted subset of the C programming language”,
including bec [17] and libbpf [24]. These front-ends typically
use the LLVM [31] compiler toolchain to produce BPF byte-
code. When the kernel receives a request to load an eBPF
program, it first checks the bytecode to ensure that it con-
forms to the safety invariants outlined above. If the verifier
accepts the program, it may then be attached to one or more
system events. When an event fires, the eBPF program is exe-
cuted via just-in-time compilation to the native instruction set.
eBPF programs can store data in several specialized in-kernel
data structures, made accessible to userspace via the bpf (2)
system call or a direct memory mapping.

2.3 Motivation

Isolation has not been a focus of container management frame-
works, with many taking a lax attitude towards least-privilege
enforcement [49]. Popular container frameworks such as
Docker [11] provision overly-permissive default access, rely
on a complex and often ill-suited suite of security mechanisms
provided by the host system (see Section 2.1), and support
insecure configuration options [11, 13, 25, 49]. Again, the
main challenge in providing strong container isolation is that
the kernel has no unified abstraction to represent containers,
which results in a patchwork of security mechanisms (see Sec-
tion 2.1) each enforcing specific policies. A vulnerability in
any individual mechanism, or a misconfiguration in any indi-
vidual policy opens up the container or system to attack.

We argue that the key to providing strong container iso-
lation is to bridge the semantic gap between the kernel se-
curity enforcement mechanisms and container-level security
policies. One approach is to extend the Linux kernel with
a container-aware LSM, much like AppArmor or SELinux
(see Section 2.1). However, maintaining out-of-tree kernel
modules is challenging, as they must be continually updated
as the kernel evolves. Another issue is adoption; users may be

2In principle, this language need not be C. For instance, a framework
exists for writing eBPF programs in pure Rust [38]. However, C is a popular
choice since it is tightly coupled with the underlying implementation of the
kernel.

reluctant to run a third-party module because bugs can cause
system crashes or data loss.

In the case of container isolation the situation is even worse,
as a single kernel-level security mechanism is unlikely to
work for all use cases. Some users (e.g., operators of multi
tenant container clouds) will want strong isolation for their
containers, while others (e.g., end users) will want contain-
ers to deeply integrate with the resources provided by other
containers and the host system.

Containers have strong conceptual backing in userspace,
but lack a unifying abstraction in the kernel. From the kernel’s
perspective, a containerized process is just like any other—it
may be running under a different set of namespaces or in a
different control group, but there exists no unifying definition
of precisely what a container is, from the kernel’s perspec-
tive. This lack of a solid container abstraction in turn widens
the semantic gap between per-container security policy au-
thored in userspace and policy enforcement in the kernel. We
argue that BPFCONTAIN can provide such a unifying abstrac-
tion for policy enforcement. Since BPFCONTAIN requires
no modification to the host kernel and can be dynamically
loaded at runtime, we can provide such an abstraction with-
out necessarily sacrificing forward compatibility with other
approaches.

In summary, BPFCONTAIN came out of the realization that
1) with eBPF, we had the technology to implement specialized
security abstractions and that 2) container confinement was a
problem that could use a problem-specific security abstraction,
given the complexity of existing solutions.

3 BPFCONTAIN

To confine applications, BPFCONTAIN leverages eBPF [48],
a Linux technology that allows privileged userspace processes
to make verifiably safe runtime extensions to the operating
system kernel. A privileged userspace daemon manages BPF-
CoONTAIN’s eBPF components and loads policy into the ker-
nel. When a user wishes to confine an application, they invoke
a shim wrapper command, which associates itself with a spe-
cific BPFCONTAIN policy and subsequently executes the
target application. Figure 3.1 illustrates this process at a high
level.

BPFCONTAIN associates a confined application and all its
children with a universally unique ID, called the “container
ID”, which is used to track various information, including
namespace membership and policy association. eBPF maps
store per-container information and security policies, which
are queried at runtime by eBPF programs responsible for
making policy decisions. In this way, BPFCONTAIN makes
the kernel container-aware and provides a mechanism for
enforcing strong least-privilege guarantees at the granularity
of individual containers.

BPFContain
Daemon

<
1
4

©
Invokes

<

A

(]
BPFContain Container Policy
Shim Repr i Repr i
[¢

Policy

Queries/Updates

HeBPF
Programs

Figure 3.1: A high-level depiction of how users can use BPFCON-
TAIN to enforce least privilege on an application. In userspace, a
privileged daemon loads parses policy files and loads policy into the
kernel. The user invokes a wrapper command to launch the confined
application. In the kernel, eBPF maps track the state of confined
applications and active policy. e BPF LSM programs then enforce
this policy when a confined application requests access to a mediated
system resource.

®
Launches

Least-Privilege

i 3 En%?es
; Confined '€
| Application |~

3.1 Threat Model

BPFCONTAIN aims to protect against two categories of
container-related attacks: (1) inter-container attacks, where
one container attempts to interfere with or take over another;
and (2) containers attacking the host, either by escaping con-
finement or launching denial of service or resource consump-
tion attacks. Intra-container attacks, where an application
inside a container might attack the container itself are not our
focus, and are better addressed by deploying existing security
mechanisms (see Section 2.1) inside the container. Host-to-
container attacks are also out of scope, as they likely require
the use of hardware security mechanisms [6, 25, 49].

We consider an attacker who can create and deploy con-
tainers to a multi-tenant shared container cloud. While the
attacker has full control over the contents of each container
they create, the attacker does not have administrative privi-
leges on the host. The attacker’s goal is to attack co-located
containers or the host system. Such attacks can have a va-
riety of goals including information extraction, application
compromise, or denial of service.

We assume that an attacker-controlled process must make
use of kernel interfaces (i.e., system calls) in order to mount
an attack against other containers or the host system. We also
assume that appropriate resource bounds are ensured through
proper cgroups configuration in order to prevent resource-
based denial of service attacks. Also, attacks targeting the
hardware (such as Spectre [19] and Rowhammer [35]) are
outside the scope of BPFCONTAIN.

While this threat model might appear limited, it is the same

one assumed by standard Linux kernel security mechanisms
including SELinux and AppArmor.

3.2 Design Goals

We followed five design goals when designing both BPFCON-
TAIN’s policy language and enforcement engine. These goals
are enumerated below. Note that our focus is on isolation
rather than virtualization of system resources, and BPFCON-
TAIN uses existing kernel facilities for virtualization. We
discuss potential avenues for providing standalone virtualiza-
tion capabilities in BPFCONTAIN in Section 8.1.

Security. BPFCONTAIN should be built from the ground
up with security in mind. In particular, security should not
be an opt-in feature and BPFCONTAIN should adhere to the
principle of least privilege [41] by default. It should be easy
to tune a BPFCONTAIN policy to respond to new threats or
configurations.

Simplicity. The BPFCONTAIN policy language should be
simple enough for ad-hoc use cases without sacrificing secu-
rity. In pursuit of this goal, our policy language takes inspira-
tion from other high-level policy languages for containerized
applications, such as Snapcraft [46]. We also base our policy
language syntax on the YAML specification [3], which is both
well-understood and widely-used as a configuration language.

Flexibility. When studying typical use cases for container
technology, it quickly became apparent that there exists a
dichotomy in the way containers are used in practice. In
industry, containers tend to be used to deploy composable
micro-services, particularly in cloud contexts [1]. On the
other hand, they are often used to isolate desktop applica-
tions [14, 46]. In light of these findings, we designed BPF-
CONTAIN to work in both use cases, providing a means of
securing micro-services and restricting desktop applications’
behaviour.

Transparency. Confining an application using BPFCON-
TAIN should not require modifying the application’s source
code or running the application using a privileged SUID (Set
User ID root) binary. BPFCONTAIN should be entirely ag-
nostic to the rest of the system and should not interfere with
its regular use.

Adoptability. BPFCONTAIN should be adoptable across
various system configurations and should not negatively im-
pact the running system. It should be possible to deploy
BPFCONTAIN in a production environment without impact-
ing system stability and robustness or exposing the system
to new security vulnerabilities. BPFCONTAIN relies on the
underlying properties of its eBPF implementation to achieve
its adoptability guarantees.

4 BPFCONTAIN Policy

BPFCONTAIN exposes a YAML-based policy config-
uration language to system administrators. By de-
fault, the BPFCONTAIN daemon loads policy from
/var/lib/bpfcontain/policy, although this setting can be
changed via an environment variable when running the dae-
mon. At a minimum, a policy file consists of a unique name
(later used to compute a unique identifier for the policy) and
a default entrypoint, i.e. a pathname to an executable along
with optional arguments. For instance, consider a minimal
policy file for a simple, statically linked program that reads
from standard in and writes to standard out. This policy is
depicted in Listing 4.1.

Listing 4.1: A minimal BPFCONTAIN policy file for a statically
linked application that reads from stdin and writes to stdout.

name: hello_minimal

entry: /usr/bin/hello.static

allow:
Grant read and write access to
/dev/tty* and /dev/pts/* devices
- tty: rw

In accordance with the principle of least privilege [41],
BPFCONTAIN policy defaults to a default-deny. This means
that, with no additional information, the policy depicted in
Listing 4.1 would deny access to all security-sensitive re-
sources on the system, including regular files, directories,
kernel interfaces such as character devices and special filesys-
tems, network communication, interprocess communication,
and POSIX capabilities. In other words, any process tied to
this policy file would only be able to perform basic compu-
tational tasks, with no access to any resources gated by the
operating system’s reference monitor.

However, it is possible to specify that a default-allow policy
be enforced instead. In this way, end-users can write a simple
policy restricting specific application behaviour without wor-
rying about the details of writing a rigorous security policy,
should they so choose. For instance, a user might wish to
restrict an application’s access to a specific subset of kernel
interfaces without worrying about other access control deci-
sions such as access to shared libraries. Since default-allow
enforcement is strictly an opt-in feature, we can support such
flexible confinement without exposing an unsuspecting user
to any additional risk. Configuring our above example to be
default allow is as simple as adding a new line with default:
allow.

BPFCONTAIN supports three main categories of policy
rules. Allow rules grant access to system resources, deny rules
restrict access to system resources, and faint rules specify
conditions under which a BPFCONTAIN container should
become tainted. When a security policy specifies taint rules,
the resulting container is considered untainted until the taint
rule is matched. Untainted containers are exempted from

default-deny enforcement, meaning that it is possible to define
a security policy that behaves as if it were default allow during
some predetermined setup phase. A policy without any taint
rules is assumed to be tainted by default. Once tainted, it is
impossible for a process to become untainted.

The concept of tainting both greatly simplifies and hardens
the resulting security policy. This stems from the observation
that the initial setup phase and main work loop of a given
application often have totally disparate access patterns—for
instance, a dynamically linked C application will map shared
libraries into executable memory during its setup phase, but is
unlikely to perform similar mappings for the remainder of its
lifecycle. Eliminating these initial access patterns from secu-
rity policy simplifies policy authorship while simultaneously
preventing such access patterns once a process enters its main
work loop. Using this notion of tainting, we can consider
a revised policy for a dynamically compiled version of our
simple application, depicted in Listing 4.2.

Listing 4.2: A BPFCONTAIN policy file for a dynamically linked
application that reads from stdin and writes to stdout. Policy en-
forcement begins after the first read from stdin (potentially untrusted
user input). Note that our taint rule allows us to skip over boilerplate
policy provisioning access to shared libraries.

name: hello_taint

entry: /usr/bin/hello.dynamic

allow:
Grant read and write access to
/dev/tty* and /dev/pts/* devices
- tty: rw

taint:
Taint after reading from
/dev/tty* or /dev/pts/* devices
- tty: r

4.1 Filesystem Policy Rules

BPFCONTAIN policy restricts access to files using a variety
of rule types, each with varying degrees of granularity. The
most basic, the filesystem rule, grants access at the granular-
ity of a given filesystem, rooted at the provided mountpoint.
Subdir rules grants recursive access to files rooted at a given
directory, with a hard limit of 8 nested subdirectories. This
hard limit is a technical limitation associated with the eBPF
implementation, but can be adjusted at compile time. File
rules grant access at the granularity of individual files. De-
vice rules grant access at the granularity of commonly-used
(and unprivileged) character devices, such as TTYs and the
kernel’s random number facilities. The policy may optionally
explicitly define a specific access pattern for each filesystem
object, specified using a string of access flags. For instance,
read and append access to a log file would be specified as
file: /var/log/mylog.log ra.

In addition to these explicit rules, BPFCONTAIN enforces
an implicit filesystem policy on all containers. For instance,

BPFCONTAIN heavily restricts access to the procfs filesys-
tem, which exposes per-process information along with cer-
tain interfaces into the kernel. A container may only access
its own per-process entries in procfs and is prohibited from
accessing any other files in procfs unless such access is explic-
itly marked in the container’s policy file. The sysfs filesystem,
which provides a similar interface into various aspects of the
kernel, receives similar treatment. Overlay filesystems also
receive special treatment; a container is always granted full
access to an overlay filesystem belonging to its own mount
namespace. In practice, this can greatly simplify the result-
ing security policy, since the majority of filesystem rules can
simply be removed.

4.2 Network Policy

BPFCONTAIN confines network traffic at the socket level.
Network rules grant access to various socket operations on
the IPv4 and IPv6 socket families. Socket operations are
grouped by use case and partitioned into client, server,
send, and receive categories accordingly. These categories
may be mixed and matched according to the required level
of access. An access level of client grants the ability to
connect to a network socket, while an access level of server
allows a container to create, bind, and shutdown a socket as
well as listen for and accept connections. Similarly, send
access grants the ability to send data (or write) to a network
socket, while receive access grants the ability to receive data
(or read) from a network socket.

Since Unix domain sockets are used for interprocess com-
munication rather than network communication, they are han-
dled separately by IPC policy (c.f. Section 4.2.1). A container
typically has no need for other address families beyond basic
networking and inter-process communication. Therefore, in
our current prototype, all other address families are implic-
itly denied, although this may be subject to change in future
iterations.

4.2.1 1PC Policy

BPFCONTAIN enforces inter-process communication (IPC)
policy at the granularity of its representation of containers.
A given container can always perform IPC between its own
processes. To enable IPC across containers, both container
security policies must specify an ipc rule which explicitly al-
lowlists the other policy by specifying its name. For instance,
to allow IPC between policy A and policy B, policy A would
require an ipc: B rule and policy B would require an ipc:
A rule. At runtime, BPFCONTAIN enforces checks to make
sure that both containers belong to the same IPC namespace.

BPFCONTAIN enforces its IPC policy on all inter-process
communication facilities supported in the LSM infrastructure,
including Unix domain sockets, signals, and SystemV IPC
and shared memory.

4.3 Capability Policy

Over-provisioning and abuse of POSIX capabilities is en-
demic in extant container implementations [11, 49]. To rectify
the problem of overprivilege, BPFCONTAIN strictly limits
the use of POSIX capabilities by all containers, including
those which have been marked default-allow. The only way
to allow the use of a given POSIX capability in a BPFCON-
TAIN container is to explicitly allow it by adding a capability
rule with the corresponding capability.

Note that allowing the use of these capabilities is not the
same as granting additional capabilities; a process must still
possess the corresponding POSIX capability in order to use it.
For example, in order for a process to use the CAP_SYS_ADMIN
privilege, it must both already have this privilege and be run-
ning under a policy with an explicit CAP_SYS_ADMIN capabil-
ity rule. In this way, BPFCONTAIN’s capability policy can be
thought of as a mask over the set of all possible capabilities.

4.4 Implicit Policy

Listing 4.3: Sample BPFCONTAIN policy for a container that runs
Apache httpd together with mysqld. In practice, this policy could be
further simplified by relying on BPFCONTAIN’s implicit overlayfs
policy.

name: my_webapp
entry: >
mysqld $(SQL_ARGS) &
httpd $(HTTPD_ARGS)
allow:
- file: /run/apache2.pid, rwd
- subdir: /run, rc

- subdir: /var/www, r

- subdir: /var/www/cgi, rxm

- subdir: /var/cache/apache2, rwc

- subdir: /var/lib/mysql, rwc

- subdir: /var/lib, rm

- subdir: /var/log/apache2, rac
subdir: /var/log/mysql, rac

Network access

net: server, send, recv

Bind to privileged ports

capability: netBindService

Inter-process communication between mysqld
and httpd is allowed implicitly, as both
processes exist in the same container

HOoE O o o= 1 =

In addition to its explicit security policy, defined in policy
files, BPFCONTAIN enforces a number of implicit policies on
all containers, which are enforced regardless of configuration.
In general, these policies restrict access to operations that no
sane container should ever require. In total, BPFCONTAIN
enforces implicit policy on 11 LSM hooks, denying access
to the bpf (2) system call, the kernel’s keyring facilities, the
ptrace system call, filesystem mounts, and all of the sensitive
operations gated by the kernel’s lockdown LSM [28].

Besides the implicit policy enforced via LSM hooks, BPF-

CONTAIN takes advantage of eBPF to instrument other ar-
eas of the kernel which are not directly covered by LSM
hooks. In this way, BPFCONTAIN can dynamically harden
the kernel against a variety of additional container-specific
attacks such as namespace escapes and host privilege escala-
tion attacks [25]. We cover the specific details of this extra
enforcement in Section 5.2.

The key advantage to these implicit policies, however, is
that they make container-level policies remarkably simple.
Listing 4.3 shows a sample policy for a container running
both apache and mysql. Notice that the bulk of the policy
is taken up by filesystem rules, and even then the policy
is relatively small, as standard activity within the container
is allowed. If we had configured an overlay filesystem (as
is done by standard container runtimes) this policy could
be even simpler, requiring no filesystem permissions at all.
(See Section 8.1.)

5 Implementation

BPFCONTAIN consists of three functional components: (1) a
privileged daemon, running in userspace; (2) a minimal shim
application for launching containers; and (3) eBPF programs
attached to various system events and LSM hooks. Figure 5.1
provides a detailed overview of BPFCONTAIN’s architec-
ture. In the rest of this section, we discuss the userspace and
kernelspace components respectively.

Invokes BPFContain
Logs Security Events Shim

BPFContain
Daemon

4
bpfcontain_confine()

System Call -
N

A

Hespr | __7!

Uprobe Program

Loads Policy

Access
Requests

Policy
Decisions

HeBPF 4

S Policy Decisions,
LSM Programs LSM Hook(s)
Lo

HeBPF
Policy Decisions
Fentry Programs ogﬁ';ﬁg:‘:'

Figure 5.1: A detailed depiction of BPFCONTAIN’s architecture.
The daemon is responsible for loading and managing BPFCON-
TAIN’s eBPF programs and maps, translating and loading policy into
the kernel, and logging security events to userspace. eBPF programs
attach to LSM hooks and other security-critical kernel functions
to enforce per-container policy. A userspace shim application is
responsible for launching the containerized application and starting
confinement. Unlike other container implementations, the shim has
no need to directly communicate with the daemon and runs with no
additional privileges.

5.1 Userspace Components

In userspace, BPFCONTAIN consists of a privileged dae-
mon and an unprivileged shim application used to launch
containers. The daemon is responsible for loading and man-
aging BPFCONTAIN’s eBPF maps and programs, loading per-
container policy into the kernel, and logging security events
for provenance. The shim’s only purpose is to invoke the
bpfcontain_confine library call to initiate confinement fol-
lowed by an execve(2) call to launch the correct entrypoint
application.

Unlike traditional container implementations, the shim
(and consequently any container launched using the shim)
requires no special privileges. To obviate the need for
communicating with the daemon directly, we instead in-
strument a uprobe (userspace probe) eBPF program on the
bpfcontain_confine library call. Whenever a userspace ap-
plication makes this library call, it traps to the uprobe which
then creates a new container for the process and associates
it with the correct security policy. From the application’s
perspective, this procedure is totally transparent.

Both the daemon and shim are written in Rust, a fast and
reliable systems programming language with strong memory-
and thread-safety guarantees. BPFCONTAIN leverages libbpf-
rs and BPF CO-RE (compile once, run everywhere) to load
its eBPF programs and maps into the kernel. With CO-RE,
BPFCONTAIN embeds its eBPF object code directly into the
resulting executable, allowing for a single binary to be com-
piled once and executed on any system running the minimum
required kernel version. We expect that this property will
prove highly advantageous for cloud-based and IoT-based
deployments.

5.2 Kernelspace Components

On the kernel sidle BPFCONTAIN leverages a variety of e BPF
programs and maps to enforce policy, log security events,
and track the state of running containers. In total, we instru-
ment 38 eBPF LSM programs, two fentry (kernel function
entry) programs, two scheduler tracepoints, and one uprobe
(userspace probe). Taken together, these components provide
a complete abstraction for containers and container behaviour
in kernelspace and offer an effective mechanism for enforcing
least-privilege on running containers.

eBPF Maps. To store policy, track the state of running con-
tainers, and log security events to userspace, BPFCONTAIN
employs several eBPF maps. These maps are specialized
data structures which reside in the kernel and provide bi-
directional (by default) lookup and update capabilities to priv-
ileged userspace applications and eBPF programs.

A processes map tracks the state of containerized processes
and manages their associations with running containers. Sim-
ilarly a containers map tracks the state of running containers,
including policy association, information about namespace

and cgroup membership, whether the container is tainted, and
a reference count of how many processes are running under
the container.

We additionally define one map per policy category
(e.g. file, filesystem, and network policy) and mark each pol-
icy map read-only after populating it from userspace. When
a container requests access to a sensitive resource, eBPF pro-
grams query the policy maps and the state of the running
container and use this information to come to a policy deci-
sion. A final specialized map acts as a ring buffer to store and
forward security events (e.g. policy denials) to userspace so
that the BPFCONTAIN daemon can log them.

LSM Programs. The majority of BPFCONTAIN’s policy
enforcement mechanism is implemented using eBPF pro-
grams attached to LSM hooks. These LSM hooks are strategi-
cally positioned in various security-critical sections of kernel
code and define the canonical interface for implementing cus-
tom access control policy in the kernel. These LSM programs
can coexist with any other Linux security module running on
the system (e.g. AppArmor, SELinux, or Yama) and work
co-operatively with other implementations to come to a final
policy decision. This means that, although BPFCONTAIN is
designed to completely replace existing LSMs for container
security, exclusivity is not a requirement.

Hot Patching Kernel Vulnerabilities. While LSM pro-
grams provide a strong basis for policy enforcement, we
found that the kernel could benefit from additional hardening
in areas which are not directly protected by LSM hooks. For
instance, Xin et al. [25] identified a common class of con-
tainer privilege escalation attacks which work by exploiting
kernel code execution vulnerabilities to force an invocation
of the kernel’s commit_creds function. The attacker then
uses this function to update their process’ credentials with
elevated privileges. Their original paper proposed a simple de-
fence involving a 10 line patch to the kernel’s commit_creds
function that adds a check to see if a namespace confines the
process. If it is, assume that it is in a container, and block any
updates to credentials that would result in escalation of privi-
lege [25]. While effective, this solution is inflexible in that it
assumes a specific container abstraction based on namespace
membership and requires an out-of-tree kernel patch.

In BPFCONTAIN, we implement a similar mitigation tech-
nique but instead use a special eBPF program typed called
an fentry probe. Fentry probes replace kernel function en-
trypoints with a shim function that trampolines to an eBPF
program. BPFCONTAIN attaches such an fentry probe to
the commit_creds function and uses it to check for privilege
escalation within a container. If the probe detects privilege
escalation, it simply kills the offending process.

We apply a similar technique to the switch_task
_namespaces function to prevent a container from escaping
namespace isolation. In principle, it is possible to add ar-

bitrarily many such fentry programs to BPFCONTAIN as
new kernel-level vulnerabilities are discovered. These “hot
patches” can then be applied dynamically, simply by reload-
ing the BPFCONTAIN daemon.

Scheduler Tracepoints. To keep track of process state and
container membership, we instrument tracepoint eBPF pro-
grams on the scheduler, tracking task creation and task exits.
When BPFCONTAIN detects that a task has been created, it
checks to see if its parent is in a BPFCONTAIN container.
If this check passes, the child process is associated with the
same container and we atomically increment the container’s
reference count. In this way, BPFCONTAIN recursively builds
its own per-container process tree.

Similarly, when a task exits, we check if it belongs to a
container and decrement the corresponding reference count.
Once a container’s reference count reaches zero, BPFCON-
TAIN removes it from the containers map, freeing up space
for a new container to take its place.

Extending the Kernel ABI with Uprobes. An important
difference between BPFCONTAIN and traditional container
implementations is that a process can containerize itself
without requiring any additional privileges. We accom-
plish this via a shim application that makes a single li-
brary call, bpfcontain_confine, before calling execve(2)
to launch the target application. On the kernel side,
bpcontain_confine’s logic is implemented using a uprobe
(userspace probe), which replaces the function address with a
trap to an eBPF program. This eBPF program first checks to
ensure that the calling process is not already associated with
a container, to prevent an exiting container from escaping
confinement. If this check succeeds, BPFCONTAIN creates a
new container, associates it with the correct policy, adds the
current process to the container, and passes control back to
userspace.

6 Evaluation

Here we evaluate the security and performance of BPFCON-
TAIN. We evaluate its security by analyzing its implemen-
tation in the context of the threat model presented in Sec-
tion 3.1, while performance is empirically analyzed relative
to programs running with no confinement and as confined by
AppArmor. While neither of these evaluations are exhaustive,
they show that BPFCONTAIN is strong in the context of its
threat model while imposing comparable overhead to other
confinement solutions.

6.1 Security

To prevent attacker-controlled containers from making system
calls that could potentially compromise other containers or
the host system, we must ensure that BPFCONTAIN acts as

a reference monitor with respect to kernel operations. Ac-
cording the Anderson’s reference monitor model [2], a secure
reference validation mechanism must satisfy the properties
of complete mediation, tamper resistance, and verifiability.
BPFCONTAIN’s containment guarantees are proportional to
the degree these three properties are satisfied. Below we
discuss the degree to which they hold for BPFCONTAIN.

Complete Mediation. Recall that most of BPFCONTAIN’s
policy enforcement mechanism leverages the Linux Security
Modules framework exposed by the kernel. If we assume that
the property of complete mediation holds for the LSM frame-
work itself, we can say that BPFCONTAIN achieves complete
mediation insofar as its LSM-level policy is concerned. Other
aspects of BPFCONTAIN’s policy enforcement, such as its
instrumentation of the commit_creds function in the kernel,
serve only to complement its LSM-level policy rather than
replace it. Such extensions provide additional kernel-level
hardening against attacks mounted from containers and, thus,
increase the strength of BPFCONTAIN’s complete mediation
guarantees. In summary, we can say that BPFCONTAIN’s
complete mediation at least reduces to that of the LSM frame-
work itself, and extends it in the best case.

Tamper Resistance. Where feasible, BPFCONTAIN uses
its own mechanisms to prevent tampering with its state while
it is running. This protection involves multiple mechanisms,
described below.

BPFCONTAIN is potentially vulnerable to rogue bpf(2)
system calls to modify or remove its code and maps. The
kernel gates access to the bpf(2) system call with the
CAP_SYS_ADMIN capability, which means a process would
effectively require root privileges before accessing any map
on the system [26]. To protect against compromised privi-
leged processes, BPFCONTAIN includes specific logic in its
LSM probe on the bpf (2) system call itself, preventing any
userspace process other than the BPFCONTAIN daemon itself
from directly accessing or modifying its policy maps. Addi-
tionally, maps responsible for managing process and container
state are restricted using the BPF_F_READONLY flag, meaning
that they can only be modified from within BPFCONTAIN’s
LSM probes, and never via the bpf (2) system call [26].

BPFCONTAIN should continue to enforce protections even
if its userspace daemon is terminated. Normally eBPF code
is loaded as long as the associated file descriptor is open [47];
thus, when file descriptors are closed on program termination,
the associated eBPF code and maps are freed. BPFCONTAIN
ensures their persistence by pinning all of its maps and pro-
grams to a special filesystem called bpff's, thus incrementing
the reference counts on the file descriptors. BPFCONTAIN
also instruments an LSM probe preventing any other process
from calling unlink(2) on its pinned file descriptors.

BPFCONTAIN is still vulnerable to kernel-level compro-
mises, for example through code injection attacks. This vul-

10

nerability is no more than that of any other Linux kernel
security mechanism, however. Further, as explained above,
BPFCONTAIN has significant protections against unautho-
rized yet privileged users and processes. While its implemen-
tation is not quite as locked down as SELinux or AppArmor,
its current implementation is hardened without a significant
usability impact.

Verifiability. While BPFCONTAIN has not been formally
verified, its design and implementation do facilitate verifica-
tion in multiple ways. First, BPFCONTAIN’s eBPF code is
run through the eBPF bytecode verifier whenever it is run.
One of the biggest challenges in working with eBPF is the
strictness of the verifier as it imposes so many restrictions
in order to ensure safety. These very limitations, however,
prevent many typical coding errors and form a solid basis for
more advanced verification approaches.

BPFCONTAIN has a comparatively small kernel-level code-
base (well under 2000 lines of kernelspace code) compared
to conventional LSM implementations such as SELinux or
AppArmor, further facilitating manual audits or automated
verification. However, given that BPFCONTAIN is ultimately
only as secure as the rest of the Linux kernel, such verification
can only provide modest additional security guarantees.

6.2 Performance

To establish the performance overhead of BPFCONTAIN as
a drop-in replacement for confinement solutions such as Ap-
pArmor, we evaluated its performance using several bench-
marking tests provided in the Phoronix Test Suite [22], to
our knowledge the most comprehensive Linux benchmarking
platform. Table 6.1 describes each benchmarking test in de-
tail. To establish a baseline for comparison with AppArmor,
we ran each test under five distinct configurations, described
in Table 6.2. See Appendix Table A.1 for full results of each
benchmark.

Tests were run in a KVM-enabled QEMU virtual machine
running a 5.10 Linux kernel on an idle host machine. The
virtual machine was given 8 virtual CPUs at 2.99GHz and
16GB of RAM.

Figure 6.1 presents the comparative percent overheads of
all benchmarking tests across each system configuration, as
compared to the configuration without any security enabled.
Our results indicate that there is no significant difference
between the overhead imposed by BPFCONTAIN and AppAr-
mor, as all percent differences were well within the margin
of error (c.f. Table A.1). Thus we conclude that BPFCON-
TAIN is competitive with AppArmor in terms of performance
overhead on both confined and unconfined processes. Further,
in all cases BPFCONTAIN exhibits less than 16% overhead
on the running system, which we find to be acceptable in
practice.

Table 6.1: A description of the benchmarking tests.

Test

Description

Apache Webserver

Kernel Compilation

Create Files

Create Threads

Create Processes

Launch Programs

Memory Allocations

Measures requests per second of
serving static HTML content via
the Apache httpd webserver.

Measures time taken to build the
Linux kernel.

Measures time taken to create,
write, and delete files.

Measures time taken to create
new threads.

Measures time taken to fork into
new processes.

Measures time taken for fork and
execute a dummy program.

Measures time taken allocate and
free small chunks of memory (4 —
128 bytes).

Table 6.2: A description of the system configurations during bench-

BPFCONTAIN Base

BPFCONTAIN Allow

marking.
Configuration Description
No Security No LSM is running on the sys-
tem.
AppArmor Base AppArmor is running without
any security profiles enabled.
AppArmor Allow AppArmor is running and enforc-

ing a security profile that allows
all operations.

BPFCONTAIN is running with-
out any security profiles enabled.

BPFCONTAIN is running and en-
forcing a security profile that al-
lows all operations. This exer-
cises the full code path of all BPF
programs.

7 Related Work

Several researchers [25, 34, 49] have examined various as-
pects of the container security spanning various container
management platforms and confinement mechanisms. Sultan
et al. [49] examined the container security landscape in de-
tail, identifying strengths, weaknesses, patterns in academic

11

System

. AppArmor Base
|_| AppArmor Allow
. BPFContain Base
. BPFContain Allow

J'TR

Create Launch
Programs

,_.
a

-
15

v

Percent Overhead vs No Security

B

Create
Files Threads
Benchmark

A%ache Kernel Creat Memory
Webserver Compilation Processes Allocations

Figure 6.1: Percent overhead of various configurations vs no secu-

rity, lower percentages are better. Negative results were found to be
within margin of error.

literature, and promising future work opportunities. Their
recommendations included work towards a container-specific
LSM [49], which inspired the research direction for BPF-
CONTAIN. Xin et al. [25] presented a detailed taxonomy
of container security exploits and analyzed container man-
agement platforms’ security against their exploit database.
Mullinix et al. [34] presented a comprehensive analysis of
Docker security and its underlying mechanisms along with
the state-of-the-art solutions in academia for measuring and
hardening Docker security.

Vulnerability analysis of container images [4, 21, 43] has
proved a lucrative technique for identifying areas of weakness
in container configurations. Shu et al. [43] presented their
DIVA framework for automatic Docker Hub image vulner-
ability analysis and aggregated vulnerability data from over
350,000 Docker Hub images. In particular, they found that
Docker images contained an average of 180 security vulnera-
bilities and that these vulnerabilities often propagate between
parent and child images [43]. Kwon and Lee [21] used a
similar technique in DIVDS, extracting vulnerabilities from
container images and offering an interface to compare vulner-
ability severity and optionally add specific vulnerabilities to
an allowlist. Brady et al. [4] applied image vulnerability scan-
ning to a continuous integration pipeline to identify container
vulnerabilities in production deployments.

Other approaches consider ways to harden container man-
agement platforms directly, using existing Linux security
features. Chen et al. [6] proposed a framework for mit-
igating denial of service attacks against the host system
mounted from containers, using a combination of cgroups and
kernel-module-based enforcement to limit resource consump-
tion. While such cgroup-based methods effectively restrict
resource-based denial of service attacks, they are insufficient

for implementing least-privilege. To simplify system call
filtering rules and reduce overprivileged access to the host
system, Lei et al. [23] introduced SPEAKER to partition
a container’s seccomp-bpf profile into multiple execution
phases. The critical insight that informed their approach was
that a container’s setup phase and main work loop often in-
volve disparate sets of system calls [23]. Xin et al. [25]
proposed patching critical functions in the kernel, such as
commit_creds to be container-aware to mitigate the threat of
kernel privilege escalation exploits mounted from containers.

Many least-privilege enforcement mechanisms for con-
tainer security rely on Linux Security Modules for mandatory
access control. Loukidis et al. [32] proposed a mechanism for
automatically deriving per-container AppArmor policy based
on image characteristics and runtime information gathered
from individual containers. Based on the observation that dif-
ferent containers often have disparate security requirements,
Sun et al. [50] proposed adopting a new security namespace
to allow specific containers to load their own LSM implemen-
tations, independent of the rest of the system. Citing their
work as a good starting point, Sultan et al. [49] proposed
that further research should be dedicated to the notion of a
container-specific LSM. BPFCONTAIN represents another
step towards such a container-specific LSM implementation.

BPFCONTAIN is not the first research project to propose
exposing LSM hooks to userspace through eBPF. Landlock
[39, 40] is an experimental Linux Security Module presented
by Salaun to expose a subset of LSM hooks to unprivileged
userspace programs. Under Landlock, userspace programs
write and load eBPF programs into the kernel to filter their
accesses. Unfortunately, the community has since recognized
that allowing unprivileged processes to load eBPF programs
into the kernel is fundamentally insecure, regardless of any
limitations imposed on program type and functionality [9].
Thus, Landlock has not been merged into the mainline kernel
and will likely remain out-of-tree going forward. Unlike
Landlock, Singh’s KRSI [9, 44] allows privileged users to
attach eBPF programs to LSM hooks. Since KRSI does
not require unprivileged processes to load and manage eBPF
programs, it does not suffer the same fundamental security
issues that have detracted from Landlock.

While KRSI serves as the infrastructure for implement-
ing LSM programs in eBPF, developers must still provide
their own implementations for any eBPF LSM hooks they
wish to use. Findlay et al. [13] introduced bpfbox as the first
full process confinement mechanism using these eBPF LSM
hooks. BPFCONTAIN differs from bpfbox in three key ways:
1) BPFCONTAIN confines containers (sets of processes and
associated resources) while bpfbox confines individual pro-
cesses; this also affords a significant simplification of security
policy, since implicit rules can be enforced at the per-container
granularity 2) BPFCONTAIN is implemented using BPF CO-
RE and Rust rather than bee and Python, greatly reducing it
storage and runtime overhead, and 3) BPFCONTAIN moves

12

beyond just LSM-layer enforcement to apply additional ker-
nel hardening against privilege escalation attacks that can
undermine its protection.

8 Discussion

When designing security solutions, we are often at the mercy
of past design decisions. One of the core insights of computer
security is that it is easier to build security in rather than add it
afterwards. Central to this idea is that many security problems
arise at the architectural level, and it is hard to change the
architectures of deployed systems. As a result, we often find
ourselves integrating security mechanisms in fundamentally
non-optimal contexts, simply because that is where they can
be implemented.

BPFCONTAIN is a demonstration of how operating sys-
tem extensibility can enable the development of new secu-
rity abstractions that more closely match the problems at
hand. Domain-specific policy language no longer has to be
implemented using existing (general-purpose) security mech-
anisms; instead, we can implement security policies using the
fundamental functional abstractions of the operating system.

8.1 Future Directions

Integration with Existing Container Runtimes. Our fo-
cus with BPFCONTAIN has been on isolation rather than
virtualization. A potential next step would be to integrate
BPFCONTAIN with Docker [11], Kubernetes [20], or Open-
Shift [37]. Given that these container runtimes are largely
Open Container Initiative (OCI) compliant [30], it should be
possible to integrate with them in a portable fashion. Fur-
ther, since eBPF can transparently instrument userspace code,
such integration would in principle be possible without mak-
ing changes to the source code of the underlying container
runtime. Policy generation and enforcement could be tied
directly with container configuration, offering streamlined,
precise, yet simple confinement specifications that fail closed
rather than fail open.

Rootless Containers in eBPF. Another potential path
would be to add virtualization and management capabilities
directly to BPFCONTAIN. The advantage of doing so would
potentially be greatly simplified userspace tools due to en-
hanced kernel-level functionality implemented through new
eBPF helpers. These helpers could, for instance, be used to
transparently move process groups into new namespaces and
cgroups or manage filesystem mounts within a mount names-
pace, transparently to the target application. BPFCONTAIN
could integrate these helpers into its container lifecycle man-
agement probes to enforce namespace, cgroup, and mount
policies as well. Not only would such an extension enable
fully application-transparent namespace and cgroup manage-
ment, but it would also obviate the need for the root privileges

currently required by container management systems.

On the policy language side, the integration of virtualiza-
tion with BPFCONTAIN’s enforcement mechanisms presents
opportunities for streamlining the configuration and policy as-
sociated with BPFCONTAIN containers. For instance, filesys-
tem and mount namespace rules could be combined into one
explicit mount rule. Under a given mount rule, BPFCONTAIN
would mount an overlay filesystem in the container’s mount
namespace and automatically allow access to this mounted
filesystem in its LSM policy. This new integration would
not only significantly streamline container configuration, but
it would also reduce complexity in filesystem and file rules.
For example, one mount rule could replace a series of file
rules specifying access to required shared libraries. Thus,
by further refining the abstractions presented to userspace by
the kernel, we can enable solutions that are simpler, easier to
configure, and potentially much more secure.

Running BPFCONTAIN without the Daemon After the
BPFCONTAIN daemon loads its eBPF programs and maps
into the kernel, its only remaining purposes is to log security
events to userspace. With the ability to pin eBPF objects (thus
maintaining a reference count), it would in principle be possi-
ble to completely remove the need for the daemon altogether.
Naturally, this would significantly reduce BPFCONTAIN’s
attack surface, and this would mark an obvious improvement
over existing container runtimes like Docker and Kubernetes
which rely on privileged daemons in order function correctly.
While, in the current implementation, disabling the BPFCON-
TAIN daemon would disable its audit logging capabilities, it
may be possible to make use of a new eBPF iterator program
type added in recent kernels to implement similar functional-

ity.

8.2 Prototype Limitations

While we believe BPFCONTAIN is a promising approach to
container confinement, in its current form it has some limita-
tions. One is that there are hard limits on policy complexity
due to the current limits of eBPF. eBPF’s maps must be
constrained to some fixed size that is determined at map cre-
ation time. Since BPFCONTAIN uses eBPF maps to store
per-container policy, the maximum map size bounds the num-
ber of possible rules for each policy category. This upper
bound is not strictly an issue since BPFCONTAIN loads pol-
icy when the daemon first starts, and thus map sizes can be
predetermined based on policy files’ contents. However, it
would be desirable to add dynamically loadable policy into
future versions, which would require handling this map size
restriction at runtime. Given eBPF’s strong safety guarantees
are due in part to draconian restrictions on dynamic memory
allocation, removing this limitation is non-trivial. Work on
garbage collected map types, however, may solve this issue
in the near future.

13

9 Conclusion

This paper presented BPFCONTAIN, a novel least-privilege
implementation for container security. BPFCONTAIN ex-
poses a simple YAML-based policy configuration language
to userspace that conforms to existing container management
mechanisms’ semantics while supporting ad-hoc confinement
use cases through high-level policy rules and optional default-
allow enforcement. Because BPFCONTAIN is written in
eBPF, it can be deployed on virtually any system running a
recent Linux kernel with no kernel-level changes and none
of the risks of out-of-tree kernel modules. eBPF also allows
BPFCONTAIN to protect itself against privilege escalation
exploits that could prevent its functioning.

When integrated with OCI-compliant container manage-
ment systems, BPFCONTAIN will provide strong yet flexible
container confinement, enabling more secure multi-tenant
container deployments. It also helps demonstrate the po-
tential of using eBPF to extend the Linux kernel with new
security abstractions.

References

[1] Marcelo Amaral, Jorda Polo, David Carrera, Igbal
Mohomed, Merve Unuvar, and Malgorzata Steinder,
“Performance evaluation of microservices architectures
using containers,” in 2015 IEEE 14th International
Symposium on Network Computing and Applications,
IEEE, 2015, pp. 27-34.

J. P. Anderson, “Computer Security Technology Plan-
ning Study,” Air Force Electronic Systems Division,
Hanscom AFB, Bedford, MA, Tech. Rep. ESD-TR-
73-51, 1972. [Online]. Available: http://seclab.cs.
ucdavis.edu/projects/history/papers/ande72.pdf.

Oren Ben-Kiki, Clark Evans, and Ingy dot Net, YAML
Ain’t Markup Language (YAML™) Version 1.2, YAML
specification. [Online]. Available: https://yaml.org/
spec/1.2/spec.html (visited on 11/29/2020).

Kelly Brady, Seung Moon, Tuan Nguyen, and Joel
Coffman, “Docker container security in cloud comput-
ing,” in 10th Annual Computing and Communication
Workshop and Conference, IEEE, 2020, pp. 975-980.
DOI: 10.1109/CCWC47524.2020.9031195.

Neil Brown, “Control groups, part 1: On the history
of process grouping,” LWN.net, Jul. 2014. [Online].
Available: https://lwn.net/Articles/603762/.

Jiyang Chen, Zhiwei Feng, Jen-Yang Wen, Bo Liu, and
Lui Sha, “A Container-Based DoS Attack-Resilient
Control Framework for Real-Time UAV Systems,” in
Design, Automation & Test in Europe Conference &
Exhibition, 1IEEE, 2019, pp. 1222-1227. poI: 10.
23919/DATE.2019.8714888.

(2]

(3]

[4]

(5]

http://seclab.cs.ucdavis.edu/projects/history/papers/ande72.pdf
http://seclab.cs.ucdavis.edu/projects/history/papers/ande72.pdf
https://yaml.org/spec/1.2/spec.html
https://yaml.org/spec/1.2/spec.html
https://doi.org/10.1109/CCWC47524.2020.9031195
https://lwn.net/Articles/603762/
https://doi.org/10.23919/DATE.2019.8714888
https://doi.org/10.23919/DATE.2019.8714888

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Jonathan Corbet, “A Bid to Resurrect Linux Capabil-
ities,” LWN.net, 2006. [Online]. Available: https:
//lwn.net/Articles/199004/.

Jonathan Corbet, “File-Based Capabilities,” LWN.net,
2006. [Online]. Available: https://lwn.net/Articles/
211883/.

Jonathan Corbet, “KRSI — the other BPF security
module,” LWN.net, Dec. 2019. [Online]. Available:
https://Iwn.net/Articles/808048/.

Crispin Cowan, Steve Beattie, Greg Kroah-Hartman,
Calton Pu, Perry Wagle, and Virgil Gligor, “SubDo-
main: Parsimonious Server Security,” in Proceedings
of the 14st Large Installation Systems Administration
Conference (LISA), New Orleans, LA, United States:
USENIX Association, 2000. [Online]. Awvailable:
https://www.usenix.org/legacy/event/lisa2000/full _
papers/cowan/cowan.pdf.

Docker, Docker Security, 2020. [Online]. Available:
https://docs.docker.com/engine/security / security
(visited on 10/25/2020).

Will Drewry, “Dynamic seccomp policies (using BPF
filters),” LWN.net, 2012. [Online]. Available: https:
/Nwn.net/Articles/475019/.

William Findlay, Anil Somayaji, and David Barrera,
“bptbox: Simple Precise Process Confinement with
eBPF,” in Proceedings of the 2020 ACM SIGSAC
Conference on Cloud Computing Security Workshop,
ser. CCSW’20, Virtual Event, USA: Association for
Computing Machinery, 2020, pp. 91-103. porI: 10.
1145/3411495.3421358.

Flatpak, Sandbox Permissions, 2020. [Online]. Avail-
able: https://docs.flatpak.org/en/latest/sandbox -
permissions.html (visited on 10/25/2020).

FreeBSD, bpf{4), BSD Kernel Interfaces Manual. [On-
line]. Available: https://www.unix.com/man-page/
FreeBSD/4/bpf (visited on 12/13/2020).

Brendan Gregg, BPF Performance Tools. Addison-
Wesley Professional, 2019, 1SBN: 0-13-655482-2.

IOVisor, iovisor/bce, GitHub repository. [Online].
Available: https://github.com/iovisor/bcc (visited
on 12/13/2020).

Michael Kerrisk, “Namespaces in operation, part 1:
Namespaces overview,” LWN.net, Jan. 2013. [Online].
Available: https://lwn.net/Articles/531114/.

P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W.
Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher,
M. Schwarz, and Y. Yarom, “Spectre Attacks: Ex-
ploiting Speculative Execution,” in IEEE Symposium
on Security and Privacy (SP), 2019, pp. 1-19. DoI:
10.1109/SP.2019.00002.

14

(20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

Kubernetes, Kubernetes, 2020. [Online]. Available:
https://kubernetes.io (visited on 11/30/2020).

Soonhong Kwon and Jong-Hyouk Lee, “DIVDS:
docker image vulnerability diagnostic system,” IEEE
Access, vol. 8, pp. 42 666-42 673, 2020. po1: 10.1109/
ACCESS.2020.2976874.

Michael Larabel and Matthew Tippett, Phoronix Test
Suite, 2011. [Online]. Available: http://www.phoronix-
test-suite.com (visited on 12/23/2020).

Lingguang Lei, Jianhua Sun, Kun Sun, Chris Shene-
fiel, Rui Ma, Yuewu Wang, and Qi Li, “SPEAKER:
Split-Phase Execution of Application Containers,” in
Detection of Intrusions and Malware, and Vulnerability
Assessment - 14th International Conference, ser. Lec-
ture Notes in Computer Science, vol. 10327, Springer,
2017, pp. 230-251. pot: 10.1007/978-3-319-60876-
1_11.

libbpf contributors, libbpf, GitHub repository. [Online].
Available: https://github.com/libbpf/libbpf (visited on
12/13/2020).

Xin Lin, Lingguang Lei, Yuewu Wang, Jiwu Jing, Kun
Sun, and Quan Zhou, “A Measurement Study on Linux
Container Security: Attacks and Countermeasures,”
in Proceedings of the 34th Annual Computer Secu-
rity Applications Conference, ser. ACSAC ’18, San
Juan, PR, USA: Association for Computing Machin-
ery, 2018, pp. 418-429, 1ISBN: 9781450365697. DOTI:
10.1145/3274694.3274720.

Linux, bpf(2), Linux Programmer’s Manual. [Online].
Available: https://www.man7.org/linux/man-pages/
man2/bpf.2.html (visited on 12/13/2020).

Linux, capabilities(7), Linux User’s Manual. [Online].
Available: https://linux.die.net/man/7/capabilities.

Linux, kernel_lockdown(7), Linux programmer’s man-
ual. [Online]. Available: https://man7.org/linux/man-
pages/man7/kernel _lockdown. 7. html (visited on
12/13/2020).

Linux, Seccomp BPF (SECure COMPuting with fil-
ters), Linux kernel documentation. [Online]. Avail-
able: https://static.lwn.net/kerneldoc/userspace -
api/seccomp_filter.html (visited on 10/27/2020).

Linux Foundation, Open Container Initiative, 2020.

[Online]. Available: https://opencontainers.org (vis-
ited on 12/20/2020).

LLVM, BPF Directory Reference, Developer docume-
nation. [Online]. Available: https://llvm.org/doxygen/
dir_b9f4b12c13768d2acd91c9fc79be9cbf. html (vis-
ited on 12/13/2020).

https://lwn.net/Articles/199004/
https://lwn.net/Articles/199004/
https://lwn.net/Articles/211883/
https://lwn.net/Articles/211883/
https://lwn.net/Articles/808048/
https://www.usenix.org/legacy/event/lisa2000/full_papers/cowan/cowan.pdf
https://www.usenix.org/legacy/event/lisa2000/full_papers/cowan/cowan.pdf
https://docs.docker.com/engine/security/security
https://lwn.net/Articles/475019/
https://lwn.net/Articles/475019/
https://doi.org/10.1145/3411495.3421358
https://doi.org/10.1145/3411495.3421358
https://docs.flatpak.org/en/latest/sandbox-permissions.html
https://docs.flatpak.org/en/latest/sandbox-permissions.html
https://www.unix.com/man-page/FreeBSD/4/bpf
https://www.unix.com/man-page/FreeBSD/4/bpf
https://github.com/iovisor/bcc
https://lwn.net/Articles/531114/
https://doi.org/10.1109/SP.2019.00002
https://kubernetes.io
https://doi.org/10.1109/ACCESS.2020.2976874
https://doi.org/10.1109/ACCESS.2020.2976874
http://www.phoronix-test-suite.com
http://www.phoronix-test-suite.com
https://doi.org/10.1007/978-3-319-60876-1_11
https://doi.org/10.1007/978-3-319-60876-1_11
https://github.com/libbpf/libbpf
https://doi.org/10.1145/3274694.3274720
https://www.man7.org/linux/man-pages/man2/bpf.2.html
https://www.man7.org/linux/man-pages/man2/bpf.2.html
https://linux.die.net/man/7/capabilities
https://man7.org/linux/man-pages/man7/kernel_lockdown.7.html
https://man7.org/linux/man-pages/man7/kernel_lockdown.7.html
https://static.lwn.net/kerneldoc/userspace-api/seccomp_filter.html
https://static.lwn.net/kerneldoc/userspace-api/seccomp_filter.html
https://opencontainers.org
https://llvm.org/doxygen/dir_b9f4b12c13768d2acd91c9fc79be9cbf.html
https://llvm.org/doxygen/dir_b9f4b12c13768d2acd91c9fc79be9cbf.html

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Fotis Loukidis-Andreou, Ioannis Giannakopoulos, Ka-
terina Doka, and Nectarios Koziris, “Docker-Sec: A
Fully Automated Container Security Enhancement
Mechanism,” in 38th IEEE International Conference
on Distributed Computing Systems, IEEE Computer
Society, 2018, pp. 1561-1564. por: 10.1109/ICDCS.
2018.00169.

Steven McCanne and Van Jacobson, “The BSD Packet
Filter: A New Architecture for User-level Packet Cap-
ture,” USENIX Winter, vol. 93, 1993. [Online]. Avail-
able: https://www.tcpdump.org/papers/bpf-usenix93.
pdf.

Samuel P. Mullinix, Erikton Konomi, Renee Davis
Townsend, and Reza M. Parizi, “On Security Measures
for Containerized Applications Imaged with Docker,”
CoRR, vol. abs/2008.04814, 2020. [Online]. Available:
https://arxiv.org/abs/2008.04814.

Onur Mutlu and Jeremie S Kim, “Rowhammer: A
retrospective,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 39,
no. 8, pp. 1555-1571, 2019.

OpenBSD, bpf(4), Device Drivers Manual. [Online].
Available: https://man.openbsd.org/bpf (visited on
12/13/2020).

Red Hat, OpenShift, 2020. [Online]. Available: https:
/Iwww.openshift.com (visited on 12/20/2020).

RedSift, redsift/redbpf, GitHub repository. [Online].
Available: https://github.com/redsift/redbpf (visited on
12/13/2020).

Mickael Salaun, “Landlock LSM: Toward unprivileged
sandboxing,” Kernel patch RFC, 2017. [Online]. Avail-
able: https://lkml.org/lkml1/2017/8/20/192 (visited on
12/17/2020).

Mickael Salaun, landlock.io, 2020. [Online]. Avail-
able: https://landlock.io (visited on 12/17/2020).

J. H. Saltzer and M. D. Schroeder, “The Protection
of Information in Computer Systems,” Proceedings of
the IEEE, vol. 63, no. 9, pp. 1278-1308, 1975. DoOTI:
10.1109/PROC.1975.9939.

Z. Cliffe Schreuders, Tanya Jane McGill, and Christian
Payne, “Towards Usable Application-Oriented Access
Controls,” in International Journal of Information Se-
curity and Privacy, vol. 6, 2012, pp. 57-76. [Online].
Available: https://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.963.860&rep=rep1&type=pdf.

Rui Shu, Xiaohui Gu, and William Enck, “A Study of
Security Vulnerabilities on Docker Hub,” in Proceed-
ings of the Seventh ACM Conference on Data and Ap-
plication Security and Privacy, ACM, 2017, pp. 269—
280. por: 10.1145/3029806.3029832.

15

[44]

[45]

[46]

[47]

(48]

[49]

[50]

(51]

KP Singh, “MAC and Audit policy using eBPF
(KRSI),” Kernel patch, 2019. [Online]. Available:
https://lwn.net/ml/linux - kernel/20191220154208..
15895- 1-kpsingh @chromium.org/.

Stephen Smalley, Chris Vance, and Wayne Salamon,
“Implementing SELinux as a Linux security module,”
43, vol. 1, 2001, p. 139. [Online]. Available: https:
//www.cs.unibo.it/~sacerdot/doc/so/slm/selinux -
module.pdf.

Snapcraft, Security Policy and Sandboxing, 2020. [On-
line]. Available: https://snapcraft.io/docs/security-
sandboxing (visited on 10/25/2020).

Alexei Starovoitov, Lifetime of bpf objects, Facebook,
2018. [Online]. Available: https://facebookmicrosites.
github.io/bpf/blog/2018/08/31/object-lifetime.html
(visited on 12/22/2020).

Alexei Starovoitov and Daniel Borkmann, “Rework/op-
timize internal BPF interpreter’s instruction set,”
Kernel patch, Mar. 2014. [Online]. Available:
https : / / git . kernel . org / pub / scm / linux /
kernel / git / torvalds / linux . git / commit / ?id =
bd4cfOed331a275e9bf5a49e6d0fdS55dffc551b8.

Sari Sultan, Imtiaz Ahmad, and Tassos Dimitriou,
“Container Security: Issues, Challenges, and the Road
Ahead,” IEEE Access, vol. 7, pp. 52976-52 996, 2019.
DOI: 10.1109/ACCESS.2019.2911732.

Yugiong Sun, David Safford, Mimi Zohar, Dimitrios
Pendarakis, Zhongshu Gu, and Trent Jaeger, “Secu-
rity Namespace: Making Linux Security Frameworks
Available to Containers,” in 27th USENIX Security
Symposium, USENIX Association, 2018, pp. 1423—
1439. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity 1 8/presentation/sun.

Chris Wright, Crispin Cowan, Stephen Smalley, James
Morris, and Greg Kroah-Hartman, “Linux Security
Modules: General Security Support for the Linux Ker-
nel,” in Proceedings of the 11th USENIX Security Sym-
posium, USENIX, 2002, pp. 17-31. [Online]. Avail-
able: http://www.usenix.org/publications/library/
proceedings/sec02/wright.html.

A Appendix A: Benchmarking Results

Table A.1 lists detailed benchmark results comparing BPF-
CONTAIN to AppArmor.

https://doi.org/10.1109/ICDCS.2018.00169
https://doi.org/10.1109/ICDCS.2018.00169
https://www.tcpdump.org/papers/bpf-usenix93.pdf
https://www.tcpdump.org/papers/bpf-usenix93.pdf
https://arxiv.org/abs/2008.04814
https://man.openbsd.org/bpf
https://www.openshift.com
https://www.openshift.com
https://github.com/redsift/redbpf
https://lkml.org/lkml/2017/8/20/192
https://landlock.io
https://doi.org/10.1109/PROC.1975.9939
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.963.860&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.963.860&rep=rep1&type=pdf
https://doi.org/10.1145/3029806.3029832
https://lwn.net/ml/linux-kernel/20191220154208.15895-1-kpsingh@chromium.org/
https://lwn.net/ml/linux-kernel/20191220154208.15895-1-kpsingh@chromium.org/
https://www.cs.unibo.it/~sacerdot/doc/so/slm/selinux-module.pdf
https://www.cs.unibo.it/~sacerdot/doc/so/slm/selinux-module.pdf
https://www.cs.unibo.it/~sacerdot/doc/so/slm/selinux-module.pdf
https://snapcraft.io/docs/security-sandboxing
https://snapcraft.io/docs/security-sandboxing
https://facebookmicrosites.github.io/bpf/blog/2018/08/31/object-lifetime.html
https://facebookmicrosites.github.io/bpf/blog/2018/08/31/object-lifetime.html
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=bd4cf0ed331a275e9bf5a49e6d0fd55dffc551b8
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=bd4cf0ed331a275e9bf5a49e6d0fd55dffc551b8
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=bd4cf0ed331a275e9bf5a49e6d0fd55dffc551b8
https://doi.org/10.1109/ACCESS.2019.2911732
https://www.usenix.org/conference/usenixsecurity18/presentation/sun
https://www.usenix.org/conference/usenixsecurity18/presentation/sun
http://www.usenix.org/publications/library/proceedings/sec02/wright.html
http://www.usenix.org/publications/library/proceedings/sec02/wright.html

Table A.1: Full benchmarking results comparing AppArmor and BPFCONTAIN.

Test System Units Mean Stdev Percent Overhead
Apache Webserver Base req/sec 23258.19 108.03 —
Apache Webserver BPFContain Base reg/sec 20306.59 326.57 12.69%
Apache Webserver BPFContain Allow req/sec 19928.84 203.66 14.31%
Apache Webserver AppArmor Base reg/sec 20134.33 53440 13.43%
Apache Webserver AppArmor Allow req/sec 20020.81 24499 13.92%
Kernel Compilation Base sec 188.88 1.73 —
Kernel Compilation =~ BPFContain Base sec 191.10 148 1.17%
Kernel Compilation =~ BPFContain Allow sec 189.12 2.08 0.13%
Kernel Compilation AppArmor Base sec 191.18 1.59 1.21%
Kernel Compilation ~ AppArmor Allow sec 189.72 1.53 0.44%
Create Files Base usec 19.32 0.14 —
Create Files AppArmor Base usec 19.87 0.18 2.86%
Create Files AppArmor Allow usec 22.74 021 17.69%
Create Files BPFContain Allow usec 22.56 0.15 16.76%
Create Files BPFContain Base usec 20.84 022 7.87%
Create Threads Base usec 21.48 1.74 —
Create Threads AppArmor Base usec 21.22 1.31 -1.21%
Create Threads AppArmor Allow usec 21.33 1.30 -0.68%
Create Threads BPFContain Allow usec 23.39 1.20 891%
Create Threads BPFContain Base usec 21.82 148 1.59%
Launch Programs Base usec 61.35 055 —
Launch Programs AppArmor Base usec 62.92 0.66 2.55%
Launch Programs AppArmor Allow usec 62.71 071 221%
Launch Programs BPFContain Allow usec 65.24 0.58 6.35%
Launch Programs BPFContain Base usec 64.80 047 5.62%
Create Processes Base usec 41.33 228 —
Create Processes AppArmor Base usec 41.49 1.28 0.40%
Create Processes AppArmor Allow usec 41.47 1.89 0.33%
Create Processes BPFContain Allow usec 43.63 1.82 5.57%
Create Processes BPFContain Base usec 42.37 229 252%
Memory Allocations Base nsec 93.80 040 —
Memory Allocations AppArmor Base nsec 93.53 0.39 -0.30%
Memory Allocations AppArmor Allow nsec 91.48 0.28 -2.48%
Memory Allocations BPFContain Allow nsec 93.15 0.62 -0.70%
Memory Allocations BPFContain Base nsec 93.54 029 -0.29%

16

	1 Introduction
	2 Background and Motivation
	2.1 Container Security
	2.2 Classic and Extended BPF
	2.3 Motivation

	3 BPFContain
	3.1 Threat Model
	3.2 Design Goals

	4 BPFContain Policy
	4.1 Filesystem Policy Rules
	4.2 Network Policy
	4.2.1 IPC Policy

	4.3 Capability Policy
	4.4 Implicit Policy

	5 Implementation
	5.1 Userspace Components
	5.2 Kernelspace Components

	6 Evaluation
	6.1 Security
	6.2 Performance

	7 Related Work
	8 Discussion
	8.1 Future Directions
	8.2 Prototype Limitations

	9 Conclusion
	A Appendix A: Benchmarking Results

