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Abstract

Self-checking software tamper resistance mecha-
nisms employing checksums, including advanced sys-
tems as recently proposed by Chang and Atallah (2002)
and Horne et al. (2002), have been promoted as an alter-
native to other software integrity verification techniques.
Appealing aspects include the promise of being able to
verify the integrity of software independent of the exter-
nal support environment, as well as the ability to auto-
matically integrate checksumming code during program
compilation or linking. In this paper, we show that the
rich functionality of many modern processors, including
UltraSparc and x86-compatible processors, facilitates
automated attacks which defeat such checksumming by
self-checking programs.

1. Introduction and Overview

Application developers have historically found it nec-
essary to protect their code from unauthorized modifi-
cation on untrusted hardware and software. Copy pro-
tection has long been required to prevent illicit duplica-
tion of proprietary applications and content. The need
to protect code from unauthorized modification has also
gained increased awareness due to recent interest in digi-
tal rights management e.g. related to distribution of con-
tent such as music and video over the Internet. In-
creasingly, though, similar types of protection are also
needed by applications, utilities, and operating systems.
Users must now contend with increasingly sophisticated
and ubiquitous malicious software. Such malware fre-
quently changes system state, and sometimes even mod-
ifies program binaries and libraries. Given that the un-
derlying operating system frequently cannot provide any
integrity guarantees, “program-level intrusion detection
systems” based on tamper-resistance mechanisms may

eventually help prevent security compromises.

The efficiency and ease of use of recently proposed
methods for protecting code integrity through run-time
checksums [4, 12] (see also [7]) have suggested the
potential feasibility of program-level defence systems.
When combined with appropriate code obfuscation tech-
niques, these mechanisms can potentially require an at-
tacker to reverse-engineer significant portions of a pro-
gram’s protection mechanisms in order to change even a
small part of the targeted program’s code. What appears
to be particularly appealing about these methods is that
they do not require any hardware support; instead, an
application developer simply has to pass code through
an appropriate transformation engine.

Unfortunately, the use of checksumming as a self-
checking tamper resistance mechanism rests on the as-
sumption that a given virtual address range will trans-
late to the same set of bytes whether accessed as code
or data. While this assumption might seem reasonable,
as we illustrate in this paper, in hostile environments the
design of many modern microprocessors renders it fun-
damentally flawed. In particular, we show that address
translation mechanisms that distinguish between code
and data make it possible for code that is checksummed
to have no relation to the code that is actually executed
by the processor. More specifically, on vulnerable pro-
cessors it is possible for an attacker with administra-
tive privileges (i.e. in control of the operating system) to
successfully modify a code checksumming application
without reverse-engineering the application’s protection
mechanisms: when running, the processor would exe-
cute the attacker’s modified instructions; when check-
summing, the application would read a copy of its un-
modified code. The attacker need not reverse engineer
protection mechanisms; instead, much simpler, on-line
“black box” strategies may be used to achieve desired
functionality. Because such an attack is implemented
with the assistance of the processor, the compromised



application runs at full speed (as opposed to attacks in-
volving emulation), which is typically what the attacker
desires.

In this paper we present two variations of an attack
which defeats self-integrity checksumming used by ap-
plications for software tamper resistance. These varia-
tions are specifically discussed relative to the UltraSparc
and x86 architectures. In essence, the separation of code
and data accesses allows the attack, in one case (the Ul-
traSparc) through a special translation look-aside buffer
(TLB) load mechanism, and in the other (the x86) by
manipulation of processor-level segments.

Editorial note. Since original submission of this pa-
per, we have found other attacks which use techniques
similar to those discussed herein, but are possible on a
wider range of modern processors; see [35].

The remainder of this paper is organized as follows.
Section 2 briefly reviews tamper resistance and check-
summing. Section 3 gives some background on proces-
sor support for paging virtual memory. Section 4 ex-
plores the facilities in a memory management unit which
allow for an attack, and details our implementation and
results for the UltraSparc, x86, and other processors.
Section 5 discusses noteworthy features and implica-
tions of our attack. Section 6 briefly discusses related
work. Finally, Section 7 documents our conclusions.

2. Review: Tamper Resistance Techniques
and Checksumming

Software tamper resistance is the art of crafting a pro-
gram such that it cannot be modified by a potentially ma-
licious attacker without the attack being detected [2]. In
some respects, it is similar to fault-tolerant computing,
in that potentially dangerous changes in program state
are detected at runtime. For tamper resistance, however,
it is assumed that intelligent, malicious attackers (rather
than hardware flaws or software errors) may be respon-
sible for such changes.

There are many methods for software protection
against tampering (e.g. see [7, 33]). While self-checking
tamper resistance is the focus of our discussion, other
approaches exist which are not susceptible to processor
design choices (see Section 6). The common trend with
these other approaches, however, is that they rely on ei-
ther additional hardware or external trusted third parties.
Self-checking tamper resistance is distinguished in its
ability to run on current unmodified commodity hard-
ware without requiring third parties. While there are
other techniques for self-checking software tamper re-
sistance (e.g. program or result checking and generating

the executable on the fly – see [2, 7]), we focus on check-
summing.

The standard threat model for software tamper resis-
tance is the hostile host model [25]. The challenge is
to protect an application running on a system controlled
by a malicious, intelligent user. Because such a user can
in theory change any code on the computer, other soft-
ware on such a system, including the operating system,
is untrusted; in the case of particularly determined ad-
versaries, even the hardware is untrusted. This situation
is in contrast with the hostile client problem in which
we assume a trusted host and untrusted application. The
hostile client problem appears to be an easier problem
to solve; numerous solutions have been developed, e.g.
sandboxing (see [25] for further discussion).

Since a single checksum is relatively easy for an at-
tacker to disable, stronger proposals rely on a network
of inter-connected checksums, all of which must be dis-
abled to defeat tamper resistance. For example, Horne
et al. [12] use testers which compute a checksum of a
specific section of the code (see also [4, 14]). A tester
reads the area of memory occupied by code and read-
only data, building up a checksum result based on the
data read. A subsequent section of the code may oper-
ate on the checksum result, affecting program stability
or correctness in a negative way if a checksum result is
not the same as a known good value pre-computed at
compile time. The sections of code which perform the
checksumming operations may be further hidden using
code obfuscation techniques to prevent static analysis.
Ideally the effects of a bad checksum result in the pro-
gram are subtle (e.g. causing mysterious failures much
later in execution) thus making it much more difficult
for an attacker to locate the checksum code.
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Figure 1. Distribution of checksum blocks
within a code segment [12]



Figure 1 gives a simplified view of a typical distribu-
tion of checksum code within an application. In prac-
tise, there may be hundreds of checksum blocks hidden
within the main application code. Each allows verifi-
cation of the integrity of a predetermined section of the
code segment. The read-only data segment may also be
similarly checked. The checksumming code is inserted
at compile time and integrated with regular execution
code. The application also requires a correct checksum
result for each block in order to work properly.

There are several aspects of such checksumming
which a potential attacker must keep in mind:

1. Because of the overlapping network of testers, al-
most every checksumming block must be disabled
at the same time in order for a tampering attack to
be successful.

2. The resulting value from a checksum block must
remain the same as the original value determined
during compilation (or all uses of the checksum
value must be determined and adjusted accord-
ingly), if the results of a checksum are used during
standard program execution as in [12].

3. The checksum values are only computed for static
(i.e. runtime invariant) sections of the program.

Note that a critical (implicit) assumption of check-
summing algorithms is that D(x) = I(x), where D(x)
is the bit-string result of a “data read” from memory
address x, and I(x) is the bit-string result of an “in-
struction fetch” of corresponding length from x. If I(x)
were different from D(x), then the checksumming code
would always check using D(x) while the processor
would always execute I(x). Checksumming aims to ver-
ify that the code the processor executes is the original
code, and thus assumes that the code it reads is the code
the processor executes. While current checksumming
proposals (including e.g. [4, 12] also [14]) critically rely
on this assumption, in what follows we show that it may
be violated on several modern processors, thus allowing
our attack.

3. CPU Support for Virtual Memory

This section provides background information for
those less familiar with the virtual memory subsystems
of modern processors, including translation look-aside
buffers (TLBs). Readers familiar with processor archi-
tecture are encouraged to jump directly to Section 4.

Modern processors do much more than execute a se-
quence of instructions. Advances in processor speed and

flexibility have resulted in a very complex architecture.
A significant part of this complexity comes from mech-
anisms designed to efficiently support virtual memory.
Virtual memory, first introduced in the late 1950’s, in-
volves splitting main memory into an array of frames
(pages) which can be subsequently manipulated. Virtual
addresses used by an application program are mapped
into physical addresses by the virtual memory system
(see Figure 2).

Virtual Address Page Data Page Offset

Page Table
Translation Algorithm

Physical Address Frame Number Frame Offset

Figure 2. Translation of a Virtual Address
into a Physical Address

Even though the page table translation algorithm may
vary slightly between processors and may sometimes
be implemented in software, modern processors all use
roughly the same method for translating a virtual page
number to a physical frame number. Specifically, this
translation is performed through the use of page tables,
which are arrays that associate a selected number of vir-
tual page numbers with physical frame numbers. Be-
cause the virtual address spaces of most processes are
both large and sparse, page table entries are only allo-
cated for the portions of the address space that are ac-
tually used. To determine the physical address corre-
sponding to a given virtual address, the appropriate page
table, and the correct entry within that page table must
be located.

For systems that uses 3-level page tables, a virtual
address is divided into four fields, x1 through x4. The
x1 bits (the directory offset) specify an entry in a per-
process page directory. The entry contains the address
of a page map table. The x2 bits (the map offset) are
used as an offset within the specified page map table,
giving the address of a page table. The x3 bits (the table
offset) index into the chosen page table, returning the
number of a physical page frame. x4, then, specifies the
offset within a physical frame that contains the data re-
ferred to by the original virtual address. This resolution
process is illustrated in Figure 3. Note that if memory
segments are used, segment translation typically occurs
before operations involving the page table.

TLBs. Because multiple memory locations must be
accessed to resolve each virtual memory address, vir-
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Figure 3. Translation of a Virtual to Physi-
cal Address through Page Tables

tual address translation using page tables is a relatively
expensive operation. To speed up these mappings, a
specialized high-speed associative memory store called
a translation look-aside buffer (TLB) is used. A TLB
caches recently used mappings of virtual page numbers
to physical page frames. On every virtual memory ac-
cess, all entries in a TLB are checked to see whether any
of them contain the correct virtual page number. If an
entry is found for the virtual page number, a TLB hit has
occurred, and the corresponding physical page frame is
immediately accessed. Otherwise, we have a TLB miss,
and the appropriate page tables are consulted in the fash-
ion discussed previously. The mapping so determined is
then added to the TLB by replacing the mapping that
was least recently used. Figure 4 illustrates what hap-
pens on a TLB hit.

Directory Offset Map Offset Table Offset Page Offset

Page OffsetPhysical Frame

Virtual Address

Physical Address

TLB Translation Mechanism

Figure 4. Address Translation using a TLB

Because of the principal of locality, TLB translation
works very well in practise. System designers have no-
ticed, however, that code and data exhibit different pat-
terns of locality. To prevent interference between these
patterns, caches of code and data are often separated; for
similar reasons, most modern CPUs have separate code
and data TLBs. CPU caches mark referenced memory
as code or data depending upon whether it is sent to an
instruction decoder. Whenever an instruction is fetched
from memory, the instruction pointer is translated via the
instruction TLB into a physical address. When data is
fetched or stored, the processor uses a separate data TLB
for the translation. Using different TLB units for code
and data allows the processor to maintain a more accu-
rate representation of recently used memory. Separate
TLB’s also protect against frequent random accesses of
code (data) overwhelming both TLB’s. Because most
code and data references exhibit high degrees of locality,
a combination of small amounts of fast storage (e.g. on-
chip memory caches) and more plentiful slower storage
(DRAM memory) can together approximate the perfor-
mance of a larger amount of fast storage.

Page Swapping. Because the memory management
unit presents a virtual address space to the application
running, the application need not be aware of the phys-
ical sections of memory which it actively uses. Thus
even though the virtual address space of a program is
contiguous, the physical regions of memory it uses may
not be. This presents a great opportunity for the operat-
ing system. Not only does it allow multiple applications
to be run on the system (each with its own unique virtual
address space, mapping to different physical pages), but
it allows the operating system to only keep in physical
memory those parts of each application required at the
current time. Since not all pages of virtual memory may
map to a physical page, there must be some way for the
processor to inform the OS when a virtual address does
not have a physical mapping. The processor does this
through the use of a page fault interrupt. The proces-
sor will store the virtual address which caused the page
fault in a register, and then signal the operating system
through an interrupt handler. The operating system up-
dates the mapping of virtual to physical addresses, so
that the requested virtual address can be mapped to a
physical address. This may mean bringing the section
of the program into physical memory from disk or some
other external storage. The OS then signals the proces-
sor to retry the instruction by returning from the inter-
rupt. The OS also has the choice of aborting execution
of the application if it determines that the virtual address
is invalid, e.g. if the virtual address refers to memory



that has not been allocated.
Access Controls on Memory. Along with the trans-

lation of a virtual to physical address, the processor may
implement access protection on memory regions. Since
the virtual memory subsystem already splits physical
memory into small areas (frames), it makes sense that
the same memory management unit would also imple-
ment access control on a per-frame basis. The most im-
portant protection is that only pages that an application
is allowed to access are mapped into its page table. To
prevent an application from manually mapping a page
into its address space, the page directory base pointer is
stored in a read-only register, and the frames containing
a process’s page table are themselves not accessible by
the process.

In addition, there are protection mechanisms for
pages which are in a process’s address space. Each
mapped page is restricted in the types of operations that
may be performed on its contents: read, write, and in-
struction fetch (also called execute). Permitted oper-
ations are specified using control bits associated with
each page table entry. Read and write are common oper-
ations on data pages, while executing code is commonly
associated with a page containing executable code.

Modern operating systems take advantage of the pro-
tection mechanisms implemented by the processor to
distinguish various types of memory usage. As men-
tioned in Section 4, the ability to set no-execute permis-
sion on a per-page basis produces the restriction that
many programs are confined to executing code from
their code segment, unless they take specific action to
make their data executable. Although such changes
can interfere with systems that generate machine code
at runtime (e.g. modern Java Virtual Machines), many
types of code injection attacks can be defeated by non-
executable data pages. While not currently supported on
all processors, we expect this technology to appear in an
increasing number of new processors.

Table 1. Separation of access control priv-
ileges for different page types

Segment Permissions
Read Write Execute

Code � X �
Data � � X

Executable Data � � �
Stack � � X

Table 1 shows the ideal separation of privileges for
different sections of an application. This separation of

privileges is currently assumed in executable file for-
mats. All processors implementing page level access
controls must check for disallowed operations and signal
the operating system appropriately. Most often, the op-
erating system is signalled through the page fault inter-
rupt, which indicates the memory reference that caused
the invalid operation.

4. Hardware-assisted Circumvention of In-
tegrity Self-Checking

Although the code and data separation performed by
modern processors yields many positive results, it turns
out that these same mechanisms can sometimes be used
to circumvent checksumming-based self-checking tam-
per resistance mechanisms. In the subsections below,
we report our findings for the UltraSparc, Alpha, x86,
PowerPC, AMD64, and ARM processor architectures.

We consider an attack involving the following steps.

1. The attacker makes a copy of the original program
code (e.g. cp program).

2. The attacker modifies the original program code as
desired.

3. The attacker modifies the kernel on the machine,
installing a kernel module or patch designed to im-
plement our attack.1

4. The attacker runs the modified code under the mod-
ified kernel. During the attack, the attack code in
the kernel will redirect data reads (including those
by the checksumming code) to the corresponding
information in the un-modified application.

Operating systems are capable of detecting the dif-
ference between a data and instruction read because of
the processor functionality exposed. If enough control
is presented to the operating system (as demonstrated in
Section 4.1 and 4.2), the attack is possible. How the
attack code in the kernel is informed about the desired
redirections in the program under attack can vary. For
our proof of concept implementation, a wrapper pro-
gram (as explained in Section 4.1) was used to notify
the kernel.

1This of course assumes an attacker has, or has gained, very sig-
nificant privileges on the host machine. However, this is precisely the
standard threat model for software tamper resistance (see Section 2).



4.1. Defeating Self-Checking on the UltraSparc

In this section we focus on the UltraSparc and briefly
discuss the Alpha processor.

The UltraSparc processor implements a software load
TLB mechanism (see Section 3). When the running ap-
plication requires a translation from a virtual page to a
physical page that cannot be done with the current TLB
state, the processor signals the OS to perform a TLB up-
date, which installs the virtual to physical mapping for
the translation. The processor notifies the kernel through
two exceptions, fast instruction access MMU miss or
fast data access MMU miss [30]. Knowing this, we
crafted a tamper resistance attack to take advantage of
the information given by the processor to the operating
system on a TLB miss. Depending on whether a data or
instruction fetch (i.e. D(x) or I(x)) caused the fault, our
modified kernel updates the corresponding TLB differ-
ently. At a high level, the attack results in the separation
of the physical page containing an instruction for ad-
dress x from the physical page containing readable data
for x. Instruction fetches were automatically directed by
the modified TLB to page p while reads by the program
code into the code section were directed to the physical
page p + 1 (see Figure 5). For an actual attack, the at-
tacker arranges that page p + 1 contains an unmodified
copy of the original code, and that the modified code is
on page p. A read from the virtual address in question
results in the expected value of the unmodified (original)
program code on physical page p + 1, even though the
actual instruction which is executed from that same vir-
tual address is a different instruction on physical page
p. In this discussion and for our proof of concept im-
plementation, an offset of 1 physical page was chosen
for simplicity; other page offsets are equally possible.
This mechanism thus defeats the protection provided by
self-integrity checksumming mechanisms (e.g. includ-
ing [4, 12], also [14]), on the UltraSparc processor.

Our implementation was done using version 2.6.8.1
of the Linux kernel [19]. A separate wrapper program
was also developed to set up the kernel level structures
and then run the target program. The wrapper program
notifies the kernel of the associated data pages for spe-
cific virtual addresses which are to have split processing
of data and instruction reads. The wrapper program re-
places itself (using execve) with the application binary
when it has finished initialization.

Like many other processors, the UltraSparc proces-
sor’s page table entries do not use all the available bits.
Those bits which are unused by the processor are avail-
able for use by the operating system. We used one of

Virtual Address

Instruction Fetch

Data Fetch

Physical Memory

Instruction TLB

Data TLB
Original Program Code

Modified Program Code

Figure 5. Separation of virtual addresses
for instruction and data fetch

these bits while modifying the kernel to implement our
attack. This bit (which we refer to as isSplit) was used to
identify which pages had split instruction and data phys-
ical pages. When a fast data access MMU miss excep-
tion was triggered by the processor, the proof of con-
cept exception handler checks the bit and increments the
physical page number for the corresponding page table
entry before loading it into the data TLB. This extra pro-
cessing required only 6 additional assembly instructions.

The kernel side of our proof-of-concept attack code
implemented the split instruction and data pages. As
mentioned earlier, two adjacent pages in physical mem-
ory were allocated, with page p holding the modified
(attacked) and p + 1 holding the un-modified applica-
tion code. The page table entry for each page that im-
plemented the split had the isSplit bit set. The value of
the isSplit bit is determined by examining information
provided by the wrapper program. For pages contain-
ing application code which has been tampered with, the
wrapper program will provide the original unmodified
code page to the modified kernel. When the application
which is to be attacked is subsequently loaded, the page
table map is initialized by the modified kernel and the
isSplit bit is set for those pages specified by the wrap-
per. Page swapping was not considered in the proof of
concept implementation (but we would not expect this
to introduce any complication).

The end result of our proof of concept is that the
data TLB was always loaded with address mappings
that mapped a virtual address onto the physical address
containing the un-modified application code for the ap-
plication being attacked. The instruction TLB was al-
ways loaded with translations which mapped to physi-
cal pages containing the modified application code. Our
proof of concept implementation was tested with a pro-
gram employing checksumming of the code section. We
were able to easily change program flow of the origi-



nal program without being detected by a representative
checksumming tamper resistance algorithm.

Alpha Processor. The Alpha processor has the abil-
ity to execute PALcode (Privileged Architecture Li-
brary) [8]. PALcode is similar to microcode except that
it is stored in main memory and modifiable by the oper-
ating system. By modifying the PALcode which is run
by the processor on a TLB miss, one can directly influ-
ence the state of both the data and instruction TLB. The
operating system has the ability to modify the PALcode,
or replace it with a version specific to the operating sys-
tem should it wish. By replacing the PALcode for the
TLB miss scenario, we expect that an attack similar to
that above can be implemented on the Alpha processor.

4.2. Defeating Self-Checking on the x86

The attack can be mounted on the popular x86 ar-
chitecture [13] by manipulating two different aspects of
memory management as described below.2 Although
separate code and data TLBs exist on the x86, their load-
ing process is not software modifiable and thus the spe-
cific implementation of the attack in Section 4.1 can not
be used. Instead, here we exploit the processor segmen-
tation features of the x86.

In addition to supporting memory pages, the x86 can
also manage memory in variable sized chunks known as
segments. Associated with each segment is a base ad-
dress, size, permissions, and other meta-data. Together
this information forms a segment descriptor. To use a
given segment descriptor, its value is loaded into one
of the segment registers. Other than segment descriptor
numbers, the contents of these registers are inaccessible
to all software. In order to update a segment register,
the corresponding segment descriptor must be modified
in kernel memory and then reloaded into the segment
register.

A logical address consists of a segment register spec-
ifier and offset. To derive a linear address, a segment
register’s segment base (named by the segment speci-
fier) is added to the segment offset. An illustration of the
complete translation mechanism for the x86 architecture
is shown in Figure 6. Code reads are always relative to
the code segment (CS) register, while normally, if no
segment register is specified data reads use the data seg-
ment (DS) register. Through segment overrides a data
read can use any segment register including CS. After
obtaining a linear address, normal page table translation
is done as shown in Figure 6 and Figure 8.

2As noted in Section 1, very recently we discovered a cleaner and
more generic attack which also applies to the x86; see [35].
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Figure 6. Translation from virtual to physi-
cal addresses on the x86
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Figure 7. Splitting the flat memory model
to allow a tamper resistance attack

Unlike pages on the x86, segments can be set to only
allow instruction reads (execute-only). Data reads and
writes to an execute-only segment will generate an ex-
ception. This execute-only permission can be used to
detect when an application attempts to read memory rel-
ative to CS. As soon as the exception is delivered to an
OS modified for our attack, the OS can automatically
modify the memory map (similar to as in Section 4.1
but see Figure 7) to make it appear as if the unmodified
data was present at that memory page.

Most operating systems for x86, however, now im-
plement a flat memory model. This means that the base
value for the CS and DS registers are equal; an appli-
cation need not use the CS register to read its code. A
flat memory model will ensure that both linear addresses
are the same, resulting in the same physical address (as
denoted by the dash-dot-dot line in Figure 8).

On the surface, it appears that our attack, based on
this first aspect – the execute-only feature – would be
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Figure 8. Translation of a get using segment overrides

thwarted by the flat memory model. However, although
modern operating systems present a flat memory model
to the application, an OS modified to contain attack code
need not obey the flat memory model. It may “appear” to
present a flat memory model, even though segmentation
is being used (see Figure 7).

To implement the attack, store two copies of the pro-
gram in the logical address space. Let Code contain the
original unmodified program code while Code′ contains
the modified program code. Then set the CS segment
to point to the start of Code′ and set all other segment
descriptors, including the DS, to point to the beginning
of Code (see Figure 7). Also, set the CS segment to
execute-only. If the application attempts to perform an
ordinary data read of its code, it will access the unmodi-
fied version at Code. If the application instead uses a CS
override to access data relative to CS, it will cause an ex-
ception because CS is execute only. The modified kernel
can then take steps (e.g. temporarily replacing the page
table entry for Code′ with that for Code3) to ensure that
the read is directed to Code. Code′ is thus not accessible
via data reads by the application.

While it may appear as if the entire usable linear ad-
dress space is halved by the requirement to store code,
data, and stack, only a second copy of the code must
be mapped into the targeted application’s address space.
All that is required, then, is sufficient consecutive linear
memory to address the second copy of the code. In sum-

3Our test implementation’s modified kernel replaced the page table
entry for Code′ with that for Code. It then used the single step interrupt
and restored the page table entry after the instruction had executed.

mary, our attack succeeds at defeating currently known
self-integrity checksumming mechanisms on x86 pro-
cessors as well.

4.3. Examining the PowerPC, AMD64 and ARM

We first note that for all three processor architectures
discussed here (PowerPC, AMD64 and ARM), the at-
tack of Section 4.1 does not apply directly because the
TLB is not directly modifiable. Similarly, the attack of
Section 4.2 does not apply because the processors lack
the segment functionality present on the x86.

PowerPC. On initial inspection, it may appear that
processors such as the PowerPC [21] which implement
a no-execute permission feature (as briefly discussed in
Section 3) may provide similar mechanisms to assist an
attacker as described above. No-execute works on the
concept that it is possible for the processor to deliver a
trap whenever I(x) occurs for an address x not in the
code region of a program. No-execute permission, how-
ever, poses only approximately the same level of threat
to checksumming as emulators. The reason for this is
that our attack against tamper resistance relies on being
able to trap data reads, while instruction reads are pro-
cessed at full speed. No-execute access control works on
the reverse principle, processing data reads at full speed
while trapping instruction reads. In a tamper resistance
attack, each instruction read would need to be trapped,
and an alternate instruction would have to be loaded and
executed by the operating system. This trap on every in-
struction access is equivalent to an emulator having to



process each instruction in software. The attack would
result in considerable slowdown to the application, and
thus we do not consider the attacks of Section 4 to be
generally feasible on the PowerPC processor.

AMD64. Starting with the 64-bit forms of the x86
line from AMD (referred to as AMD64 processors), seg-
mentation has been mostly eliminated when operating in
64-bit mode [1]. This means that there is no longer a
method for generating exceptions for data reads using a
code segment override. Furthermore, the possibility of
offsetting the data and code segments is removed. With
these changes, 64-bit mode on an AMD has the same
strengths and weaknesses against checksumming as the
PowerPC. Thus as for the PowerPC processor above, for
the AMD64 we do not believe that our present attack, as
described above, is generally feasible in practise.

ARM. The ARM processor line varies between dif-
ferent instances, but most commonly, the MMU operates
much the same as on the PowerPC line. Thus again, for
the ARM we do not believe that our present attack, as
described above, is generally feasible in practise.

Editorial note. One of the newly discovered attacks
mentioned in Section 1 is capable of working on the
PowerPC, AMD64, and ARM processors; see [35].

5. Further Discussion

We now make some further observations regarding
the attack and its implications.

5.1. Noteworthy Features of the Attack

We first discuss several features which make the at-
tack of Section 4 particularly noteworthy.

Difficulty of Detecting the Attack Code. The at-
tack implemented operates at a different privilege level
than the application being attacked. This separation of
privilege levels results in the application program being
unable to access the memory or processor functionality
being used in the attack. The page tables of a running
process are not available to the process, and hence the
process has no obvious indication that tamper resistance
is being attacked. Furthermore, the kernel code is also
not available to the process.

While a specific implementation of the attack may be
detectable by the application because of subtle changes
in kernel behaviour, attempting to detect every form of
implementation leads to a classical arms race of detec-
tion and anti-detection techniques. Because attackers
can modify their attacks much faster than a software

vendor can update deployed software defences, such an
arms race will typically favour the attacker.

Feasibility where Emulator-based Attacks Fail.
While the use of an emulator by an attacker can typ-
ically defeat those forms of self-checking tamper re-
sistance which rely on checksumming (since emulators
can easily distinguish between an instruction and data
read), emulators are much slower than native processors.
Chang et al. [4] document the performance impacts of
tamper-proofing and come to the conclusion that their
protection methods only result in a “slight increase” in
execution time. Their self-integrity checksumming tam-
per resistance methods, therefore, are appropriate even
for speed-sensitive applications (see [11]) for which em-
ulation attacks are not feasible. In contrast, our attack
imposes only negligible performance overhead, and is
therefore also possible even on speed-sensitive applica-
tions. With the UltraSparc attack implementation, the
only increased delay is when the TLB must be updated
in response to a data access to a code page. (In our test
implementation, this operation required 6 additional as-
sembly instructions.) Subsequent data reads to the same
code page are translated by the TLB, and thus occur at
full speed.

Generic Attack Code. The attack code, as imple-
mented for our proof of concept in Section 4.1, is not
program dependant. The same is true for the attack of
Section 4.2. The same kernel level routines can be used
to attack all programs implementing checksumming as
the form of tamper resistance, i.e. the attack code need
only be written once for an entire class of checksum-
ming defences. Even the extraction of the original code
before modification (see Section 4) can be automated,
being a simple matter of making a copy of the applica-
tion executable before modifying it.

5.2. Attack Implications

The attack strategy outlined is devastating to the gen-
eral approach of self-integrity protection by checksum-
ming, including even the advanced and cleverly engi-
neered tamper-resistance methods recently proposed by
Chang et al. [4] and Horne et al. [12]. Indeed, on the
CPU architecture used by most workstations, desktop,
and laptop computers, one operating-system specific at-
tack tool can be used to defeat any implementation of
these defence mechanisms. We now discuss whether
these methods can be modified so as to make them resis-
tant to the attack, and whether there are other integrity-
based tamper resistance mechanisms that can be easily
added to existing applications, have minimal runtime
performance overhead, and are secure.



It is not sufficient to simply intermingle instructions
and runtime data (as proposed by [4]), because such
changes do not prevent the processor from determining
when a given virtual address is being used as code or as
data. For a self-checking tamper resistance mechanism
to be resistant to our attack strategy, it must either not
rely on treating code as data, whether for checksumming
or other purposes, or it must make the task of corre-
lating code and data references prohibitively expensive.
Thus, integrity checks that examine intermediate com-
putation results appear to be immune to our attack strat-
egy (e.g. [5]); further, systems that dynamically change
the relative locations of code and data (while encrypting,
decrypting, and obfuscating) are resistant to our attack.
Unfortunately, these alternatives are typically difficult to
add to existing applications or impose significant run-
time performance overhead, making them unsuitable for
many situations where checksumming-based integrity
checks are feasible.

Aucsmith [2] proposed a method of self-checking
tamper resistance through run-time decryption and re-
encryption of program code within an integrity verifi-
cation kernel (IVK). The IVK is embedded as a core
part of an application (it does not reside in the operat-
ing system). Aucsmith proposes that his IVK can be
used to generate digital signatures of the rest of the pro-
gram within which the IVK is embedded. The attack
discussed in this paper has the ability to affect the re-
liability of the IVK digital signature computation and
thus decouple the integrity of the IVK from that of the
surrounding program. Therefore, an IVK-protected ap-
plication is vulnerable to our attack.

There are many other alternatives if one is willing
to change our requirements and have applications de-
pend on some type of trusted third party. For example,
an application could rely on a custom operating system
extension (e.g. a kernel module) to verify the integrity
of its code. However implementation complexity, lack
of portability, stability, and security concerns that arise
when changing the underlying operating system make
such an approach unappealing.

Another alternative is to assume that an application
has access to some type of trusted platform, whether
in the form of an external hardware “dongle” [9], a
trusted remote server [15], or a trusted operating sys-
tem [20, 23]. Whatever the method used, though, to pre-
vent a processor-based attack such as ours the developer
must be able to guarantee that the code that is executed
is identical to the code that is checked.

To summarize, we do not know of any alternatives
to checksumming in the self-checking tamper resistance

space that combine the ease of implementation, platform
independence, and runtime efficiency of checksumming
that are also invulnerable to a processor-based instruc-
tion/data separation attack. Nonetheless, advances in
static and run-time analysis might possibly enable the
development of alternative systems that verify the state
of a program binary by intermingling and checking run-
time intermediate values, that can be applied to existing
programs, and that impose little run-time overhead; our
work provides significant motivation for the pursuit of
such methods.

6. Related Work

Various alternate tamper resistance proposals attempt
to address the malicious host problem by the introduc-
tion of secure hardware [29, 28, 32]. Storing programs
in memory which is execute-only4 [18] has also been
proposed, preventing the application from being visible
in its binary form to an attacker. Secure hardware, how-
ever, is not widely deployed and therefore not widely
viewed as a suitable mass-market solution. Other re-
search has involved the use of external trusted third par-
ties [5, 6, 11]. However, not all computers are contin-
uously connected to the network, which among other
drawbacks, makes this solution unappealing in general.
Research is ongoing into techniques for remote authen-
tication (e.g. see [15, 27, 16], also [3]). SWATT [26]
has been proposed as a method for external software to
verify the integrity of software on an embedded device.
Other recent research [24] proposes a method, built us-
ing a trusted platform module [31], to verify client in-
tegrity properties in order to support client policy en-
forcement before allowing clients (remote) access to en-
terprise services.

Software tamper resistance often employs software
obfuscation in an attempt to make intelligent software
tampering impossible (see [10, 34] and recent surveys
[7, 33]). We view obfuscation and tamper resistance as
distinct approaches with different end goals. Obfusca-
tion, which is typically most effective against static anal-
ysis, primarily attempts to thwart reverse engineering
and extraction of intelligence regarding program design
details; as a secondary effect, often this thwarts intelli-
gent software modification. Tamper resistance attempts
to make the program unmodifiable. In an obfuscated
program, code modifications are generally not directly
detected.

4Such execute-only memory differs from execute-only segments as
discussed in Section 4.2.



Among other proposed methods of integrity verifica-
tion which differ from self-checksumming tamper resis-
tance are programs like Tripwire [17], which attempt to
protect the integrity of a file system against malicious
intruders. Integrity verification at the level of Tripwire
assumes that the operator is trusted to read and act on
the verification results appropriately. Other recent pro-
posals include a co-processor based kernel runtime in-
tegrity monitor [22], but these do not protect against the
hostile host problem in the case of a hostile end user.

Other related work is discussed in Section 5.2.

7. Concluding Remarks

We have shown that the use of self-checksumming
for tamper resistance is less secure than previously be-
lieved on several of today’s prominent computer pro-
cessors, as demonstrated herein on the UltraSparc and
x86. Our attack should therefore be carefully consid-
ered before choosing to use checksumming for tamper
resistance. As noted earlier, other forms of tamper re-
sistance exist which are not susceptible to our attack,
but these typically have their own disadvantages (see
Section 5.2). We encourage further research into other
forms of self-checking tamper resistance, such as new
security paradigms possible through execute-only page
table entries [18].

Memory management functionality within a proces-
sor plays an important role in determining how vulnera-
ble current implementations are to our attack. If a pro-
cessor does not distinguish between code and data reads,
then our attack fails. Modern processors, however, are
increasingly providing functionality that allows such a
distinction to be made, due to the performance and gen-
eral security benefits of code/data separation at a proces-
sor level. On such processors, self-integrity checksum-
ming tamper resistance is not secure against attack, and
tamper resistance mechanisms which are not compro-
mised by such distinctions should instead be pursued.
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