
A Methodology for Designing Accurate Anomaly Detection
Systems

Kenneth L. Ingham
University of New Mexico

Department of Computer Science
Albuquerque, NM, USA 87131

ingham@i-pi.com

Anil Somayaji
Carleton University

School of Computer Science
Ottawa, ON, Canada K1S 5B6
soma@scs.carleton.ca

ABSTRACT
Anomaly detection systems have the potential to detect zero-day
attacks. However, these systems can suffer from high rates of false
positives and can be evaded through through mimicry attacks. The
key to addressing both problems is careful control of model gen-
eralization. An anomaly detection system that undergeneralizes
generates too many false positives, while one that overgeneralizes
misses attacks. In this paper, we present a methodology for creating
anomaly detection systems that make appropriate trade-offs regard-
ing model precision and generalization. Specifically, we propose
that systems be created by taking an appropriate, undergeneralizing
data modeling method and extending it using data pre-processing
generalization heuristics. To show the utility of our methodology,
we show how it has been applied to the problem of detecting mali-
cious web requests.

1. INTRODUCTION
Unlike the signature-based intrusion detection systems (IDSs) in

common use, anomaly-based IDSs have the potential to detect pre-
viously unseen, or zero-day, attacks. However, anomaly detection
systems can be evaded through carefully crafted attacks and they
often produce a large number of false positives. To build success-
ful anomaly detection systems, we must develop detection methods
that are better at detecting attacks but without misclassifying legit-
imate behavior.

The key to this trade-off lies in the nature of the generalization
performed by a given anomaly detection method. If the method
generalizes too much over training examples, then it will be easy
for attackers to craft attacks that resemble normal behavior; if it
generalizes too little, then previously unseen but legitimate behav-
ior will generate false alarms. Careful control of generalization,
then, is central to solving both problems.

In this paper we present a methodology for developing anomaly
detection methods that achieve both a low rate of false positives and
a high attack accuracy. The key insight behind this methodology
is that while it is easy to increase the level of generalization of a
given method by filtering inputs, it is more difficult to reduce the the
level of generalization. Thus, by starting with an undergeneralizing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
LANC 2007 San Jos«e, Costa Rica
Copyright 2007 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

method and selectively adding input generalization filters, we can
construct both lightweight and highly accurate anomaly detection
mechanisms.

The rest of this paper is organized as follows. In Section 2, we
discuss the generalization problem and examine how it has been
addressed in past work. In Section 3, we describe in detail our
design methodology for accurate anomaly detection systems. Sec-
tion 4 describes how we applied this methodology to the devel-
opment of web request (HTTP request) anomaly IDSs using both
a finite automata-based and a n-gram based models, and Section 5
presents the performance of these systems. Section 6 discusses lim-
itations and future work, and Section 7 presents additional related
work. Section 8 concludes.

2. BACKGROUND
If an anomaly detection system is to do more than simply mem-

orize its training data, it must generate a model that represents a
set of examples; i.e., it generalizes. When an anomaly detection
system generalizes, it accepts input similar to, but not necessarily
identical to, instances from the training data set. In other words,
the set of instances considered normal (the normal set) is larger
than the set of instances in the training data. For most anomaly de-
tection systems (for example, those used with web servers), the set
of possible legal input is infinite and the complete normal set is not
known and might be changing over time. In this case, the anomaly
detection system must use an incomplete set of training data, and
generalization is a requirement.

The goal for an anomaly detection system is a model that ac-
curately describes normal behavior, as illustrated in Figure 1 (a).
If the algorithm generalizes too much (overgeneralizes), then the
normal set is too large. In this case, attacks “close” to the training
data might be identified as normal (a false negative), limiting the
usefulness of the system. Figure 1 (b) illustrates an overgeneral-
izing anomaly detection system. On the other hand, a system that
simply memorizes the training data will need sufficient storage for
the complete set of normal. Obviously, this is impossible when the
normal set is unknown or infinite. When trained on a finite set, a
system such as this would undergeneralize, and erroneously flag
normal events as anomalous (false positives). An undergeneraliz-
ing system miscategorizes normal instances that are slight variants
of training data. Figure 1 (c) illustrates undergeneralizing.

Undergeneralization manifests itself as the anomaly detection
system memorizing distinct values that should be represented by
a more general representation. For example, instead of memoriz-
ing all of the possible dates and times that appear in the header of a
web request, better accuracy can be achieved by recognizing if the
date and time follow the standard and indicating simply whether or
not the time was well-formed or not.

(a) (b) (c)

Figure 1: Diagrams illustrating (a) desired, (b) over-, and (c) undergeneralization. The points BU1, BU2, XSS1, and XSS2 represent
attacks, N represents the set of normal inputs, and the line surrounds the set accepted by the anomaly detection system. U is the set
of all possible inputs to the system.

Minimally generalizing, simple methods such as overlapping n-
grams are well suited to modeling relatively predictable inputs such
as the system calls produced by running processes [4]. More com-
plex and variable behaviors, such as those observed at the network
layer, have generally motivated researchers to look to methods that
overgeneralize, however. For example, PAYL [11], a system for
detecting anomalous network traffic, classifies packets using statis-
tical distance measurements on two highly generalizing features:
character distributions (one or two bytes) and packet lengths. Re-
cently it was shown that attackers can evade PAYL by constructing
packets that have similar character distributions and lengths to nor-
mal traffic [3]. Note that this attack is possible because PAYL’s
model permits packets that can be substantially different from nor-
mal behavior.

In order to achieve better attack coverage, anomaly IDSs have
been developed that combine multiple, highly generalizing detec-
tors in order to limit what kinds of behavior are acceptable [8]; in
recent work, however, Ingham and Inoue [6] showed that such a
strategy does not necessarily achieve a high attack detection rate if
false positives are also minimized.

3. DESIGN METHODOLOGY
Rather than start with overgeneralizing measures and combine

them to constrain acceptable behavior, we propose to instead start
with undergeneralizing measures and then pre-process input fea-
tures in order to achieve an appropriate balance between attack cov-
erage and false positives.

Specifically, our design methodology consists of the following
steps:

1. Choose an undergeneralizing modeling method—one that is
capable of memorizing or near-memorizing individual input
instances. For example, use an automata induction method.

2. Look for evidence of memorization of portions of specific
input instances due to high input variability. In the case of a
DFA, such instances can be identified as nodes with a large
number of outbound edges, each with a low usage.

3. Use heuristic-based input filters in order to replace highly
variable portions of the input with more constrained inputs.

4. Re-train the model and verify that the targeted model por-
tions no longer encode specific inputs. If necessary, identify
other inputs to be filtered and repeat.

While portions of this methodology can be automated, the choice
and design of input filters is a highly complex task. We discuss the
issue of automation further in Section 6.

4. MODELING WEB REQUESTS
To illustrate that our methodology can work in practice, we now

present the design and evaluation of a web request anomaly-based
IDS. As most attacks on web servers can be encoded in a single
request, we chose to model individual HTTP requests in isolation.
For an undergeneralizing modeling method, we chose to study two
methods: one based upon n-grams of tokens for HTTP requests,
and another based upon inducing a token-generating deterministic
finite automaton (DFA).

Our n-gram models [2] were generated by sliding a window of
length n across a string of tokens and storing the contents of each
window. The result is a set of strings of length n. For example,
given the string abcdef and n = 3, the resulting 3-grams are:
abc, bcd, cde, and def.

To determine whether a given request was anomalous, we used
the following similarity measure for the n-gram model:

s =
of n-grams from the request also in the training data

of n-grams in the HTTP request
∈ [0, 1]

Following past practice and the results of our testing within this
domain [5], we used n = 6 in our evaluation.

To create a DFA that classified tokenized HTTP requests, we
used the Burge DFA induction algorithm [7], a one-pass, O(nm)
algorithm, where n is the number of samples in the training data set
and m is the average number of tokens per sample. The algorithm
does not require negative examples. To determine whether a given
request was anomalous, we used this similarity measure for our
DFA models:

of tokens reached by valid transitions
of tokens in the HTTP request

∈ [0, 1]

4.1 Identifying undergeneralization
As explained in Section 5, we observed that both methods pro-

duced very large models that had high false positive rates when
they were trained on raw HTTP request tokens. As these were both
evidence of undergeneralization, we the studied the learned mod-
els to identify tokens that were highly variable and so were being
memorized.

Both the n-gram and DFA methods represent a HTTP request as
a directed graph. In the digraph model that they use, the pattern
indicating simple memorization is a node with a high out degree
and low usage counts on all of the outbound edges. A good metric
for identifying such structures is o

m
where o is the out degree of

the node and m is the highest usage count (generated during DFA
construction) of any outbound edge. Sorting nodes by this value

highlights inputs where the anomaly detection system is attempting
to memorize high-variability data. These are the portions of the
model where additional generalization is needed.

4.2 Generalization Filters
Applying the techniques from Section 4.1, we found the follow-

ing portions of a HTTP request where the models were effectively
memorizing input tokens:

1. IP addresses, from lines added by proxies such as Via and
X-Forwarded-for as well as occasionally in email ad-
dresses and URIs in the Host and Referer lines.

2. The Referer header field; this is a URI that led the user
to the web site, and frequently is the result of a search. The
search URLs are complex and highly variable.

3. Integer ranges (used for saving bandwidth by only sending
the portions of the resource changed from a cached version).
The values are integers and they range from 0 through the
size of the largest file on the server, which in our training data
is 22,788,278 bytes. These do not always fall on common
block boundaries, as we see requests for a wide variety of
values.

4. User agent additional information (e.g. user agent version,
capabilities, etc).

5. Hashes (Entity tags, session IDs, etc). Note these are in-
tended to be unique.

6. Dates, which appear in lines such as If-Modified-Since,
Unless-Modified-Since and other related lines, as well
as the Date header.

7. Host names, which appear in many of the same locations as
IP addresses.

For each of these, we implemented generalization filters by mod-
ifying our HTTP parser to recognize and return whether the value
was valid or not instead of the actual value. In the case of hashes,
we only handled the most common (in our data) cases of PHP Ses-
sion IDs and Entity tags.

5. RESULTS
To evaluate the utility of our methodology, we now present re-

sults that illustrate how our modeling methods work both with and
without our empirically-derived, targeted generalizations. For more
detailed information on how these and other related experiments
were conducted, please refer to [5].

To test our anomaly detection system, we need datasets of both
normal and malicious HTTP requests. In the results presented here,
the normal requests were gathered from the University of New
Mexico Computer Science (UNM CS) departmental web server.
Background attacks in this data set were filtered out using a com-
bination of snort rules and manual inspection. Our attack database
contains 63 attacks, some of which are different examples of the
same vulnerability—either a different exploit for the same vulner-
ability or an exploit for the vulnerability on a different operating
system. The attacks came from a variety of sources and represent
many classes of attacks against web servers or web applications,
including buffer overflows, non-buffer overflow input validation er-
rors, decoding errors, etc.

Figure 2 (a) shows that without the targeted generalization fil-
ters, the DFA and 6-grams are both unusable due to their high false
positive rates—i.e., they undergeneralize. In order to achieve a true
positive rate of only 80%, an administrator would have to accept
a false positive rate of over 99% for either system. The results of
using these generalizations together are in Figure 2 (b). Adding
the identified generalizations results in a substantial improvement

in accuracy; for the same 80% true positive rate, the false positive
rate is 0.2% for 6-grams and 1.6% for the DFA.

6. DISCUSSION
When a system over- or undergeneralizes too much, the poten-

tial of an algorithm might be easy to miss, as shown by the differ-
ence between the DFA or 6-gram algorithms without and with the
targeted generalizations applied. These generalizations make the
difference between an algorithm with a too-high false positive rate
and one that might be usable in a production system.

While significant generalization is necessary for accurate anomaly
detection with data streams such as HTTP, it is not sufficient. The
representation of the data stream must be appropriate for detecting
interesting anomalies. For example, representing HTTP requests as
the bits in the ASCII character string containing the request would
likely result in poor accuracy.

The basic strategy of incrementally improving an undergeneral-
izing but precise model of behavior with automatically discovered,
targeted generalizations is applicable to other domains where an
anomaly detection system is modeling structured but highly vari-
able, nonstationary data. Examples of such data streams are net-
work protocols, application programming interfaces, and even sys-
tem call arguments. We believe the application of the this design
methodology to other program-level IDSs may produce systems
that better walk the line between attack coverage and false alarms.

Our targeted generalizations were manually generated after the
process identified the generalizations that would produce the largest
benefit. With models such as ours that can be represented as graphs
with tokens on transitions, identification of undergeneralizing ar-
eas is relatively straightforward and can be automated: just sort
by degree of fan-out. Creating appropriate generalization filters,
however, is a much more subtle problem. The key challenge is
not how to generalize, but how to do so without permitting attacks.
Verifying strict protocol adherence and basic semantics (e.g., valid
date formats) could be automated if a precise protocol description
is available. Such verification, however, may permit malicious in-
put that is syntactically correct. Alternative strategies for targeted
generalization that leverage contextual information is a potentially
promising area for future work.

7. RELATED WORK
Overall, many researchers have mentioned generalization, but

few have attempted to control it, understand it, or detail its relation-
ship with accuracy. Li et al. [9] are some of the only researchers
to investigate the relationship between generalization and anomaly
detector accuracy. Noting that generalization can (at times) im-
prove accuracy, and they showed that generalization on normal data
is good, while generalizing on attack data is not. This result contra-
dicts the work reported by Anchor et al. [1], who discussed general-
izing detectors for attacks, with the goal of improving an anomaly
detector at detecting new, similar attacks in network packet data.
Robertson et al. [10] also generalized anomalies with the goal of
generating “anomaly signatures” to find further attacks of a simi-
lar nature. None of these researchers characterized the amount of
generalization, nor did they consider controlling generalization to
improve accuracy.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
ru

e
p
o
si

ti
v
e

fr
ac

ti
o
n

False positive fraction

ROC Curves for DFA and 6-grams, no generaization

6grams DFA

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
ru

e
p
o
si

ti
v
e

fr
ac

ti
o
n

False positive fraction

ROC Curves for DFA and 6-grams, with all generalizations enabled

6grams DFA

(a) (b)

Figure 2: Receiver Operating Characteristic curves showing the accuracy of the n-grams and DFA without (a) and with (b) the
targeted generalizations.

8. CONCLUSION
Anomaly detection has the potential to detect novel attacks, but

to succeed generalization must be controlled for accuracy. Un-
dergeneralizing systems have problems with false positives, while
overgeneralizing systems suffer from false negatives; systems that
both over- and undergeneralize have problems with both.

By searching the model for indications of undergeneralizing and
targeting generalizations to those specific locations in the structure
of the input data, it is possible to substantially improve accuracy.
This increased accuracy comes without the risk of overgeneralizing
(hence reducing accuracy), assuming the heuristics for the targeted
generalizations are carefully developed. Previously, researchers re-
lied on their intuition about how to tweak an algorithm for good
accuracy. Or, they attempted to select a large set of observables
and try to get around the over- and undergeneralizing with statis-
tical methods for combining the measures. By following the ideas
presented in this paper, researchers can more quickly arrive at an
accurate anomaly detection algorithm.

Acknowledgments: Partial funding of K.I.’s research was pro-
vided by the National Science Foundation grant ANIR-9986555.
A.S. wishes to also acknowledge the support of Canada’s NSERC
Discovery program and MITACS.

9. REFERENCES
[1] K. P. Anchor, J. B. Zydallis, G. H. Gunsch, and G. B.

Lamont. Extending the computer defense immune system:
Network intrusion detection with a multiobjective
evolutionary programming approach. In Proceedings of
ICARIS 2002: 1st International Conference on Artificial
Immune Systems Conference, 2002.

[2] M. Damashek. Gauging similarity with n-grams:
language-independent categorization of text. Science,
267(5199):843–848, 1995.

[3] P. Fogla, M. Sharif, R. Perdisci, O. Kolesnikov, and W. Lee.
Polymorphic blending attacks. In USENIX-SS’06:
Proceedings of the 15th conference on USENIX Security
Symposium, pages 17–17, Berkeley, CA, USA, 2006.
USENIX Association.

[4] S. Forrest, S. Hofmeyr, A. Somayaji, and T. Longstaff. A
sense of self for Unix processes. In 1996 IEEE Symposium

on Security and Privacy, 6-8 May 1996, Oakland, CA, USA,
pages 120–128, Los Alamitos, CA, USA, 1996. IEEE
Computer Society Press.

[5] K. L. Ingham. Anomaly Detection for HTTP Intrusion
Detection: Algorithm Comparisons and the Effect of
Generalization on Accuracy. PhD thesis, Department of
Computer Science, University of New Mexico, Albuquerque,
NM, 87131, 2007.

[6] K. L. Ingham and H. Inoue. Comparing anomaly detection
techniques for HTTP. In Recent Advances in Intrusion
Detection, 2007.

[7] K. L. Ingham, A. Somayaji, J. Burge, and S. Forrest.
Learning DFA representations of HTTP for protecting web
applications. Computer Networks, 51(5):1239–1255, 11
April 2007.

[8] C. Kruegel, G. Vigna, and W. Robertson. A multi-model
approach to the detection of web-based attacks. Computer
Networks, 48(5):717–738, 2005.

[9] Z. Li, A. Das, and J. Zhou. Model generalization and its
implications on intrusion detection. In Applied Cryptography
and Network Security, Third International Conference, ACNS
2005, New York, NY, USA, June 7-10, 2005, Proceedings,
pages 222–237, 2005.

[10] W. Robertson, G. Vigna, C. Kruegel, and R. A. Kemmerer.
Using generalization and characterization techniques in the
anomaly-based detection of web attacks. In Network and
Distributed System Security Symposium Conference
Proceedings: 2006. Internet Society, 2006.

[11] K. Wang and S. J. Stolfo. Anomalous payload-based network
intrusion detection. In Recent Advances in Intrusion
Detection: 7th International Symposium, RAID 2004, Sophia
Antipolis, France, September 15-17, 2004. Proceedings,
volume 3224 of Lecture Notes in Computer Science, pages
203–222. Springer, 2004.

	Introduction
	Background
	Design Methodology
	Modeling Web Requests
	Identifying undergeneralization
	Generalization Filters

	Results
	Discussion
	Related Work
	Conclusion
	References

