
This article was published in an Elsevier journal. The attached copy
is furnished to the author for non-commercial research and

education use, including for instruction at the author’s institution,
sharing with colleagues and providing to institution administration.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Immunology, diversity, and homeostasis: The past and
future of biologically inspired computer defenses

Anil Somayaji

a b s t r a c t

While biological metaphors have a long history of use in computer security, they have been

more successful in describing malicious software than in helping to create better defenses.

Immune system mechanisms, diversity, and homeostasis have helped inspire the develop-

ment of promising computer security technologies. To fulfill the promise of biologically

inspired security, however, more work is needed in understanding how living systems

defend themselves and how those ideas can be brought to computers. This paper presents

past successes, limitations, and opportunities for future work in this promising area. It

then also addresses why there are significant barriers to such advances.

ª 2007 Elsevier Ltd. All rights reserved.

1. Introduction

From the coining of the term ‘‘computer virus’’ (Cohen, 1985),

biological metaphors have been used to describe computer se-

curity problems. Computer security defenses, however, have

generally been described using other terminologies, e.g.,

firewalls, virus scanners, patches, and intrusion detection sys-

tems. This difference in terminology is telling: while self-

propagating malware has lifelike characteristics (Spafford,

1994), current computer security defenses have few similari-

ties with those used by living systems.

This is not to say, however, that there have not been ef-

forts to change this. The ideas of computer immune systems

(Kephart, 1994) and autonomic ‘‘self-healing’’ software

(Kephart and Chess, 2003) have been heavily promoted both

in the literature and in the press. One possible explanation

for this discrepancy is that biological defense strategies

may be inappropriate for computers. After all, living systems

are not good at keeping secretsdwe give away our genomes

every time we lose a hair, for example. Further, parts of

computer systems are not nearly as ‘‘disposable’’ as those

of living systemsdwe don’t like individual programs or

computers to die.

While biological defense strategies may not always be ap-

propriate, it is more accurate to say that we don’t know

whether they are appropriate or not. As explained in the rest

of this paper, biologically inspired defenses have barely tapped

the richness of biological systems. Successes or failures, then,

are better seen as evidence of immaturity, not inapplicability.

To explore both the potential and the limitations of past

work in biologically inspired security, this paper first reviews

the structure of natural immune systems in Section 2 and

then selectively reviews past work on applying the biological

concepts of immune systems, diversity, and homeostasis to

building computer security defenses in Sections 3–5. Section

6 discusses future opportunities for biologically inspired de-

fenses, while Section 7 discusses potential barriers to those

opportunities. Section 8 then concludes.

2. Immunology

Perhaps the most important sources of biological inspiration

for computer security researchers have been natural immune

systems. Like most aspects of living systems, natural immune

systems are remarkable in their robustness, flexibility, and

complexity. While the broad outlines of how the immune sys-

tems of mammals function are known (particularly those of

mice and humans), there are numerous unknowns that

E-mail address: soma@scs.carleton.ca

ava i lab le a t www.sc iencedi rec t .com

www.compseconl ine . com/publ i ca t ions / prod in f .h tm

1363-4127/$ – see front matter ª 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.istr.2007.10.004

i n f o r m a t i o n s e c u r i t y t e c h n i c a l r e p o r t 1 2 (2 0 0 7) 2 2 8 – 2 3 4

Author's personal copy

greatly complicate any effort to use these systems as design

templates for engineered systems. What follows, then, is

a high-level description of the threats facing natural immune

systems and the general approaches that are taken to address

them. For a more detailed (but still high-level) introduction to

the human immune system, see Hofmeyr (2000); for more on

the design principles underlying the immune system, see

Somayaji et al. (1998). (For readers with some background in

immunology, please skip to Section 3.)

The human immune system consists of numerous cell

types: T-cells, B-cells, macrophages, mast cells, natural killer

(NK) cells, neutrophils, and othersdand each of these types

is made up of many subtypes. These cells are constantly in

motion, patrolling independently and self-organizing to clas-

sify and respond to problems. To keep these many cells coor-

dinated and controlled, dozens of distinct chemicals (some of

which are identical to those used by nerve cells) are used to

exchange messages. The details of this extremely complex

system, and many of the basic operating principles, are still

being uncovered by immunologists everyday, meaning that

textbooks are out of date the moment they are published.

Because of these factors, it can be extremely difficult to

understand what the immune system does and how it does

it; however, by understanding the ‘‘threat model’’ of immune

systems, though, we can begin to see some patterns.

Organisms must always contend with the fact that others

wish to take advantage of their success. Being reproductively

successful means that one becomes a potential resource for

others. In the case of animals, predators are best addressed

through changes in high-level behavior (e.g., running away,

fighting, and hiding). For threats where the attack takes place

inside the body, however, other strategies are needed. The

skin protects most of the perimeter of an animal. Organisms

are more vulnerable at entry and exit points, but those are

also protected. For example, the stomach uses enzymes and

powerful acids to destroy foreign organisms, while the lungs

use mucous and cilia to trap and expel invaders.

It is when foreign organisms get passed these barriers the

immune system gets involved. In architecture, the immune

system is a distributed, decentralized network of autonomous

agents (cells) that collectively can recognize and respond to

attacking entities, or pathogens. Immune systems such as

the human immune system face four basic challenges:

� Scale: Parasites can be single or multicellular eukaryotic

organisms, so they are often much, much larger than the

individual immune system cells that must identify and

destroy them. In contrast, bacteria and viruses are much

smaller than the cells of the immune system, meaning

that they can often hide inside the cells of the bodydeven

immune system cells. This range of scales means the im-

mune system needs a variety of detection and response

strategies.

� Communication: Immune system cells coordinate their

actions through the use of chemical signals; those same

chemicals, however, can also be produced by pathogens.

Compromised communications can result in responses

being dulled or even prevented.

� Errors: Most responses produce some amount of ‘‘friendly

fire’’dthe body’s own cells are killed in the process of

defending the body. Some deaths are unavoidable; however,

others result from classification errors, some of which are

exacerbated by the actions of the attackers. In extreme

cases the actions of the immune system can cause more

damage than the pathogen itself, even resulting in the death

of the organism.

� Evolution: As pathogens are killed, those that survive

reproduce. This evolutionary process means that they

are constantly getting better at bypassing immune

systems, and doing so on relatively short timescales: bac-

teria reproduce every 20 min, but humans reproduce every

20 years.

To address these challenges, the human immune system

has to be able to respond quickly to well-known threats yet re-

tain the capability to deal with the unknown. To address this

dichotomy, the cells of the immune system are divided into

two classes, the innate and adaptive immune systems. The in-

nate immune system functions in a way analogous to most

modern virus scanners: its cells can recognize specific molec-

ular markers and behaviors that are ‘‘known’’ signatures of

pathogens. Because such signals can be easily distinguished

from those produced by the normal cells of the body, the re-

sponses of the innate immune system are both swift and ac-

curate. Unfortunately, like virus scanners, their responses

are insufficient for novel threats.

To bridge this gap, the adaptive immune system does not

attempt to develop detectors that match specific new patho-

gens a priori; instead, it creates a large variety of detectors

that can match virtually anything and then destroys or care-

fully regulates those that match the body’s own cells, or self.

By being so selected, the remaining detectors will only match

against nonself, which in general will be pathogens. Note that

the primary advantage of this negative selection process is

that individual cells decide on their own whether something

doesn’t belong without each of them requiring a full inventory

of what is allowed. Coordination only needs to take place to

decide on the type and magnitude of response, rather than

on the detection side.

When deployed in the form of antibodies or B-cells, the de-

tectors primarily match exposed components of pathogens

(e.g., proteins on the surface of a parasite). To detect cells

that have been compromised internally (e.g., a virus-infected

cell), additional mechanisms are required because under nor-

mal circumstances one cell cannot look inside another. One

way this problem is circumvented is through the interaction

between T-cells and MHC-peptide complexes.

Proteins are the workhorse molecules of the cell: they are

the ones that make chemical reactions happen inside a cell,

and they provide much of its structural support as well. As

each cell recycles its proteins, they are chopped up into

fragments known as peptides that are then recycled into

new proteins. The MHC molecule intervenes in this process

by snatching up peptides and displaying them on the surface

of the cell. These displayed peptides are queried by passing

T-cells in the negative selection style of the immune system:

if the T-cell matches the peptide, it was part of an abnormal

protein, meaning that the cell has been somehow compro-

mised. Thus, the T-cell signals that the identified cell should

be killed.

i n f o r m a t i o n s e c u r i t y t e c h n i c a l r e p o r t 1 2 (2 0 0 7) 2 2 8 – 2 3 4 229

Author's personal copy

3. Artificial immune systems

Given the complexity and scope of natural immune systems, it

has not made sense to translate them ‘‘wholesale’’ into com-

puter mechanisms; instead, what has happened is that aspects

of immune systems have become templates for specific secu-

rity mechanisms or architectures. Broadly speaking, applica-

tions of immune system ideas in computer security can be

divided into three categories: negative selection-based sys-

tems, MHC-based systems, and other systems. What follows

is a brief overview of the first two; we discuss other approaches

in Section 6.

3.1. Negative selection-based systems

As discussed previously, negative selection is the process

whereby the immune system selects detectors (e.g., T-cells):

it randomly generates detectors that have the potential to

match everything, and then it throws away those that match

normally behaving cells. Forrest et al. (1994) first applied this

process to a computer security problem, specifically the detec-

tion of virus-infected files. Later, Hofmeyr (1999) proposed

LISYS, a network intrusion detection system based upon the

negative selection algorithm, along with various immunolog-

ically inspired mechanisms for managing false positives.

While these systems were both major advances, they both

had certain basic limitations. When applied to individual com-

puter systems, the virus detection mechanism didn’t have any

clear advantages to storing cryptographic checksums of files

(e.g., Kim and Spafford, 1994). LISYS had the limitation that

it detected unusual network connections on the basis of IP ad-

dresses and ports, a choice that restricts its ability to detect

many kinds of network attacks. Efforts by other researchers

to increase the number of features observed ran into issues re-

garding accuracy and detector generation time (Kim and Bent-

ley, 2001); a response by Balthrop et al. (2002) argued that such

problems arose not from limitations in the negative selection

algorithm, but from the algorithm being applied in inappropri-

ate ways.

In the field of artificial immune systems (AISs) (Dasgupta,

1999), many researchers have taken up the task of expanding

the bounds of negative selection, applying it to new domains,

studying its properties, and also developing algorithms based

upon other immune system mechanisms. Such work has now

largely moved from the area of computer security to that of

machine learning. However, the more general idea of repre-

senting a set (self) by using detectors that match its comple-

ment (nonself) may have significant applications in the area

of privacy-preserving databases (Esponda et al., 2006), among

others.

While the negative selection algorithm has inspired signif-

icant amounts of research, its legacy, for the moment, is found

in work that has very little connection with the basic problems

for which immune systems evolved. While disappointing, this

should probably be expected: current computer systems are

not composed of billions of autonomous, disposable, self-rep-

licating computing elements. Architectures and algorithms

that work well in such circumstances, then, should not be

expected to automatically apply to other systems.

3.2. MHC-based systems

The MHC mechanism, by allowing T-cells to observe the inter-

nal state of other cells, acts as a kind of cell-level anomaly de-

tector that allows the immune system to uncover cells

running ‘‘malicious code’’ (viruses). By equating cells with

running programs, MHC suggests that intrusions could be re-

liably detected through the use of program-level anomaly de-

tection. The question then becomes, what is an appropriate

analog for a peptide?

In 1996 we first proposed that a possible peptide analog

could be short, contiguous sequences of system calls (Forrest

et al., 1996). Because most modern operating systems are still

relatively centralized (even on multiprocessor systems), we

did not need the distributed properties of the negative selec-

tion algorithm; instead, we used simple arrays (Forrest et al.,

1996) and later, trees (Hofmeyr et al., 1998) to represent se-

quences seen when training the system to recognize normal

program behavior. The result of this work was a system that

could detect a wide variety of security violations with few

false positives.

These results stimulated significant amount of work in the

area of program-level intrusion detection. Some researchers

studied whether sequence-based analysis could be applied

to other datastreams (Stillerman et al., 1999); many more,

though, chose to see whether other algorithms could do better

than the ones we proposed (e.g., Lee et al., 1997). Because pro-

gram behavior is extremely regular at the level of invoked sys-

tem calls, it turns out that complex learning algorithms are

not needed and provide little benefit (Warrender et al., 1999).

However, by adding additional state such as program counter

information, it is possible to build more precise models (Sekar

et al., 2001).

The direction of research in program-level intrusion detec-

tion changed, however, with the development of mimicry at-

tacks (Wagner and Soto, 2002). The idea here was that

attacks could be crafted such that they looked ‘‘normal’’ (i.e.,

they produced no novel system-call sequences). Mimicry at-

tacks have been perceived as a significant weakness of the

system-call sequence method. Many researchers have now

proposed ‘‘mimicry-resistant’’ intrusion detection methods

(e.g., Feng et al., 2003); unfortunately, these approaches gener-

ally can either detect fewer attacks overall and/or have signif-

icantly higher false alarm rates, making them less suitable for

production use.

To summarize, the initial idea of MHC-style attack detec-

tion has given rise to the area of program-level intrusion de-

tection. In its approaches and mechanisms, however, there

is little left of the original biological inspiration.

4. Diversity

Computer security researchers often complain about the dan-

gers of overly popular software: a single vulnerability can po-

tentially lead to millions of compromised machines. Such

criticisms have more recently been framed in terms of a ‘‘soft-

ware monoculture’’, in reference to the disease susceptibility

of farms that raise single varieties of plants on large numbers

of fields (Geer et al., 2003).

i n f o r m a t i o n s e c u r i t y t e c h n i c a l r e p o r t 1 2 (2 0 0 7) 2 2 8 – 2 3 4230

Author's personal copy

Uniformity in software, however, is something that is gen-

erally advantageous: it reduces the effort required for users to

learn systems and for administrators to maintain them. How-

ever, it has long been recognized in the fault-tolerance litera-

ture that having diversity in implementations can increase

robustness (Chen and Avizienis, 1995). Creating multiple

implementations by hand, however, is an expensive proposi-

tion, one that is impractical for all but the most safety-critical

systems.

To achieve the benefits of diversity without the typical

costs, we proposed that software implementations be ‘‘diver-

sified’’ (Forrest et al., 1997). The idea is that some attacks, par-

ticularly memory corruption-based attacks such as buffer

overflows, require the attacker to understand how code and

data are organized in a targeted program. By changing this

organization, attacks can be made to fail without disrupting

normal program behavior. We implemented a simple diversi-

fication based on padding stack variables; other researchers

have diversified (or randomized) memory layouts (Bhatkar

et al., 2003), instruction sets (Barrantes et al., 2005; Gaurav

et al., 2003), and other aspects of low-level code behavior.

Some, such as ASLR (PaX Team), have been so successful

that such mechanisms are now part of Microsoft Windows

Vista and many Linux distributions.

While these advances are significant, it should be noted

that while the problem identified has been framed biologi-

cally, the solutions are not biological at all. Diversity in living

systems comes from very different sources: sexual reproduc-

tion, death, and speciation. Sex allows for the production of

unique but similar individuals, while death makes sure new

variants (i.e., young individuals) have an opportunity to sur-

vive and prosper. Speciation allows groups of closely related

individuals to split so that they may become more different

(genetically diverge) over time.

While sexual reproduction is the inspiration for genetic al-

gorithms and related work, these methods cannot be directly

applied to conventional code bases. Thus, it would appear that

the scope for truly biologically inspired diversity techniques is

quite limited. We will return to this issue in Section 6.

5. Homeostasis

All biological systems maintain a stable internal state by mon-

itoring and responding to internal and external changes. This

self-monitoring is one of the defining properties of life and

is known as ‘‘homeostasis’’. Homeostatic mechanisms are

typically autonomic, i.e., they operate below the level of

consciousness. But homeostatic mechanisms have a very spe-

cific purpose, to minimize variations in the internal state of an

organism. In effect, homeostasis refers to mechanisms that

ensure that the ‘‘assumptions’’ made by an organism’s inter-

nal systems stay true.

Two classic examples of homeostasis are the temperature

and fluid balance mechanisms of our own bodies. Such mech-

anisms are essential because significant changes in these can

have catastrophic consequences. The human body detects in-

ternal changes through sensors (specialized nerve cells) in the

skin and inside the body. As we become too cold, our periph-

eral blood vessels constrict and we shiver; when we become

too hot, peripheral blood vessels dilate and we sweat. Simi-

larly, our kidneys secrete more or less water in our urine

depending upon how hydrated we are.

Because electronics, like living systems, are sensitive to

temperature and voltage extremes, computer systems have

sensors (thermistors and silicon-embedded diodes) and regu-

latory mechanisms (fans and voltage regulators) analogous to

biological homeostatic mechanisms. At the software level,

though, there is little correspondence.

This discrepancy is significant because natural immune

systems can be thought of more as homeostatic mechanisms

than strict defense mechanisms. Any immune response must

be proportional to the change detected, much as the violence

of our shivering depends on how cold we are. Further, the type

and severity of an immune response must be balanced against

other factors rather than just being relative to the malicious-

ness of the threat. Because immune responses kill healthy

cells, the immune system must always trade-off destroying

the pathogen enemy with destroying the body itself. Thus,

rather than just trying to destroy pathogens, the immune sys-

tem controls pathogens such that the cells of the body can

continue to live.

In an attempt to make a more homeostatic computer de-

fense mechanism, I developed pH (‘‘process homeostasis’’)

(Somayaji, 2002), a Linux kernel extension that delays the ex-

ecution of unusually behaving processes. pH is, in effect, an

unusual CPU scheduler that favors normally behaving pro-

cesses. By greatly reducing the CPU cycles received by com-

promised programs, attacks are effectively stopped while

legitimate computation proceeds.

The delay mechanism of pH was a forerunner to the net-

work-level virus throttling of Twycross and Williamson

(2003). In their system, the rate of network connections was

throttled in order to limit the spread of malicious programs.

While their approach is less adaptive than pH, it is also easier

to predict and understand. No current commercial intrusion

detection or prevention system delays unusually behaving

processes (as measured by an adaptive anomaly detector);

the virus throttle technology, however, has been commercial-

ized by HP and is available in some of their router products.

6. Future opportunities

From the preceding overview of work inspired by biological

immune systems, diversity, and homeostasis, it should be

clear that existing work has borrowed very few ideas from na-

ture. There has been other work at biologically inspired secu-

rity mechanismsdinnate immunity (Greensmith et al., 2005),

the ‘‘danger’’ model of immune system function (Aickelin

et al., 2003), and self-healing systems (Sidiroglou et al., 2005),

for example. However, negative selection, MHC, and the gen-

eral ideas of diversity and (to a lesser extent) homeostasis are

the biological ideas that have most influenced the develop-

ment of existing computer security technology.

But even the influence of these ideas has been more inspi-

rational than practical; while the respective phenomena in

nature are all immensely complicated and are far from being

fully understood, the ideas at the heart of the computer sci-

ence translations can be summarized in a few sentences.

i n f o r m a t i o n s e c u r i t y t e c h n i c a l r e p o r t 1 2 (2 0 0 7) 2 2 8 – 2 3 4 231

Author's personal copy

Translating negative selection does not mean that we under-

stand the dynamics of T-cells, let alone B-cells or macro-

phages; translating MHC does not mean that we understand

exactly how the immune system detects and responds to

virus-infected cells. There are many, many more deep and

inspiring ideas in living systems waiting to be translated.

There is also very good reason to continue with this trans-

lation process: many of the properties that we admire in living

systems are not properties of our computersdwe do not have

computers that can autonomously detect and respond effec-

tively to novel attacks, for example, even in the research liter-

ature. Software systems need constant monitoring and

maintenance by people, and single flaw can still result in mil-

lions of computers being compromised completely silently.

Process-level anomaly detection, implementation diversity,

and delay-based automated responsedthese are steps for-

ward, but only small steps.

For example, consider the lackluster adoption of program-

level anomaly detection. One fundamental reason why

anomaly detection has not been widely adopted is that

when anomalies are detected, it is not at all clear what they

mean. Right now an administrator has to examine system

logs, network traces, and whatever other information they

can obtain in order to decide whether an anomaly was or

was not an attack.

It turns out that the ‘‘anomaly classification’’ problem is

significant for living systems as well. A T-cell cannot just kill

a matching cell on its own; it must first be activated in some

way by a secondary signal. The processes controlling such

secondary signals are very complex and are still being unrav-

elled. Indeed, the complexity of the immune system seems to

lie not so much in the sensors but in how information from

them is combined with other inputs in order to make correct

decisions reliably in the face of attacker interference. Thus,

in order to address the limitations of biologically inspired se-

curity mechanisms, perhaps the solution is to see how biology

dealt with those limitations (Hofmeyr, 1999).

Along such a path of adopting ever more biology, however,

there are many barriers to be faced. We consider these issues

in the next section.

7. Barriers

After having now long worked in this divide between com-

puter security and biology, I’ve come to see that there are sig-

nificant technical, cultural, and conceptual barriers that have

hampered, and likely will continue to hamper, such efforts.

There is reason to think, however, that we will have to over-

come these barriers because of current trends in the computer

systems. In what follows I discuss the technical, cultural, and

conceptual barriers to biologically inspired security, followed

by a discussion of future trends.

7.1. Technical barriers

As explained earlier, biological systems are extremely

complex, interconnected systems. As such, biological mecha-

nisms cannot be imported wholesale to computer systemsd

translations must be done piecemeal. But even if one chooses

the ‘‘right part’’ to translate, how do you do the translation?

How do you make the metaphor concrete? Simply giving parts

of your system biological names isn’t enoughdthe mapping

has to somehow capture and use relevant patterns from

biology.

As a step towards this, we previously identified several or-

ganizing principles that appear to be at work in natural im-

mune systems (Somayaji et al., 1998). Some principles, such

as ‘‘defense in depth’’, are straightforward to apply and are al-

ready widely used; others, such as ‘‘no secure layer’’ (or, more

properly, ‘‘no trusted layer’’), are much more problematic:

currently, we simply don’t have any design methodologies

that produce systems that do not assume that some part of

the system is always secure. The real problem, however,

comes with concepts like ‘‘disposability’’dwhile our bodies

barely notice the destruction of hundreds or even thousands

of cells, the corruption of a single bit can bring down com-

puters and even networks. Thus, solutions based upon dispos-

ability may have requirement that current computers cannot

satisfy.

Of course, this all assumes that we understand what is go-

ing on in living systemsdan assumption that is all too often

false. For example, how exactly does the immune system de-

tect rogue cells (e.g., precancerous cells) without aggressively

attacking normal cells? How are specific responses chosen?

How does the immune system reliably sample ‘‘self’’, and

how does it account for the self-peptides that it must over-

look? These basic questions are not completely understood

by immunologists. With such incomplete knowledge, it is

hard to look to biology to create systems that solve analogous

problems.

7.2. Cultural barriers

Initially, biological terminologywas welcomed in the computer

security community as an interesting new approach. Now,

though, it is generally recognized that biological terms in new

papers are signs of poor quality research. While I would prefer

this not to be the case, this rule of thumb is generally true.

Why should this be the case? One factor is that it is hard to

master even one field; to translate from one field to another,

you need to have a solid understanding of both. Current train-

ing programs are not very good at producing computer scien-

tists who understand biology, or vice versa. Thus, most work

in biologically inspired security tends to be done by re-

searchers with inadequate background, resulting in work

that either draws little from biology or, more commonly, is

poor quality security work.

Ultimately, good security mechanisms should be good se-

curity mechanisms, no matter their source of inspiration or

design. Work in biologically inspired security, then, should

stand or fall without the crutch of biological rhetoric.

7.3. Conceptual barriers

While technical and cultural challenges are significant, the

biggest barrier to making advances in biologically inspired se-

curity is conceptual. It comes down to this simple problem:

how biological do we really want our computers, and if they

do acquire biological properties, how will we deal with it?

i n f o r m a t i o n s e c u r i t y t e c h n i c a l r e p o r t 1 2 (2 0 0 7) 2 2 8 – 2 3 4232

Author's personal copy

While living systems may be robust, flexible, and relatively

secure, they are also very hard to understand or ‘‘debug’’ and

they can be extremely unpredictable at times. Really borrow-

ing from biology may mean creating artifacts that we don’t

understand and cannot completely predict. Can we accept

this?

The robustness and flexibility of biological control patterns

arise, in significant part, from intertwined nonlinear feedback

loops. By the fundamentally chaotic nature of such systems,

they cannot be designed in a conventional sense; instead,

they must be developed through an empirical process, one

in which potential solutions are developed, tested, and

adjusted.

These are major changes in how computer security, and in-

deed computer science, is currently practiced. With such dif-

ficulties, is it any wonder that when borrowing from biology,

computer scientists throw the biology away as soon as it is

possible?

7.4. A necessary future

While borrowing from biology may seem to lead computer sci-

entists down a dark and windy path, perhaps we have already

chosen this path on our own. Modern computer systems con-

sist of millions upon millions of lines of codedmuch more

than can be understood in full detail by any single person.

While we still engage in designing work, the actual develop-

ment and deployment of systems is a highly empirical affair:

problems regularly arise that were not anticipated and, by de-

sign, should never occurdyet they do, and so we find ways to

manage such problems on an ad hoc basis.

Software systems have already become so complex that

techniques used to study genetic data have been applied to di-

agnosing computer problems (Wang et al., 2003); as software

systems become ever bigger and more complex, we should

expect such exchanges to become more common.

Further, the rapidly evolving and changing nature of secu-

rity threats are making manual, vulnerability-targeted re-

sponses less and less tenable. Keeping up with patches and

virus signature updates is hard today; what will happen

when the rate and severity of attacks increase to 10- or even

100-fold?

As the sheer complexity of computers begins to approach

that of living systems, and as the threats become more

dynamic and numerous, the world of biology will inevitably

start looking less unfamiliar. Perhaps only then we may be

able to better understand what living systems have to teach

us about computer security.

8. Conclusion

Biologically inspired computer security has given us ways to

describe the problems facing computer systems and, in areas

such as immune systems, diversity, and homeostasis, it has

helped researchers to develop interesting and sometimes

practical technologies. Nevertheless, there still remains

much to learn from biology: we have borrowed relatively

few mechanisms and concepts, and work to date has not

been sufficient to make computers as robust or self-defending

as living systems.

Future work in biologically inspired security faces signifi-

cant barriers of a technical, cultural, and conceptual nature.

As our systems become ever more complex and as they

become more threatened by rapidly adapting adversaries,

however, current defensive strategies are proving to be in-

creasingly inadequate. In such circumstances, the concepts

of biology and the techniques of biologists may come to play

an increasingly important role in computer security.

r e f e r e n c e s

Aickelin U, Bentley P, Cayzer S, Kim J, McLeod J. Danger theory:
the link between AIS and IDS? In: Proceedings of the second
international conference on artificial immune systems
(ICARIS 2003). LNCS, vol. 2787; 2003. p. 147–55.

Balthrop J, Forrest S, Glickman MR. Revisiting LISYS: parameters
and normal behavior. In: CEC ’02. Proceedings of the 2002
congress on evolutionary computation; 2002. p. 1045–50.

Barrantes Elena Gabriela, Ackley David H, Forrest Stephanie,
Stefanović Darko. Randomized instruction set emulation.
ACM Transactions on Information and System Security 2005;
8(1):3–40.

Bhatkar Sandeep, DuVarney Daniel C, Sekar R. Address
obfuscation: an efficient approach to combat a broad range of
memory error exploits. In: Proceedings of the 12th USENIX
security symposium; 2003. p. 105–20.

Chen Liming, Avizienis Algirdas. N-version programming: a fault-
tolerant approach to reliability of software operation. In: The
twenty-fifth international symposium on fault tolerant
computing: highlights from twenty-five years. IEEE Computer
Society; 1995. p. 113–9.

Cohen Fred. Computer viruses. PhD thesis. University of Southern
California; 1985.

Dasgupta Dipankar, editor. Artificial immune systems and their
applications. Berlin: Springer-Verlag, Inc.; 1999.

Esponda Fernando, Ackley Elena S, Helman Paul, Jia Haixia,
Forrest Stephanie. Protecting data privacy through hard-
to-reverse negative databases. In: Proceedings of the 9th
information security conference (ISC’06). LNCS. Springer;
2006. p. 72–84.

Feng H, Kolesnikov O, Fogla P, Lee W, Gong W. Anomaly detection
using call stack information. In: Proceedings of the 2003 IEEE
symposium on security and privacy; May 2003.

Forrest S, Perelson AS, Allen L, Cherukuri R. Self–nonself
discrimination in a computer. In: Proceedings of the 1994 IEEE
symposium on research in security and privacy. IEEE
Computer Society Press; 1994. p. 202–12.

Forrest S, Hofmeyr S, Somayaji A, Longstaff T. A sense of self for
Unix processes. In: Proceedings of the 1996 IEEE symposium
on computer security and privacy. IEEE Press; 1996.

Forrest Stephanie, Ackley David, Somayaji Anil. Building diverse
computer systems. In: Sixth workshop on hot topics in
operating systems (HotOS-VI); 1997.

Gaurav SKc, Keromytis Angelos D, Prevelakis Vassilis. Countering
code-injection attacks with instruction-set randomization. In:
CCS ’03: Proceedings of the 10th ACM conference on computer
and communications security. New York, NY, USA: ACM
Press; 2003. p. 272–80.

Geer Daniel. Cyberinsecurity: The cost of monopoly – How the
dominance of Microsoft’s products poses a risk to security,
<http://cryptome.org/cyberinsecurity.htm>; September 2003.

Greensmith Julie, Aickelin Uwe, Cayzer Steve. Introducing
dendritic cells as a novel immune-inspired algorithm for

i n f o r m a t i o n s e c u r i t y t e c h n i c a l r e p o r t 1 2 (2 0 0 7) 2 2 8 – 2 3 4 233

Author's personal copy

anomaly detection. In: Proceedings of the fourth international
conference on artificial immune systems (ICARIS 2005). LNCS,
vol. 3627; 2005. p. 153–67.

Hofmeyr Steven A. An immunological model of distributed
detection and its application to network security. PhD thesis.
University of New Mexico; 1999.

Hofmeyr Steven A. An interpretative introduction to the immune
system. In: Segel Lee A, Cohen Irun R, editors. Design
principles for the immune system and other distributed
autonomous systems. Oxford University Press; 2000.

Hofmeyr S, Somayaji A, Forrest S. Intrusion detection using
sequences of system calls. Journal of Computer Security 1998;
6:151–80.

Kephart Jeffrey O. A biologically inspired immune system for
computers. In: Artificial life IV: Proceedings of the fourth
international workshop on the synthesis and simulation of
living systems; 1994. p. 130–39.

Kephart Jeffrey O, Chess David M. The vision of autonomic
computing. Computer 2003;36(1):41–50.

Kim Gene H, Spafford Eugene H. The design and implementation
of tripwire: a file system integrity checker. In: CCS ’94:
Proceedings of the second ACM conference on computer and
communications security. ACM Press; 1994. p. 18–29.

Kim Jungwon, Bentley Peter J. An evaluation of negative selection
in an artificial immune system for network intrusion
detection. In: Proceedings of the genetic and evolutionary
computation conference (GECCO-2001), 7–11. Morgan
Kaufmann; 2001. p. 1330–7.

Lee Wenke, Stolfo Salvatore, Chan Patrick. Learning patterns
from Unix process execution traces for intrusion detection. In:
Proceedings of the AAAI97 workshop on AI methods in fraud
and risk management; 1997.

PaX Team. PaX address space layout randomization (ASLR).
<http://pax.grsecurity.net/docs/aslr.txt>.

Sekar R, Bendre M, Bollineni P, Dhurjati D. A fast automaton-
based method for detecting anomalous program behaviors. In:
IEEE symposium on security and privacy; 2001.

Sidiroglou Stelios, Locasto Michael E, Boyd Stephen W, Keromytis
Angelos D. Building a reactive immune system for software
services. In: Proceedings of the USENIX 2005 annual technical
conference; 2005.

Somayaji Anil. Operating system stability and security through
process homeostasis. PhD thesis. University of New Mexico;
2002.

Somayaji A, Hofmeyr S, Forrest S. Principles of a computer
immune system. In: New security paradigms workshop. New
York: Association for Computing Machinery; 1998.

Spafford Eugene H. Computer viruses as artificial life. Journal of
Artificial Life 1994;1(3):249–65.

Stillerman Matthew, Marceau Carla, Stillman Maureen. Intrusion
detection for distributed applications. Communications of the
ACM July 1999;42(7):62–9.

Twycross Jamie, Williamson Matthew M. Implementing and
testing a virus throttle. In: Proceedings of the 12th USENIX
security symposium; 2003. p. 285–94.

Wagner David, Soto Paolo. Mimicry attacks on host-based
intrusion detection systems. In: CCS ’02: Proceedings
of the ninth ACM conference on computer and
communications security. New York, NY, USA:
ACM Press; 2002. p. 255–64.

Wang Yi-Min, Verbowski Chad, Dunagan John, Chen Yu, Wang
Helen J, Yuan Chun, et al. STRIDER: A black-box, state-based
approach to change and configuration management and
support. In: Proceedings of the 17th large installation systems
administration conference (LISA ’03); 2003. p. 159–72.

Warrender Christina, Forrest Stephanie, Pearlmutter Barak.
Detecting intrusions using system calls: alternative data
models. In: Proceedings of the 1999 IEEE symposium on
security and privacy; 1999.

Professor Anil Somayaji is an Assistant Professor in the

School of Computer Science at Carleton University. He re-

ceived a B.S. (1994) degree in mathematics from the Massa-

chusetts Institute of Technology and the Ph.D. (2002) degree

in computer science from the University of New Mexico. He

has served on the program committees of the USENIX Security

Symposium and the New Security Paradigms Workshop,

among others. His research interests include computer secu-

rity, operating systems, complex adaptive systems, and artifi-

cial life.

i n f o r m a t i o n s e c u r i t y t e c h n i c a l r e p o r t 1 2 (2 0 0 7) 2 2 8 – 2 3 4234

