
Towards Foundational Security Metrics
Nilofar Mansourzadeh

Carleton Internet Security Lab
Carleton University
Ottawa, ON, Canada

nilofarmansourzadeh@cmail.carleton.ca

Anil Somayaji
Carleton Internet Security Lab

Carleton University
Ottawa, Ontario, Canada
soma@scs.carleton.ca

Abstract

A foundational problem in computer security is determining to
what extent a system is secure. While security metrics allow var-
ious aspects of security to be quantified, individual and even ag-
gregated metrics cannot tell us whether a system is secure in an
absolute or relative sense.We propose thatmetrics based on attacker
knowledge reuse could provide a foundation for understanding the
security of a system from a holistic perspective. In this paper we
review the foundations of existing security metrics, propose two
new metrics based on knowledge reuse, and discuss how knowl-
edge reuse-based metrics could be used to inform theoretical and
practical security analysis.

CCS Concepts

• Security and privacy→ Formal security models.

Keywords

security metrics, knowledge reuse, security foundations
ACM Reference Format:

Nilofar Mansourzadeh and Anil Somayaji. 2024. Towards Foundational
SecurityMetrics. InNew Security ParadigmsWorkshop (NSPW ’24), September
16–19, 2024, Bedford, PA, USA. ACM, New York, NY, USA, 9 pages. https:
//doi.org/10.1145/3703465.3703467

1 Introduction

What does it mean for a system to be secure? If a system has au-
thentication and access control methods, protects data integrity and
privacy with cryptography, and is kept up-to-date with the latest
software patches, we may want to assume it is more secure than
one without such protections, all else being equal. However, if we
introduce protections such as physical access restrictions and lim-
ited network access, or if defense mechanisms are misconfigured in
some way—say, by installing a default account with administrative
access and no password—the relative security of systems change.

Note that this question is not directly related to technology; in-
stead, it is an epistemological question: it is not about what we
know, but how do we know what we know. In software engineer-
ing a focus on epistemology has helped improve the state of the
art [12]. In computer security, researchers have criticized the lack

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
NSPW ’24, September 16–19, 2024, Bedford, PA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1128-2/24/09
https://doi.org/10.1145/3703465.3703467

of scientific rigor in computer security [3, 4, 24] and many have
proposed and studied security metrics [13, 14] even while others
have doubted the benefits of quantifying security [27]. In our opin-
ion, however, the fundamental question of what does it mean for a
system to be secure remains unanswered.

We assert that in the absence of perfectly secure computer sys-
tems, security is a relative concept that is inversely proportional
to the knowledge of attackers. A given system configuration can
be considered relatively secure today but hopelessly insecure to-
morrow not because the system has changed, but because attackers
have learned new attacks. Successful defense, then, is ultimately
predicated on managing the impact of changes in the knowledge
available to attackers. While “security through obscurity” is an
aspect of such knowledge management, it is just one strategy de-
fenders have at their disposal. Cryptographic key management,
software updates, anti-malware signatures, firewalls—these and
more all impact the ability of attackers to use the knowledge they
obtain to compromise the security of their targets.

To measure the security of a system in a general sense, the above
suggests that we need metrics that capture the dynamics of attacker
knowledge—how attackers gain an advantage through innovation
and how defenders in turn reduce that advantage. Knowledge is a
much more abstract concept than information and itself is not so
easily quantified [2]; however, just as performance metrics are often
compared to idealized benchmarks, appropriate idealized security
metrics could help guide the creation of more secure systems.

Our key contribution here are two security metrics, knowledge
obfuscation and defense evolution, that help capture the knowledge
dynamics between attackers and defenders. These metrics, on their
own, can only be calculated in an abstract sense, given that they
depend on factors that cannot be readily measured. As we explain,
however, they can nevertheless be used to guide system design and
to evaluate the relative utility of other security metrics.

The rest of this paper proceeds as follows. We discuss past work
related to evaluating security and security metrics in Section 2.
We then further discuss our motivation for this work in Section 3
and the basis of our approach in Section 4. Section 5 presents our
model of attacker knowledge reuse, and Section 6 presents our two
metrics based on knowledge reuse. Section 7 discusses how our
metrics could be used to improve the security analysis of systems.
We conclude with a discussion of the contributions, limitations, and
implications of our work in Section 8.

2 Evaluating Security

Security evaluation is a complex topic that runs through the entire
field of computer security. For example, when a vulnerability is
found, we must determine its potential impact before determining
how it should be addressed. Similarly, it is not enough to create

https://orcid.org/0009-0002-7389-9910
https://orcid.org/0000-0003-4761-9743
https://doi.org/10.1145/3703465.3703467
https://doi.org/10.1145/3703465.3703467
https://doi.org/10.1145/3703465.3703467

NSPW ’24, September 16–19, 2024, Bedford, PA, USA Nilofar Mansourzadeh and Anil Somayaji

a defense; we must also be able to determine its ability to stop
attacks, otherwise we will not know whether it is worthwhile for
it to be deployed. Attackers also do security evaluations in order to
determine how to potentially exploit a target. To try and understand
the problem of security evaluation, here we discuss work from three
perspectives: cryptography, attack modeling, and security metrics.
While this classification is far from comprehensive, it can help us
understand the potential benefits of more holistic approaches to
evaluating security.

Cryptography has long been at the forefront of efforts to create
precise definitions of security, as the security of all cryptographic
primitives and protocols are grounded in threat models that encode
specific assumptions about attacker capabilities. For virtually all
cryptographic constructs, it is assumed that attackers have full
knowledge of how the protocols or primitives work. Further, by
necessity, it is also assumed that 1) defenders execute the specified
operations precisely and 2) attackers have bounded capabilities in
terms of their available analysis tools and computational capabil-
ities. Small changes to many cryptographic constructs invalidate
their security properties—One time pads, which are provably se-
cure, get broken when defenders reuse keying material or when
the keys are not perfectly random [18]. Unbounded capabilities in-
validate entire categories of cryptographic defenses—DES became
increasingly insecure as the cost to brute force a 56-bit key became
sufficiently low [10].

From a security analysis perspective, the challenge of cryptogra-
phy arises from the mismatch between theoretical cryptographic
security guarantees and their strength in practical contexts. Keys are
compromised through software vulnerabilities and improper key
management; digital signatures are effectively invalidated through
the corruption of certificate trust chains; secure protocols are com-
promised through side channels and attacks on the endpoints. Cryp-
tographic threat models do not capture the means or difficulty of
such non-cryptographic attacks; to better understand their impact
on overall security, we need other approaches.

Many common approaches to modeling system security focus
on how attackers identify individual exploits and leverage them to
compromise systems or networks. For example, approaches such as
attack graphs [22], stepping stones [30], and topological vulnerabil-
ity analysis [7] have been used to assess the relative vulnerability
of systems. While conceptualizing how an attacker could access a
system allows threat models to be refined and defenses to be tight-
ened, at a conceptual level they capture specific slices of the conflict
between attackers and defenders, as it is essentially impossible to
capture all possible paths in and through a system—there are always
new opportunities. However, models such as attack graphs can also
be used to model cybersecurity risk and attacker capabilities in
more general ways, as evidenced by the TREsPASS project [15].

Game theory has been used by some researchers to model in-
teractions in computer security [11, 19]. While game theory can
represent specific attacker/defender interactions, the very nature
of game theory limits its utility in computer security because game-
theoretic games have well-defined rules and actions that each player
can take. In contrast, in computer security attackers regularly invent
new “moves,” ones that can often break the “rules” that defenders
thought they were playing by, forcing defenders to revise their
assumptions and figure out how to respond.

Security metrics is a complex topic, with multiple surveys [14,
27, 29] and books [5, 8]; as such, a full review is not feasible here.
However, a review of some key work and observations about pat-
terns in the literature is sufficient to highlight the gaps we see in
past work.

Security metrics quantify virtually any aspect of system config-
uration or history that could be related to security. Some measures
are historical, such as how often vulnerabilities have been found,
how long it took for vulnerabilities to be patched, and the time
between patches being made available to being applied to a given
system. Some are empirical, arising from lab or field studies where
a defense system’s ability to detect malware or intrusions are tested.
Others are more theoretical, such as password strength or address
space randomization entropy, where the construction of the system
should give certain security properties but its real-world security is
impacted by many external factors1. No matter the type of metrics,
however, each is only capturing a small aspect of system security.

3 Motivation

As explained in the previous section, existing security metrics cap-
ture narrow slices of the security state of a system because they are
focused on things that can be measured historically, empirically,
or theoretically. Paradoxically, then, to develop metrics that give a
broader view of security, we must focus on patterns that cannot be
so easily measured but can still be conceptualized.

But then, what is the point of a metric that cannot be calculated
in practice? As it turns out, such metrics are actually common-
place in other contexts. Goodness, quality, normality, convenience,
attractiveness—virtually anything that people care about can be
thought of as a metric, but one that exists in a abstract, conceptual
space rather than in the world of things that can be measured ex-
plicitly. Such idealized metrics serve as a bridge between what can
be measured and our actual goals.

Unlike these other abstract metrics, security is a much more
difficult abstract metric to work with because security is dictated
by the actions of adaptive adversaries. What is secure today is no
longer secure tomorrow because of attacker innovation. Thus, even
thinking about something being “more secure” or “less secure” is
much less grounded than similarly abstract concepts such as quality
or attractiveness. What we need, then, are abstract metrics that
capture what we mean when we talk about security, but do so in a
way that captures attacker/defender adaptation dynamics.

The purpose of this work, then, is to develop alternative abstract
metrics that capture the dynamics between attackers and defenders.
We propose that a more holistic view of computer security can be
grounded in knowledge reuse formalized using ideas from artificial
intelligence. We explain further in the next section.

4 Knowledge Reuse and AI

Attacks on computer systems succeed when an attacker has the
right knowledge. This knowledge could be a password, a script
exploiting a vulnerability, or the information and skills needed
to carry out a social engineering attack. To stop or mitigate such
attacks, defenders require their own knowledge: that a password
has been compromised and should be changed, a software patch
1Cryptographic security measures are virtually all theoretical.

Towards Foundational Security Metrics NSPW ’24, September 16–19, 2024, Bedford, PA, USA

to eliminate a vulnerability, or training to make social engineering
attacks harder. Attackers are thus incentivized to increase their
knowledge, and defenders are incentivised to do what they can
to invalidate attacker knowledge. To develop abstract metrics that
capture the above dynamic, we need to formalize knowledge. For-
tunately, the field of artificial intelligence has already developed
formal methods for representing knowledge, particularly through
search. We explore this idea below.

AI algorithms and techniques are complex computational pro-
cesses designed to mimic human cognition, thereby enabling ma-
chines to solve problems, make decisions, and learn from experi-
ence [20]. These methodologies include machine learning, deep
learning, natural language processing, and reinforcement learn-
ing [25]. Expert systems, decision trees, fuzzy logic, and genetic
algorithms are also techniques used in AI [16].

In the context of AI, a search space is the domain or range of
all possible configurations where the solution to a problem can be
found. It is also known as the state space, particularly in problems
modeled as state-space searches [20]. This includes the set of all
states reachable from the initial state by any sequence of actions.
Each “state” in the search space represents a different configuration
of the problem. For instance, if you were using AI to solve a chess
game, the search space would include all possible legal positions of
pieces on the board. If you were using AI to find the shortest route
between two cities, the search space would include all possible paths
that could be taken. Exhaustive search algorithms such as depth-
first search and breadth-first search can be used to explore large
search spaces at great computational cost. Many AI algorithms,
from A* search to training algorithms for deep neural networks,
can be seen as alternative ways to search large search spaces, ones
that work better or worse depending upon the nature of the space.

Knowledge creation in AI, particularly through the exploration
of a search space, occurs as algorithms investigate different po-
tential solutions or states and learn from the outcomes of these
explorations. This process is extensively studied in reinforcement
learning (RL), a branch of AI [25]. In RL, an agent interacts with
an environment (which is essentially the search space) by taking
actions, transitioning between states, and receiving rewards or
penalties. The agent starts with little or no knowledge about the
environment. As it explores the search space (i.e., tries different
actions in different states), it begins to learn which actions lead
to higher rewards in specific states, gradually creating a policy—a
mapping of states to the best action in that state. This policy can
be considered as the knowledge that the agent has acquired about
the environment.

Similarly, in a supervised learning scenario such as training a
neural network to classify images, the search space might be the
set of all possible values of the network’s weights and biases. The
learning process involves searching this space to find the values
that minimize the difference between the network’s predictions
and the true labels of the training data. The knowledge created here
is the optimal or near-optimal set of weights and biases that the
network can use to classify images accurately. In both scenarios, the
search space’s exploration is a critical part of the learning process,
leading to the creation of new knowledge as the AI system discovers
which configurations of its parameters or actions lead to the best
outcomes.

In our research, we remain agnostic to the specific AI algorithms
or manual search strategies that an attacker may employ. We ac-
knowledge that much like in any other problem-solving scenario,
an attacker navigates a domain of possibilities—a search space—to
improve their understanding of it and to discover solutions. This
exploration process leads to the creation of knowledge that can be
used to invalidate previously held assumptions. Irrespective of the
AI methods used, altering the search space changes the difficulty of
finding a solution. While many other factors can influence it, the
difficulty of a search is intrinsically related to the size of the search
space.

This concept aligns with the well-established ‘No Free Lunch
Theorem’ [28] in machine learning and optimization, which essen-
tially posits that no single algorithm is superior when averaged
across all possible problems. The theorem implies that the effective-
ness of an AI algorithm depends on the specific characteristics of
the problem at hand, including the size and structure of the search
space. Thus, while an algorithm may excel in certain search spaces,
its performance may diminish in others.

While work in AI can give us insights into the relationship be-
tween knowledge and security, we acknowledge that there are
other perspectives on the nature of knowledge and these perspec-
tives can also help us understand the problem of computer security.
In particular, epistemology is a branch of philosophy that exam-
ines the nature of knowledge. From an epistemological perspective,
knowledge is not simply information but is contextual and dynamic,
shaped by both individual and collective experiences [26]. Such
a social perspective on knowledge is not directly captured by the
formalism we present in the next section, and indeed any formal
model is unlikely to capture the nuances and complexities of epis-
temology in the context of security or any other field. Like any
model, however, ours is distinguished as much by what it leaves
out than by what it includes.

In the upcoming section, we delve into a formalization of explor-
ing a domain of possibilities, commonly referred to as a search space.
This formalization serves as the basis for our proposed metrics.

5 Modeling Attacker Knowledge

In this section, we present a model that shows the dynamics of com-
puter security are best understood as a unique pattern of knowledge
reuse, one in which attackers develop knowledge of how to com-
promise systems.

An attacker has to create knowledge in order to develop an
exploit and attack a system, but how much knowledge has to be cre-
ated and how we model the knowledge creation? In AI knowledge
creation is modeled as search over an appropriate search space,
with search leading to knowledge. Here, we are doing the same
thing. We define Attack as search for any form of malicious action
and Attacker as an agent who performs the search.

Attackers always build knowledge based on past knowledge like
personal experience or the work of others. The more background
they have, the easier knowledge creation is. Knowledge reuse be-
comes a restriction on the search space. Search spaces are used in
security most commonly in cryptography. In this research, we are
generalizing this to apply to security threats in general by using a
more abstract search space.

NSPW ’24, September 16–19, 2024, Bedford, PA, USA Nilofar Mansourzadeh and Anil Somayaji

5.1 Definitions

In this section, we begin by defining some terms that will be used
in our model. We begin by understanding the foundational concept
of an attack search space.

Imagine you have a house. The attack search space for a burglar
would be all the possible entry points into your house—the front
door, back door, windows, the chimney, etc. In the context of com-
puter security, if your house is a computer system or network, the
attack search space would include software vulnerabilities, weak
passwords, open ports, and so on.

The attack search space describes all the possible ways an at-
tacker could attempt to compromise a system. It is essentially
the universe of all potential avenues an attacker might explore
to achieve their malicious intent.

Definition 1 (Attack Search Space). Let 𝐴 be the attack
search space. Each element 𝑎 ∈ 𝐴 represents a possible attack vector.
For instance, in our house analogy, 𝑎1 might be the front door, 𝑎2 the
back door, and so on. The size of this search space is represented by
|𝐴|, which is the number of elements in the set 𝐴.

𝐴 = {𝑎1, 𝑎2, ...} (1)

Note that 𝐴 can be used to represent the search space of an
entire system (a computer or an entire enterprise network) or it
can represent attacks that target a specific subsystem (such as an
organization’s Active Directory).

To better visualize the concept of the attack search space, let us
consider a few examples.

Example 1 (PINs). Consider a simple login form. If an attacker
wants to brute-force the password, the attack search space consists
of all possible password combinations. If the password is a 4-digit
PIN, then |𝐴| = 104 = 10,000 possible combinations.

Example 2 (Buffer Overflow Vulnerabilities). Consider a software
application that takes user input without properly limiting its size.
The attack search space for exploiting buffer overflow vulnerabili-
ties in this application involves finding inputs that not only exceed
the buffer’s allocated space but also successfully execute arbitrary
code. Unlike a finite set of PIN combinations, this space includes a
vast range of inputs varying in length, content, and structure.

Example 3 (Authentication Verification Errors). Consider a web
application with multiple endpoints requiring user authentication.
The attack search space related to authentication verification errors
encompasses all possible ways an attacker might bypass authenti-
cation or escalate privileges without valid credentials. This space
is abstract and multifaceted, involving various methods such as
session hijacking, forging authentication tokens, exploiting logic
flaws, and more.

The attack search space is a crucial concept in computer security.
By understanding the size and scope of this space, defenders can
better prepare and protect systems, and attackers can determine the
feasibility of their potential methods. The bigger the attack search
space, the harder (and often longer) it generally is for an attacker
to successfully compromise a system. However, attackers look for
ways to reduce the effective size of this space by choosing specific

types and avenues for attack, and by developing better techniques
for searching for specific vulnerabilities.

Building on the concept of the attack search space, we now delve
into the specific pathways or methods an attacker might employ,
termed as attack vectors.

Definition 2 (Attack Vector). An Attack Vector is a repre-
sentation of the way or approach an attacker uses to exploit a system.
It encapsulates three main elements that are crucial to understanding
the nature of the attack.

Given an attack vector 𝑎:

𝑎 = (𝑀,𝑇, 𝐸) (2)

Where
• 𝑀 represents the method or technique used by the attacker. It
is the how of the attack.

• 𝑇 denotes the target of the attack. It is the where or what of
the attack.

• 𝐸 encapsulates the conditions that need to be in place for the
attack to be successful. These could be vulnerabilities in the
system, user behaviors that can be exploited, or even external
conditions like a natural disaster that an attacker is taking
advantage of.

To further illustrate this idea, let us examine a real-world scenario
involving an SQL Injection attack.

Example 4 (Attack Vector). In the example below, we are looking
at one of the most common web attack vectors: the SQL Injection
attack.

• M: The method being used by the attacker is SQL Injection.
This technique involves injecting malicious SQL code into in-
put fields to manipulate or query the database in unintended
ways.

• T: The target of this attack is the Web application’s user
login page. This means the attacker is specifically trying to
exploit the login page of a web application, possibly to gain
unauthorized access.

• E: The exploit conditions here are that the application does
not sanitize user input, and the database directly processes
the raw input. This is a common vulnerability in web appli-
cations where user inputs are not checked or sanitized for
malicious content before being processed. If an application
does not sanitize inputs, it might execute malicious SQL code
provided by the attacker.

For this particular attack vector, we can represent it as:

𝑎𝑆𝑄𝐿𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛 = (SQL Injection, User login page, No input sanitation)

Now that we have explored the specifics of attack methods, it is
crucial to consider the knowledge attackers might possess about
vulnerabilities and how they might reuse this knowledge.

Definition 3 (Attacker’sKnowledge). The attacker’s knowl-
edge about specific vulnerabilities refers to the information they have
about potential weaknesses in the system. Let 𝐾 be the set of vulner-
abilities the attacker knows. Each vulnerability 𝑘 ∈ 𝐾 represents a
specific weakness in the system.

Towards Foundational Security Metrics NSPW ’24, September 16–19, 2024, Bedford, PA, USA

Definition 4 (Knowledge Reuse). Reusing knowledge means
leveraging insights or methods from past attacks for new attacks.
Knowledge reuse can be formalized as a function 𝑅, which maps a
known vulnerability to potential attack vectors in the search space.

𝐾 = {𝑘1, 𝑘2, ...} (3)

𝑅 : 𝐾 → 𝐴 (4)

To contextualize the concept of knowledge reuse, let us envision
a scenario where an attacker leverages known vulnerabilities used
in past exploits.

Example 5 (Knowledge Reuse). Imagine a hacker who, in the
past, exploited a vulnerability in System A. Now, they come across
System B and recognize that it has the same vulnerability. Instead of
starting from scratch, the hacker can reuse the knowledge obtained
from their past exploitation of System A to quickly and efficiently
attack System B.

This is analogous to a locksmith who knows how to pick a
specific type of lock. If they encounter the same lock type on a
different door, they can use their prior knowledge to open it without
having to figure out the mechanism all over again.

The idea of an attacker’s knowledge and knowledge reuse un-
derscores the importance of regularly updating systems and fixing
known vulnerabilities. If attackers can reuse their methods from
past exploits, it makes their job easier and faster. On the defense
side, understanding these concepts helps in predicting potential
threats and deploying appropriate countermeasures. If a vulnerabil-
ity is known and fixed in one system, it is essential to ensure that
other similar systems are also patched to prevent knowledge reuse
by attackers.

With the understanding of how knowledge reuse functions, we
now investigate its direct implications on the nature of the attack
search space.

Theorem 6. (Knowledge reuse reduces effective attacker

search space.) Let 𝐴 denote the full attack search space and 𝐾 repre-
sent the set of known vulnerabilities within this space. The application
of knowledge reuse in identifying attack vectors reduces the search
space from 𝐴 to a smaller subset 𝐴′, where 𝐴′ = 𝑅(𝐾) and 𝑅 maps
known vulnerabilities to their respective attack vectors. This reduced
search space 𝐴′ has a size that is less than or equal to the size of
𝐴, formally expressed as |𝐴′ | ≤ |𝐴|. Moreover, the subset 𝐴′, being
informed by prior knowledge (𝐾), possesses a higher density of ex-
ploitable vulnerabilities compared to the remaining portion of 𝐴 not
covered by 𝐾 .

Proof. Assume the full attack space 𝐴 consists of all possible
attack vectors, while 𝐾 consists of known vulnerabilities. The map-
ping function 𝑅 : 𝐾 → 𝐴′ translates these vulnerabilities into
specific attack vectors, forming the reduced attack space 𝐴′.

• Reduction of Search Space: By definition, 𝐴′ is constructed
solely from the known vulnerabilities 𝐾 , which implies 𝐴′

is a subset of 𝐴. Thus, by construction, |𝐴′ | ≤ |𝐴|.
• Inside 𝐾-informed Space (𝐴′): By focusing on 𝐾 , attackers
leverage historical data and known vulnerabilities, which are

inherently more likely to be exploitable due to their estab-
lished nature. Hence, the “density” of viable attack vectors
within 𝐴′ is higher, making the search more efficient and
likely to yield fruitful results. Outside 𝐾-informed Space:
While vulnerabilities can indeed exist outside of 𝐾 , the ab-
sence of prior knowledge or evidence suggesting their ex-
ploitability means that the search within 𝐴 \𝐴′ (the portion
of𝐴 not included in𝐴′) is more akin to searching in the dark.
The probability of discovering a new vulnerability in this
area is lower, given the lack of targeted direction, making
this effort less efficient and more time consuming.

• Probabilistic Advantage: The choice to operate within 𝐴′ is
not just about reducing the search space but also about max-
imizing the probability of finding exploitable vulnerabilities.
The knowledge-driven approach inherently concentrates ef-
forts where success is more likely, thus optimizing the search
process.

□

Therefore, knowledge reuse effectively reduces the attack search
space to a more manageable and potentially more fruitful subset𝐴′,
where the efficiency of identifying new vulnerabilities is enhanced
due to the higher density of known vulnerabilities. This strategic
narrowing not only makes the attacker’s job quicker but also more
efficient, underlining the theorem’s premise.

To further emphasize the effects of knowledge reuse on the attack
search space, let us consider an illustrative example.

Example 7 (Impacts of Knowledge Reuse). Imagine an attacker
has previously exploited 5 different systems. From these exploits,
they have learned about 5 vulnerabilities, each corresponding to a
specific attack vector. When faced with a new system, instead of
considering every possible method of attack (the full search space
A), they can narrow their focus to just these 5 known vulnerabilities.

So, even if the total number of potential attack vectors in the full
search space A is, say, 1000, by relying on their previous knowledge,
the attacker reduces their search space to just 5. This is a drastic
reduction and showcases the efficiency gained through knowledge
reuse.

6 Two Security Metrics

Now that we have a formal way of discussing knowledge and knowl-
edge reuse in the context of computer security, we can now define
new metrics in terms of knowledge and attacker search spaces.

Here we define two metrics, KOSM and DESM.

6.1 Knowledge Obfuscation Security Metric

(KOSM)

The Knowledge Obfuscation Security Metric (KOSM) is designed
to assess how well a system impedes attackers from effectively
reapplying previously acquired knowledge. KOSM quantifies the
effectiveness of a system’s ability to obscure or distort previously
acquired knowledge by potential attackers. By making previously
gained knowledge unreliable or irrelevant, knowledge obfuscation
reduces the value of attackers reusing known strategies or insights.
A higher KOSM indicates that the system is better equipped at

NSPW ’24, September 16–19, 2024, Bedford, PA, USA Nilofar Mansourzadeh and Anil Somayaji

rendering previously acquired attacker knowledge obsolete, thus
increasing the cost and effort required for an attack.

Knowledge obfuscation can take many forms:
• Data Distortion: The defender intentionally modifies data to
render them meaningless or misleading to an attacker who
does not know how they have been transformed. Encryp-
tion is a kind of data distortion, as are transformations of
data tables where columns and rows are renamed and/or
rearranged.

• System Behavior Variation: The defender changes the be-
havior of a system over time or per interaction to ensure
that attackers cannot reliably predict how the system will
react. By adding unpredictability to the system’s operations,
attackers cannot effectively leverage their previous expe-
riences or insights. Such variations could be arbitrary, say
if the system randomizes how it responds to invalid input.
Alternately, it could be adaptive, where the system explicitly
responds differently when given abnormal (but technically
legitimate) inputs.

Implicit in knowledge obfuscation is the understanding that
defenders cannot really make their systems behave too differently
over time if they wish their systems to function properly; however,
defenders can periodically change how their systems behave so
as to limit the utility of knowledge attackers have gained through
reconnaissance, research, or attacks on other similar systems.

With this conceptual backdrop in place, we can now define KOSM
precisely.

Definition 5 (KOSM). Let us consider:

• 𝐾 : The set of knowledge an attacker initially possesses about
the system.

• 𝐾 ′: The perceived knowledge by the attacker after obfuscation
strategies are applied.

• 𝑂 : The obfuscation function that transforms K into K’.

For the sake of quantification, let us associate a value with knowl-
edge:

• Value𝑉 (𝐾): The utility or effectiveness of the initial knowledge
set K in terms of aiding an attack.

• Value 𝑉 (𝐾 ′): The utility or effectiveness of the obfuscated
knowledge set K’.

The effectiveness of KOSM can be represented by the reduction in
knowledge utility:

Δ𝑉 = 𝑉 (𝐾) −𝑉 (𝐾 ′) (5)

Where:

• A higher Δ𝑉 indicates a more effective knowledge obfusca-
tion, implying that the system’s security is enhanced by the
obfuscation strategies.

• A Δ𝑉 close to zero would imply that the obfuscation strategies
are not significantly impacting the utility of the attacker’s
knowledge, suggesting a need for stronger obfuscation mea-
sures.

The KOSM metric is then defined as:

𝐾𝑂𝑆𝑀 =
Δ𝑉

𝑉 (𝐾) (6)

Where:
• KOSM = 1 implies maximum obfuscation, rendering the at-
tacker’s prior knowledge completely useless.

• KOSM = 0 indicates no obfuscation, meaning the attacker’s
knowledge remains fully effective.

To see the utility of KOSM, consider the following theorem.

Theorem 8. For a systemwith applied KOSM, the expected number
of successful attacks decreases as KOSM increases.

Proof. Let us denote:
• 𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙 : Expected number of successful attacks based on
initial knowledge, K.

• 𝐸𝑜𝑏𝑓 𝑢𝑠𝑐𝑎𝑡𝑒𝑑 : Expected number of successful attacks based
on obfuscated knowledge, K’.

From our earlier definition of KOSM:
𝐾𝑂𝑆𝑀 = Δ𝑉

𝑉 (𝐾)
Where:
Δ𝑉 = 𝑉 (𝐾) −𝑉 (𝐾 ′)
Given that V(K) represents the utility or effectiveness of the

knowledge set K for an attack, a higher KOSM value implies a
greater reduction in knowledge utility.

Thus, as KOSM increases, the difference between 𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙 and
𝐸𝑜𝑏𝑓 𝑢𝑠𝑐𝑎𝑡𝑒𝑑 becomes more pronounced:
𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝐸𝑜𝑏𝑓 𝑢𝑠𝑐𝑎𝑡𝑒𝑑 ∝ 𝐾𝑂𝑆𝑀
Hence, 𝐸𝑜𝑏𝑓 𝑢𝑠𝑐𝑎𝑡𝑒𝑑 < 𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙 as KOSM increases, proving the

theorem.
□

Note that what we refer to here as knowledge obfuscation over-
laps with the concept of security through obscurity. Publicly avail-
able knowledge about a system’s defenses may empower attackers
to refine their strategies. However, by obfuscating key elements, de-
fenders can mitigate the reuse of known vulnerabilities [23]. While
security through obscurity has been criticized as a weak defense, it
remains foundational in certain contexts, particularly in systems
utilizing AI [1]. While security through obscurity refers to a spe-
cific state of a system (that some knowledge is obscure), knowledge
obfuscation refers to the ability of attackers to make knowledge
“obscure.”

In summary, the KOSMmetric quantifies the security of a system
by measuring the reduction in the utility of attacker knowledge
due to obfuscation strategies. A system with a high KOSM value
effectively neutralizes the advantage an attacker would have from
their prior knowledge without the defender having any specific
knowledge of the exploits the attacker may be targeting.

6.2 Defense Evolution Security Metric (DESM)

The Dynamic Defense Evolution Security Metric (DESM) quantifies
a system’s ability to dynamically adapt and evolve its defenses in
response to potential threats. A higher DESM value indicates the
system’s proficiency in altering its defenses to stay ahead of attack-
ers. This continuous evolution ensures that the system’s defenses

Towards Foundational Security Metrics NSPW ’24, September 16–19, 2024, Bedford, PA, USA

remain effective against the ever-evolving landscape of attacks.
Primary facets of DESM include:

• Real-time Adaptability: The system’s ability to adjust its de-
fenses instantly based on detected threats or vulnerabilities.
For example, upon detecting an abnormal surge in traffic,
a system dynamically adjusts its firewall rules or deploys
additional resources to mitigate a potential DDoS attack.

• Predictive Evolution: The system’s capacity to anticipate
potential future threats and adjust its defenses accordingly.
For instance, leveraging AI and machine learning to analyze
historical data and predict future attack patterns, then proac-
tively adjusting defenses before these attacks materialize.

To further elucidate the concept of DESM, let us delve into its
formal definition.

Definition 6 (DESM). Let us consider:

• 𝐴: The initial set of attack vectors an attacker might employ.
• 𝐴′: The set of attack vectors after the system has evolved its
defenses.

• 𝐷 : The dynamic defense function that transforms 𝐴 into 𝐴′.
For quantification, let us associate a success rate with attack vectors:
• Success Rate 𝑆 (𝐴): The probability of a successful attack using
vectors in 𝐴.

• Success Rate 𝑆 (𝐴′): The probability of a successful attack using
vectors in 𝐴′ after defensive evolution.

The effectiveness of DESM is represented by the reduction in attack
success rate:

Δ𝑆 = 𝑆 (𝐴) − 𝑆 (𝐴′) (7)

Where:
• A higher Δ𝑆 indicates a more effective defense evolution, im-
plying enhanced system security.

• A Δ𝑆 close to zero suggests that the dynamic defenses have not
significantly impacted the effectiveness of the potential attack
vectors.

The DESM metric is then defined as:

𝐷𝐸𝑆𝑀 =
Δ𝑆

𝑆 (𝐴) (8)

Where:
• DESM = 1 implies that the defenses have evolved to render all
prior attack vectors completely ineffective.

• DESM = 0 indicates no change in the effectiveness of the attack
vectors, suggesting no significant defense evolution.

The following theorem relates DESM to attacker successes.

Theorem 9. For a system with applied DESM, the time to a suc-
cessful attack increases as DESM increases.

Following our theorem’s proposition, we now present a proof,
elucidating the conditions under which one strategy outshines the
other.

Proof. Let us denote:

• 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 : Time taken for a successful attack based on initial
attack vectors, A.

• 𝑇𝑒𝑣𝑜𝑙𝑣𝑒𝑑 : Time taken for a successful attack based on evolved
attack vectors, A’.

From our earlier definition of DESM:
𝐷𝐸𝑆𝑀 = Δ𝑆

𝑆 (𝐴)
Where:
Δ𝑆 = 𝑆 (𝐴) − 𝑆 (𝐴′)
Given that S(A) represents the success rate of an attack using

vectors in A, a higher DESM value implies a greater reduction in
attack success rate.

Now, if the success rate of an attack decreases, it implies that
an attacker would need to invest more time to achieve a successful
breach.

Thus, as DESM increases, the difference between 𝑇𝑒𝑣𝑜𝑙𝑣𝑒𝑑 and
𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 becomes more pronounced:
𝑇𝑒𝑣𝑜𝑙𝑣𝑒𝑑 −𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ∝ 𝐷𝐸𝑆𝑀
Hence, 𝑇𝑒𝑣𝑜𝑙𝑣𝑒𝑑 > 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 as DESM increases, proving the theo-

rem.
□

To summarize, KOSM attempts to capture the power of obfusca-
tion as a strategy for minimizing the value of an attacker’s gathered
intelligence, while DESMmodels the potential benefits of defenders
continuously evolving their defenses.

7 KOSM & DESM in Practice

On their own, KOSM and DESM cannot be used to measure the
absolute or relative security of real-world systems because they
are defined in very abstract terms. The utility of these metrics,
however, come in how they allow us to conceptualize the larger
relationships between attack strategies, defensive strategies, and
security metrics.

To better understand these metrics and their implications, we
now discuss potential scenarios and relate them to KOSM and
DESM, respectively.

7.1 Applying KOSM

Our Knowledge Obfuscation Security Metric, KOSM, measures the
ability of defenders to reduce the value of knowledge attackers
have acquired by transforming their systems in some way, ideally
through automatedmeans. Intuitively KOSMwould seem to directly
measure the entropy introduced by defenses such as address space
randomization [21] and other moving target defenses [6]. However,
that is not quite what KOSM captures.

Consider the case of address space layout randomization, or
ASLR. When it was was first introduced, a system with ASLR would
stop virtually all attempted exploits of buffer overflow vulnerabili-
ties because processes on protected systems would not have pre-
dictable memory layouts. However, once ASLR became widespread,
attackers developed techniques such as heap spraying [17] that
enabled code injection attacks even when memory layout was not
consistent. These methods are significantly more complex than
classic buffer overflow attacks and they don’t work in all circum-
stances; however, when they do, a buffer overflow vulnerability

NSPW ’24, September 16–19, 2024, Bedford, PA, USA Nilofar Mansourzadeh and Anil Somayaji

can be just as devastating as they were before ASLR defenses were
introduced.

Thus, when ASLR was introduced, it had a KOSM value of close
to one for buffer overflow-type vulnerabilities, because the obfusca-
tion (ASLR) made knowledge of a class of vulnerabilities essentially
useless as they couldn’t be exploited. However, as attackers devel-
oped ways to exploit buffer overflows even in the presence of ASLR,
the KOSM value of ASLR has decreased significantly, because now
knowledge of a buffer flow retains value even in the presence of
ASLR. In this context KOSM for ASLR is not zero, but it is no longer
close to one.

We expect similar KOSM trajectories for most defenses: when
first introduced, they invalidate entire categories of attacker knowl-
edge through relatively constrained system-level changes. As at-
tackers develop countermeasures, however, KOSM will decrease.
For most defenses KOSM will not ever go to zero, as the defense
will still serve to mitigate the exploitation of some vulnerabilities;
without further defender innovation, however, the value of any
static defense will tend to decrease to the point that it provides min-
imal protection against new attacks, no matter how much benefit
it provided when it was first introduced. KOSM thus captures how
the advantage provided by obfuscation-style defenses (those that
mitigate vulnerabilities without removing them) tends to go down
as attackers develop countermeasures. This attacker evolution ne-
cessitates ongoing defender evolution, something that we model in
part with DESM.

7.2 Applying DESM

While KOSM captures the relative advantage an obfuscation defense
gives in mitigating vulnerabilities, Dynamic Defense Evolution
Security Metric (DESM) captures to what degree a defense can
protect against a set of attacks. Note that a given vulnerability
can be exploited by many different attack vectors: a single buffer
overflow vulnerability could be exploited by 100 different pieces of
malware. Thus, attacker knowledge of vulnerabilities is not in the
same conceptual space as defender knowledge about specific attack
vectors. To better understand DESM, here we examine DESM in
the context of some standard dynamic defenses.

First, consider signature-based anti-malware defenses. We can
think of 𝐴 as representing the set of malware that can successfully
compromise a system, and 𝐴′ as the set of malware that can com-
promise a system after a signature update. If no signatures were
added, then𝐴 and𝐴′ will be equal and DESM will be zero, meaning
that no dynamic defense evolution has taken place. Similarly, if the
defenders add a signature that blocks one piece of malware and the
set of malware targeting a system is relatively large, then DESM
will be very close to zero even after a signature has been added—the
system’s defenses have adapted but not by very much.

Next, consider automated software updates. An update’s impact
on DESM will vary widely. At one end, some updates will have
a DESM of zero simply because the updates add or change func-
tionality. Updates that patch specific security vulnerabilities will
generally have a non-zero DESM, but the degree of change is pro-
portional to the number of impacted attack vectors, i.e., how much
malware has been thwarted by patching a specific vulnerability.
Some updates patch vulnerabilities that have not been targeted

while others patch vulnerabilities that have been widely used. A
patch strategy intended to maximize DESM would thus focus on
patching vulnerabilities that are more likely to be targeted by at-
tackers.

DESM can also be applied to defense strategies that change the
behavior of people rather than computer systems. For example,
by quantifying employees’ willingness to click on email links and
disclose confidential information through insecure channels, or-
ganizations can quantify their susceptibility to phishing attacks.
They can then design training programs and evaluate their effec-
tiveness by how they impact employee susceptibility metrics [9].
Organizations that use such training metrics and who continuously
update their curriculum in response to new threats can be said to
have a high DESM for phishing, while organizations that do not
monitor employee performance or who do not update their training
materials would have a lower DESM for phishing.

Last, consider anomaly-based intrusion detection systems that
detect attacks by learning models of normal system behavior and
responding to deviations from those models. Because such systems
can be bypassed by attackers mimicking normal system behav-
ior and such normal behavior can vary widely between systems,
anomaly-based intrusion detection systems cannot provide guaran-
teed protection against any malware or exploits of any vulnerability.
However, because they can detect with some probability a wide
variety of attacks, adding them as a defense layer increases the
DESM of a system, potentially significantly. Further, this DESM
level can be maintained to a degree even as attackers change their
attack vectors, even if the defenders make no further changes.

Anomaly detection systems are general defenses that provide
some protection in a wide variety of circumstances while signa-
ture based anti-malware defenses and automated updates provide
a great deal of protection in very specific cases—and almost no pro-
tection otherwise. By capturing the ability of defenders to respond
to changing attack vectors, DESM gives us a way of distinguishing
between these defensive strategies.

8 Discussion

Our key contributions here are 1) the insight that knowledge reuse
can be used as a foundation for security metrics, 2) search spaces, as
used in AI, can be used to formalize knowledge reuse in security, 3)
a formal model of knowledge reuse in security, and 4) two metrics,
KOSM and DESM, that capture different aspects of knowledge reuse
dynamics between attackers and defenders.

The key advantage of our formal yet abstract approach to the
problem of security metrics is that it allows us to think about the
relationship between attackers and defenders without reference to
specific attacks or technologies, allowing us to instead focus on the
dynamics of this interaction. It is well known that despite ongo-
ing investments in computer security, attackers retain an ongoing
advantage in that systems large and small are compromised on a
regular basis. Our new metrics can give us some insight as to why.

KOSM can help us think about how the advantages of specific
static defenses decrease over time, while DESM can help capture a
defender’s ability to respond to new threats. To be sure, applying
either metric to any specific situation can be difficult, as it requires
conceptualizing attacker and defender moves in a dynamic, abstract

Towards Foundational Security Metrics NSPW ’24, September 16–19, 2024, Bedford, PA, USA

search space of variable size. We hypothesize, though, that the very
act of thinking in this way can help us better understand defenses
from a strategic perspective, helping security researchers and prac-
titioners to better understand the dynamics of attacker knowledge
reuse. Under what circumstances does randomization improve se-
curity? What is the value of defenses that provide only partial pro-
tection but can do so against a wide variety of threats? When are
evasion and mimicry attacks worth developing countermeasures
against? These strategic questions are difficult to conceptualize in
most security models yet are relatively easy to model using our
attack difficulty formalism.

The mantra “no security through obscurity” has often been used
to minimize the value of various defense strategies. Perhaps the
key insight of this work is that obscurity is actually a foundational
security strategy, one that we must better understand how and
when to employ if we wish to materially change the balance of
power between attackers and defenders. We hope this work will
help motivate others to work more on these foundational problems.

References

[1] Ross J Anderson. Security engineering: a guide to building dependable distributed
systems. John Wiley & Sons, 2010.

[2] Max Boisot and Agustí Canals. Data, information and knowledge: have we got it
right? Journal of Evolutionary Economics, 14:43–67, 2004.

[3] Cormac Herley and Paul C Van Oorschot. SoK: Science, security and the elusive
goal of security as a scientific pursuit. In 2017 IEEE Symposium on Security and
Privacy, pages 99–120. IEEE, 2017.

[4] Cormac Herley and Paul C Van Oorschot. Science of security: Combining theory
and measurement to reflect the observable. IEEE Security & Privacy, 16(1):12–22,
2018.

[5] Debra S Herrmann. Complete Guide to Security and Privacy Metrics: Measuring
Regulatory Compliance, Operational Resilience, and ROI. Auerbach Publications,
New York, 2007.

[6] Sushil Jajodia, Anup K Ghosh, Vipin Swarup, Cliff Wang, and X Sean Wang,
editors. Moving Target Defense: Creating Asymmetric Uncertainty for Cyber
Threats, volume 54 of Advances in Information Security. Springer, New York, NY,
2011.

[7] Sushil Jajodia, Steven Noel, and Brian O’Berry. Topological analysis of network
attack vulnerability. Managing Cyber Threats: Issues, Approaches, and Challenges,
pages 247–266, 2005.

[8] Andrew Jaquith. Security Metrics: Replacing Fear, Uncertainty, and Doubt. Pearson
Education, 2007.

[9] Matthew L Jensen, Michael Dinger, Ryan T Wright, and Jason Bennett Thatcher.
Training to mitigate phishing attacks using mindfulness techniques. Journal of
Management Information Systems, 34(2):597–626, 2017.

[10] Susan Landau. Standing the test of time: The data encryption standard. Notices
of the AMS, 47(3):341–349, March 2000.

[11] Saran Neti, Anil Somayaji, and Michael E Locasto. Software diversity: Security,
entropy and game theory. In 7th USENIX Workshop on Hot Topics in Security
(HotSec 12), Bellevue, WA, August 2012. USENIX Association.

[12] Oluwatosin Ogundare. How do you know what you know: Epistemology in
software engineering. Journal of Software Engineering and Applications, 10(2):168–
173, February 2017.

[13] Shirley C Payne. A guide to security metrics. SANS Institute Information Security
Reading Room, 2006.

[14] Marcus Pendleton, Richard Garcia-Lebron, Jin-Hee Cho, and Shouhuai Xu. A
survey on systems security metrics. ACM Computing Surveys (CSUR), 49(4):1–35,
December 2016.

[15] Wolter Pieters, Dina Hadziosmanovic, Aleksandr Lenin, Lorena Montoya, and Jan
Willemson. TREsPASS: Plug-and-play attacker profiles for security risk analysis.
35th IEEE Symposium on Security & Privacy, Poster Abstracts, 2014.

[16] David L Poole and Alan K Mackworth. Artificial Intelligence: Foundations of
Computational Agents. Cambridge University Press, New York, NY, 2010.

[17] Paruj Ratanaworabhan, V Benjamin Livshits, and Benjamin G Zorn. NOZZLE: A
defense against heap-spraying code injection attacks. In 18th USENIX Security
Symposium, pages 169–186, 2009.

[18] Dirk Rijmenants. One-time pad, 2020. Last retrieved November 1,
2024. Original: http://users.telenet.be/d.rijmenants/en/onetimepad.htm. Current:
http://hawkgirl.net/documents/communication/One-time-pad.pdf.

[19] Sankardas Roy, Charles Ellis, Sajjan Shiva, Dipankar Dasgupta, Vivek Shandilya,
and Qishi Wu. A survey of game theory as applied to network security. In 2010
43rd Hawaii International Conference on System Sciences (HICSS ’10), pages 1–10.
IEEE, 2010.

[20] S.J. Russell, P. Norvig, and E. Davis. Artificial Intelligence: A Modern Approach.
Prentice Hall series in artificial intelligence. Prentice Hall, 2010.

[21] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu, and
Dan Boneh. On the effectiveness of address-space randomization. In Proceedings
of the 11th ACM Conference on Computer and Communications Security, pages
298–307, 2004.

[22] Oleg Sheyner, Joshua Haines, Somesh Jha, Richard Lippmann, and Jeannette M
Wing. Automated generation and analysis of attack graphs. In 2002 IEEE Sympo-
sium on Security and Privacy, pages 273–284. IEEE, 2002.

[23] Adam Shostack. Threat Modeling: Designing for Security. John Wiley & Sons,
2014.

[24] Jonathan M Spring, Tyler Moore, and David Pym. Practicing a science of security:
A philosophy of science perspective. In Proceedings of the 2017 New Security
Paradigms Workshop, pages 1–18, 2017.

[25] Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction.
MIT press, 2018.

[26] Haridimos Tsoukas. Complex Knowledge: Studies in Organizational Epistemology.
Oxford University Press, 2004.

[27] Vilhelm Verendel. Quantified security is a weak hypothesis: A critical survey
of results and assumptions. In Proceedings of the 2009 New Security Paradigms
Workshop, pages 37–50, 2009.

[28] David H Wolpert, William G Macready, et al. No free lunch theorems for search.
Technical Report SFI-TR-95-02-010, Santa Fe Institute, February 1996.

[29] George O.M. Yee. Security metrics: An introduction and literature review. Com-
puter and Information Security Handbook, 2013.

[30] Yin Zhang and Vern Paxson. Detecting stepping stones. In USENIX Security
Symposium, Denver, Colorado, August 2000.

	Abstract
	1 Introduction
	2 Evaluating Security
	3 Motivation
	4 Knowledge Reuse and AI
	5 Modeling Attacker Knowledge
	5.1 Definitions

	6 Two Security Metrics
	6.1 Knowledge Obfuscation Security Metric (KOSM)
	6.2 Defense Evolution Security Metric (DESM)

	7 KOSM & DESM in Practice
	7.1 Applying KOSM
	7.2 Applying DESM

	8 Discussion
	References

