
Content Provider Conflict on the Modern Web
Terri Oda, Anil Somayaji, Tony White

School of Computer Science, Carleton University
Ottawa, Ontario, Canada

{toda,soma,arpwhite}@scs.carleton.ca

Abstract—Today many web pages include externally sourced
content. Advertisements, video, blog “trackbacks,” search—these
and other features of the modern web are provided by third-
party servers. Such external content is so popular that content
is often incorporated from more than one source. In this paper
we argue that such multiple inclusions are a significant security
risk because of the potential for conflict between included
elements. In particular, the use of JavaScript to provide external
content means that providers can observe and interfere with each
other. Financial incentives and competitive advantage provide
motivation for such conflicts, both for criminals and for legitimate
enterprises. To prevent users and web content providers from
becoming collateral damage, we must develop and deploy prac-
tical techniques for isolating externally provided web content.
This paper outlines the security threat posed by combining
content from different providers and describes requirements for
a solution.

I. INTRODUCTION

From the beginning of the World Wide Web, HTML pages
have been composite documents, incorporating elements from
multiple sources. Early pages mostly used text and images
from a single web server; modern web pages, however, include
content from multiple organizations. Some of these inclusions
provide functional enhancements such as search services,
blog “trackback” links, and video players; others supply the
advertisements that are the economic foundation of much of
the web.

Standard HTML4 mechanisms for incorporating external
content (such as the img and embed tags) restrict them to
a portion of a page: they can only be displayed within a box
within the page, they cannot observe the rest of the page, and
they can only receive user input when mouse or keyboard
events are directed to them. Many web developers, however,
have found these mechanisms to be too restrictive for dynamic
content, and so they have turned to another Web technology:
JavaScript.

The most common mechanisms for including external con-
tent today require the web page author to incorporate a
small fragment of boilerplate JavaScript code. This code will
typically load more code from a third party server; this addi-
tional code is what provides the actual functionality. Unlike
HTML-based inclusion mechanisms, included JavaScript has
full access to a page: all of the content and all of the events.

Many have recognized that such inclusions could represent
a security threat, particularly if the external JavaScript code is
compromised (e.g., [3]). Others have recognized the particular
dangers of web mashups—web applications that combine
together (“mash up”) two or more existing web applications or

pages [12], [10], [7]. What has not been appreciated, however,
is that the common case—inclusion of content from multiple
providers in an “ordinary” web page—itself constitutes a
security risk. The risk comes from the opportunities and
incentives for conflicting code.

Specifically, the commercial agendas of external content
providers seldom align; however, all JavaScript code is con-
sidered trusted within the confines of a page: each piece of
JavaScript can access all of a page’s code and data. Thus, it is
possible for one content provider to manipulate the code and
data included from another. This manipulation can be used to
degrade service, divert advertising revenue, and conduct click
fraud.

While current proposals for securing JavaScript in web
mashups can help secure included content in certain circum-
stances, they break important uses such as context-sensitive
advertisements (such as Google Adwords) while introducing
usability issues for unsophisticated web developers. Thus, we
believe that new solutions are needed for securing external
web content.

This paper has two key contributions. The first is identifying
the security threat caused inclusion of content from multiple
content providers. This threat is made more dangerous by the
assumption that content providers will interact only in safe
ways (or not at all), as well as the assumption that most web
pages are not in need of protections currently reserved for
more complex web applications. Such assumptions can lead
to inappropriate security decisions or design of systems which
do not easily address the full scope of the problem. Because of
the risks involved in such assumptions, the second contribution
here is in outlining the requirements for a solution to this
problem.

The rest of this paper proceeds as follows. In Section II, we
explain in more detail how external content is included in web
pages. Section III describes the standard security restrictions
on JavaScript and their limitations. We explore the idea of
content providers being adversaries in Section IV, including
specific attack scenarios. Some requirements for a solution are
discussed in Section V. In Section VI, we present related work
in web security including work on web mashups. Section VII
discusses the opportunities and challenges for better JavaScript
isolation mechanisms and Section VIII concludes.

II. WEB PAGE COMPOSITION USING MULTIPLE SOURCES

Most webpages are constructed using information from
several sources. Sites that have content they want others to



1 <o b j e c t width=” 425 ” h e i g h t =” 355 ”>
2 <param name=” movie ” va lue =” h t t p : / / www. you tube . com / v / FiARsQSlzDc ”>
3 < / param>
4 <param name=”wmode” va lue =” t r a n s p a r e n t ”>< / param>
5 <embed s r c =” h t t p : / / www. you tube . com / v / FiARsQSlzDc ”
6 type =” a p p l i c a t i o n / x−shockwave−f l a s h ” wmode=” t r a n s p a r e n t ”
7 width=” 425 ” h e i g h t =” 355 ”>
8 < / embed>< / o b j e c t>

Listing 1. Code for including a video on a web page, as generated by YouTube. Note that the information about the URL for the video is repeated both as
a parameter within the object tag (line 2) and inside the embed tag (line 5). This is to ensure compatibility with more browsers, as some use the object tag
and others use embed.

Figure 1. Inclusion of an image into an HTML document results in a predictable webpage

include will often give fragments of HTML code that users
can put in their page. Although browsers still vary in how they
render a page, this is the easiest way to assure that anyone who
wants to can include this content, be it an image, a video, or
something else.

A. Including Static Content

In the most basic of HTML, there are many ways to include
static content that will be the same every time the content is
viewed. For example, video site YouTube generates code for
people to embed video objects in their pages, as shown in
Listing 1.

Here, the pertinent part is the object or embed tag which
includes a flash video from YouTube into the page. Both tags
are provided because some browsers only understand one or
the other. The web browser reads the HTML, goes to get the
video, and inserts this video into the page. It only inserts the
video in where this tag was found. Images inserted with the
img tag work the same way.

The path to content inclusion is shown in Figure 1. Here,
you can see that the web page, combined with simple content
such as the image shown, behaves in a predictable way,
inserting the image where expected on the page.

B. Including JavaScript content

JavaScript is often used to generate content dynamically.
Advertisements are a good example of this. Consider the code
provided by Google for inserting an AdSense advertisement
onto a web page, as described in Listing 2. Here, we have a
small piece of JavaScript code which contains a few settings,
followed by a link to more JavaScript code. This code then
actually produces the advertisement which is to be placed on
the page.

Note that there is no indication of where the advertisement
should be placed. The very act of including this code allows
it read and write access to the entire page. The included
JavaScript code can choose to place the advertisement any-
where it deems suitable. In practice, it will place the content
where the web page creator included the code, since this is
the way things usually work with static content as described
in Section II-A. However, this placement is not guaranteed—it
is merely a convention.

Scripts are included as source, and often multiple scripts are
included in the same page. Script sources are evaluated in the
same context as the main page: the expectation is that the code
of included scripts will not interfere with each other. Multiple
inclusions work because developers respect conventions; the
browser enforces no separation.

Figure 2 gives a visual representation of what could happen
when JavaScript is included into a page. Unlike Figure 1, the
result of this action is unpredictable. Figure 2a shows what
one might expect the code to look like given JavaScript code
from an advertiser: the code only adds an advertisement image
into the box provided. However, we can see in Figure 2b that
the JavaScript could be used to add content to a page, say
to insert multiple advertisements. Finally, Figure 2c shows
that JavaScript code could also be used to delete the contents
of entire page. In practice, typical JavaScript from external
parties does not make drastic changes to a page’s appearance;
however, as part of providing services such as visitor statistics
and context-sensitive advertisements, included code commonly
accesses virtually all parts of the including web page.

While there are clearly issues with giving external entities
this level of control, there are limits placed on the functionality
of JavaScript that address many security concerns. We discuss
these features below.



1 <s c r i p t type =” t e x t / j a v a s c r i p t ”><!−−
2 G o o g l e a d c l i e n t = ” pub−6828282629126141 ” ;
3 /∗ 728 x90 , c r e a t e d 3 / 6 / 0 8 ∗ /
4 G o o g l e a d s l o t = ” 5248526188 ” ;
5 Google ad wid th = 728;
6 G o o g l e a d h e i g h t = 90;
7 / /−−>
8 < / s c r i p t>
9 <s c r i p t type =” t e x t / j a v a s c r i p t ”

10 s r c =” h t t p : / / pagead2 . g o o g l e s y n d i c a t i o n . com / pagead / show ads . j s ”>
11 < / s c r i p t>

Listing 2. A sample advertisement inclusion (Google AdSense).

Figure 2. Inclusion of JavaScript in an HTML document leads to unpredictable results. (a) looks as one might expect given code from an advertiser: the code
places an image advertisement in the box provided for the advertisement. (b) shows another possibility where the advertiser decides to modify the existing
page, deleting segments, changing others to be more favorable to their advertisement. (c) shows a case where the JavaScript has replaced the page with a
simple blank one.



III. JAVASCRIPT SECURITY

JavaScript was designed to be a programming language for
the web. Since web pages are provided by untrusted sources
the goal was to create an environment such that code on a
web page should not be able to harm web users, their com-
puters, or other Internet hosts. To provide these guarantees,
JavaScript enforces an execution sandbox. This sandbox is
designed to isolate programs from each other and from the
underlying operating system. Like Java applets (the first Web
programming framework to employ a sandbox), the JavaScript
sandbox prevents programs from accessing raw memory, the
contents of other loaded web pages, and local files [4]. While
elements can be incorporated from any remote resource that
can be described by a URL, this content is also isolated to the
including web page, thus preventing many forms of attack.

Elements from the same site residing on different pages
or frames, however, often need to interact to exchange infor-
mation. Thus, the JavaScript sandbox is relaxed in the case of
documents originating from the same domain. Thus, JavaScript
code in one document can manipulate the state of another
document with the same origin. This same origin exception
is routinely used to implement multi-pane interfaces, pop-up
windows, and more complex AJAX-based sites such as Google
Maps. While it is possible for the JavaScript sandbox to be
subverted by exploiting browser flaws [1], to a large extent
it succeeds in accomplishing its design goals. Our concern,
however, is that malicious interactions can occur within a given
page’s sandbox.

The JavaScript supports powerful mechanisms for code
and data separation, but these are undermined by unfettered
access to the global environment and the Document Object
Model (DOM). The DOM contains references to all docu-
ment text, top-level functions, global variables and objects—
essentially everything that is in a web page. DOM objects
may be accessed through a number of global variables such as
document. Any named node can be accessed using a call to
document.getElementByID(). Each specific node may
have its properties inspected, modified, or deleted.

All JavaScript code, including imported code, can read from
and write to the global environment and, by extension, to all
parts of the Document Object Model (DOM). Variables can be
overwritten, functions substituted, and page elements can be
read and changed arbitrarily. For example, a named link could
have its color inspected, thus exposing whether or not that link
had been previously visited by the user. Alternately, a node
could be removed entirely from the document tree entirely,
thereby compromising the document displayed.

The reason why imported code can access all global vari-
ables and functions is that all imported code and data is
included in page’s global JavaScript context (environment);
there is so separation between imported elements and code
embedded in the page (see Figure 3. This lack of separation
is what allows content providers to come into conflict. For
example, code from content-A.com can change attributes as-
sociated with document and these affect what is seen by

Figure 3. JavaScript included from external sources share the including
application’s global execution context (environment).

code included from content-B.com. Furthermore, a function
named foo loaded from content-A.com will be overwritten
by a function of the same name when content is loaded
from content-B.com. This conflict arises because the top-level
namespace is shared. To see the full extent of the problem,
refer again to Figure 2b in which the outcome of code
inclusion is undecidable. While it is expected that advertisers
will only write in the box where the advertisement is intended
to be displayed, there is nothing stopping them from doing
other things to the page—including targeting other content
providers.

To summarize, the current model for web document creation
allows code and data to be included from several sources. The
assumption is that all code is equally trusted and should be
integrated with the same rights and privileges as the document
that caused it to be included. Controlled interaction between
sources—other than the same origin policy—is not provided.
This inclusion of code and data can be thought of as a type of
code mobility, a form of distributed computing. As with other
code mobility systems, inappropriate trust relationships lead
to a number of potential problems. We discuss these problems
in the context of content provider conflict below.

IV. CONTENT PROVIDERS AS ADVERSARIES

Much attention has been focused on the problem of cross
site scripting (XSS), an attack in which someone injects
malicious code, usually JavaScript, into a page [14]. XSS is
usually accomplished by taking advantage of a bug in the
input checking of a web application. Attackers who are trusted
content providers, however, do not need to exploit software
bugs to inject malicious JavaScript—they already have the
required access.

However, why would one content providers want to inter-
fere with another? Consider that many content providers are
competitors. For example, they may both provide advertising
services, they could both serve up video content, or they might
both provide fast servers for accelerating delivery of web
content. This inclusion of code from competitors happens on
real pages. For example, CNN’s website includes advertise-
ments from advertisement.com (an AOL subsidiary), yet its
search functionality is provided by Google. Salon includes



Figure 4. Current (a) and proposed (b) architectures for web mashup applications.

JavaScript code from Yahoo’s Overture, Google Analytics,
and other smaller advertisers and media providers. Indeed, it
seems that virtually every major website that isn’t owned by
Google, Microsoft, or Yahoo includes content from competing
organizations.

While it is likely that virtually all current external content
providers are playing “nicely” with each other, we should not
expect that those relationships will remain so civilized. Indeed,
as the Sony rootkit debacle showed [20], major corporations
are perfectly capable of using malicious software to further
their interests.

Broadly speaking, there are three fundamental goals that
can be achieved by manipulating JavaScript behavior within
the sandbox: observation, content manipulation, and server
manipulation. Here we expand on these attack strategies by
exploring how a content provider A could target another
provider B when they both have code resident on a page X.

A. Observation
One key task for any organization is to monitor its competi-

tion. By manipulating JavaScript, it is possible for one content
provider to observe what the other is doing. For example, if
A wanted to know what text advertisements B was presenting
on a page, A could copy those advertisements into a separate
variable (by walking the DOM tree) and then send them to
another server using an HTTP GET or POST command.

Note that these are the same mechanisms used to generate
customized advertisements and to gather statistics on site
visitors. The only difference here is the subject of observation.

B. Content Manipulation
It would also be possible for provider A to directly manip-

ulate B’s code and data. Since there are no protection bound-
aries and every part of the global environment is accessible
by all JavaScript code, all A needs to do is overwrite or
override B’s variables. One simple attack would be to delete
B’s content. This would deny B advertising revenue; however,
it would also deny X’s owner revenue as well. Another attack
would be to rewrite displayed advertisements to make them
less appealing, thus reducing B’s click-through rate. A could
also replace B’s advertisements with A’s.

A more sophisticated attack would be for A to adjust the
attack based upon what code B has included. By walking the
DOM, A’s JavaScript can analyze any of B’s code that was part
the document. While imported JavaScript cannot be directly
analyzed in this way, A’s server can grab B’s JavaScript file,
analyze it, and return instructions on what variables to change
to A’s JavaScript in X—all by using a single GET request.

Of course, since there is no restriction on A’s access to the
page, A could choose to modify other parts of X. A could
cause B to display inappropriate advertisements by inserting
(hidden) content into the page. More sophisticated content-
based attacks are also possible such as content censorship;
to avoid detection, however, they would need to be very
constrained and targeted.

C. Server Manipulation

Rather than manipulating B’s JavaScript, A could instead
send messages to B’s servers using the state present in the
web page. Note that A’s JavaScript can do anything that B’s
JavaScript can do; thus, A can impersonate B’s code to B’s
servers. A could do this to give false information about page
X (e.g., misreport the content of X) to B, or to generate false
clicks on B’s advertisements (i.e., perpetrate click fraud).

V. REQUIREMENTS

This section attempts to create a set of goals for web security
solutions addressing the problem of content provider conflict.
There are 4 goals: ease of use for all web page creators,
clear adoption path, isolation between content providers, and
flexibility for future innovation in web applications.

A. Ease of use for all web page creators

Few people would choose to design security solutions which
are unusable, but sometimes it can be unclear who the intended
users are and what skills they have. Early web mashup
solutions such as Subspace [10] rely heavily upon skilled
web programmers who could produce secure web pages. This
makes sense when you are considering securing complex web
applications, which are often created by skilled programmers.
However, we have seen that there is risk any time code from



multiple providers is included on a page. Thus, any blog that
contains cut and pasted ad code, videos, etc. could be at risk,
and many people who use the simple cut and pasted code are
not programmers at all.

The ideal solution to content provider conflict must take
this common use case into account. For example, one could
provide secured code which can be cut and pasted with the
code fragments currently in use, or perhaps encourage tools
which automatically generate more secure code. Or, perhaps,
the solution lies in involving the page creator as little as
possible since their skill set and preferred tools cannot be
predicted.

B. Clear adoption path

Deployment of any solution is important, and a clear,
feasible adoption path is needed to go past the research
sphere into actual use on the web. The web is a distributed
and heterogeneous environment, and it is the diversity that
presents many problems to adoption. There are various types
of web server and browser in use, controlled by many different
individuals and organizations. Changing all of them at once
is infeasible. Similarly, caution must be used when making
changes to JavaScript or other web languages, and at least
partial backwards compatibility or a way to deal with older
websites could potential ease the pain of adoptions. The ideal
solution would put some thought into these issues and examine
ways in which deployment could be achieved.

C. Isolation between content providers

If the problem is that content providers have too much
access to other content providers’ code and content, then the
solution is to limit this access by providing isolation between
components. The ideal solution will block the three attacks
described previously: observation, content manipulation, and
server manipulation.

D. Flexibility for future innovation

Although it is difficult to predict the future, solutions
should try to plan for it by giving flexibility and allowing
for innovation in web applications. The current model, while
it now seems overly permissive, has given us the ability to
make applications that were unheard of when the web was
created. The ideal solution would solve current use cases
without limiting itself to only those known cases.

VI. RELATED WORK

Although concerns about the security of JavaScript are as
old as the language itself, only more recently have security
researchers begun really exploring the kinds of attacks that
JavaScript makes possible. While web security issues such
as drive-by downloads [16], [15], cross-site scripting [13],
and cross-site request forgery [11] do not require JavaScript,
JavaScript does make these and other attacks more potent
and easier to execute. Many security practitioners recommend
that users disable JavaScript in their browsers entirely [2] or
on a per-domain basis [8]; because so many pages require

JavaScript to render correctly, such “solutions” are not practi-
cal for most users. Thus, even though such a solution would
successfully block attacks, it can hardly be considered to be
deployable.

JavaScript itself already has powerful mechanisms for code
and data separation, as it has an environment-based lexical
scoping model for variable and function binding. This model
supports full closures, and thus provides very powerful mech-
anisms for code and data separation. These built-in abilities
may be very helpful when it comes to finding a solution,
but at the moment they are seldom-used. This is perhaps
due to the fact that code is often written by those who have
little understanding or interest in security. If things could be
arranged so that using these mechanisms were the easiest route
to writing JavaScript, it is possible that they would be utilized
more effectively.

Some have argued for a more comprehensive approach to
JavaScript security [18]; others have focused on scanning web
pages for dangerous forms of JavaScript [19], [13], [11], [6],
[21]. One limitation of code approaches is that they cannot
restrict the regular behavior of external content providers such
as ad servers even when they are potentially dangerous. Indeed
some solutions must explicitly whitelist ad servers in order
to achieve acceptable performance [21], [8]. As such, many
techniques are unable to solve the problems of conflicting
trusted content providers since they assume that all providers
are trusted.

Currently there is an ongoing battle between advertisers
and criminals. Advertisers regularly lose money to click fraud
schemes in which criminals fake legitimate user behavior [9],
and research indicates that some click fraud strategies can be
extremely subtle and hard to detect [3]. Criminals are also
taking advantage of the access ad servers have to regular users;
indeed, even major companies such as DoubleClick [5] and
Microsoft [17] have been tricked into distributing advertise-
ments containing malware. In this environment it is clear that
users have reason to be wary of ad servers. What we have
argued here is that content providers such as ad servers need
to be wary of each other as well.

A web mashup is an application that combines code and
data from more than one source into a single integrated tool.
In order to make a mashup application today, as shown in
Figure 4a, JavaScript from multiple sites must be imported into
a single environment. As explained in the previous section, this
construction raises significant security issues.

Several researchers have proposed secure mechanisms for
building web mashups. The goal of such systems is to achieve
something equivalent to Figure 4b. Here, code and data from
different sources are loaded into separate contexts; they neither
share the same DOM objects, nor do they share the same
namespace. Using the example from Section III, a function
foo would be defined twice, once in the context from A and
once in the context from B. For A and B to communicate, they
must use well-defined communication channels using mutually
agreed-upon protocols. Note that this architecture is virtually
identical to that used by most distributed computing platforms.



Current secure web mashup proposals achieve separation
and message passing either by requiring significant archi-
tectural changes to web applications [12], [10] or by using
JavaScript language extensions that must be implemented in
web browsers [7]. By themselves, these requirements make
current secure mashup solutions unappealing for regular web
pages. Even worse, these proposals would restrict the ability
of content providers to access the body of the including page,
thus breaking most popular site statistics services and context-
sensitive advertisements. Thus, while secure web mashup
mechanisms could be used to prevent content provider con-
flict, usability and functionality limitations would have to be
addressed before they could be widely deployed.

VII. DISCUSSION

When looking at the potential for conflict between external
content providers, we do not mean to imply that we expect
most providers to engage in open warfare on the web; instead,
we are simply pointing out that there are conflicting agendas,
and there is nothing to prevent those conflicts from manifesting
as real attacks. While one type of content provider conflict,
click fraud, is a significant problem, currently it is only
perpetrated by known criminals. What happens, though, when
legitimate businesses go bad?

The problem is somewhat analogous to that faced by compa-
nies that outsource to multiple partner companies. Each partner
must be given access to the company’s IT infrastructure; that
access must be limited, however, in order to minimize the
risks to the company. On the web, page authors outsource key
parts of their “business” to outside parties, but do so without
restricting their behavior. Social norms and legal measures
can deter bad behavior to some degree; unfortunately, the
global nature of the Internet means that we cannot rely upon
individual societies or governments to enforce those norms.
In operating systems, we long ago realized that memory
protection made for more robust and secure systems. The
question is, how do we bring analogous protections into the
JavaScript sandbox?

As with most security problems, a point solution is not
the answer; rather, layers of defense are required. Some
defenses, such as code obfuscation and tamper resistance,
could be deployed by the content providers themselves. Such
measures, however, are partial at best; if conflict were to
become common, an arms race would follow that would, at a
minimum, degrade the experience of regular web users through
broken and slowly executing web pages.

Work on more secure web mashups is an important step
forward. However, the requirements for mashups and for con-
tent providers are different: where mashups require channels
of communication between content in different frames, many
content providers advertisements need to be able to analyze
or even change the contents of a page in order to provide
their services. We believe that protections from interactions
between external content providers is an important area for
future work.

One approach to providing such protections would be
to adopt programming patterns and mechanisms to expose
necessary content to external JavaScript without permitting
unfettered access to the DOM. Another approach would be
to enhance the browser such that it can automatically rec-
ognize and enforce appropriate boundaries between included
JavaScript. Whatever the approach, the challenge is always
to get the necessary buy-in from content providers, tool
providers, web developers, and web users. Given the potential
for problems, however, there may be sufficient motivation
for a major change in the way web content is created and
interpreted.

VIII. CONCLUSION

Including JavaScript code from multiple content providers is
a potential source of security vulnerabilities. Such JavaScript
can interact to allow surreptitious observation, content manipu-
lation, and server manipulation. Although generally not a prob-
lem today, these interactions place external content providers
at risk from both criminals and competitors. While there exist
techniques for protecting against cross-site scripting, cross-
site request forgery, and other web attacks, we lack ma-
ture methods for regulating interactions within the JavaScript
sandbox. While work on protections for web mashups are
an important step forward, further work is needed to find
solutions that handle some very common use cases for the web,
including context-sensitive ads and pages created by people
who are simply pasting in code fragments provided by others
(as opposed to created by skilled web programmers intending
to create a complex web application). When creating these
solutions, designers need to consider the needs of a wide range
of web page creators, produce a clear adoption path so that
their solution is not prohibitive to deploy, achieve separation
between content providers who should not interact, and keep
in mind not only current use cases, but also future innovation.

ACKNOWLEDGMENTS

We thank the members of Carleton Computer Security
Laboratory and the anonymous reviewers for their suggestions.

This work was supported by the Canada’s National Sciences
and Engineering Research Council (NSERC) through their
Postgraduate Scholarship program (TO) and Discovery Grant
program (AS & TW). In addition, Research in Motion (RIM)
has provided support for our research in Web security.

REFERENCES

[1] “Symantec internet security threat report,” Symantec, Tech. Rep. XII,
September 2007.

[2] CERT R© Coordination Center, “Frequently asked questions about
malicious web scripts redirected by web sites,” CERT, Tech. Rep., 2004.
[Online]. Available: http://www.cert.org/tech tips/malicious code FAQ.
html

[3] M. Gandhi, M. Jakobsson, and J. Ratkiewicz, “Badvertisements: Stealthy
click-fraud with unwitting accessories,” vol. 1, no. 2. Taylor & Francis,
2006, pp. 131–142.

[4] L. Gong, M. Mueller, H. Prafullchandra, and R. Schemers, “Going
beyond the sandbox: An overview of the new security architecture in
the Java Development Kit 1.2,” in USENIX Symposium on Internet
Technologies and Systems, 1997.



[5] D. Goodin, “Doubleclick caught supplying malware-tainted ads,” The
Register, November 13 2007.

[6] O. Hallaraker and G. Vigna, “Detecting malicious javascript code in
mozilla,” in Engineering of Complex Computer Systems, 2005. ICECCS
2005. Proceedings. 10th IEEE International Conference on, 2005, pp.
85– 94.

[7] J. Howell, C. Jackson, H. Wang, and X. Fan, “Mashupos: Operating
system abstractions for client mashups,” in Proceedings of the Workshop
on Hot Topics in Operating Systems, May 2007.

[8] InformAction, “Noscript.” [Online]. Available: http://noscript.net/
[9] N. Ives, “Web marketers fearful of fraud in pay-per-click,” The New

York Times, March 3 2005.
[10] C. Jackson and H. J. Wang, “Subspace: Secure cross-domain communi-

cation for web mashups,” in Proceedings of the 16th International World
Wide Web Conference (WWW2007), Banff, Alberta, May 8-12 2007.

[11] N. Jovanovic, E. Kirda, and C. Kruegel, “Preventing cross site request
forgery attacks,” in 2nd IEEE Communications Society International
Conference on Security and Privacy in Communication Networks (Se-
cureComm). Baltimore, MD: IEEE Computer Society Press, August
2006.

[12] F. D. Keukelaere, S. Bhola, M. Steiner, S. Chari, and S. Yoshihama,
“Smash: Secure cross-domain mashups on unmodified browsers,” IBM
Research, Tokyo Research Laboratory, IBM Japan, Ltd., Tech. Rep.
RT0742, June 11 2007.

[13] E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic, “Noxes: A client-
side solution for mitigating cross site scripting attacks,” in The 21st ACM
Symposium on Applied Computing (SAC 2006), Security Track, Dijon,
France, April 2006.

[14] T. Oda, G. Wurster, P. V. Oorschot, and A. Somayaji, “SOMA: Mutual
approval for included content in web pages,” School of Computer
Science, Carleton University, Tech. Rep. TR-08-07, 2008.

[15] N. Provos, D. McNamee, P. Mavrommatis, K. Wang, and N. Modadugu,
“The ghost in the browser: Analysis of web-based malware,” Workshop
on Hot Topics in Understanding Botnets (HotBots), April, vol. 10, 2007.

[16] N. Provos, P. Mavrommatis, M. A. Rajab, and F. Monrose, “All your
iframes point to us,” Google, Tech. Rep. provos-2008a, February 4 2008.

[17] J. Reimer, “Microsoft apologizes for serving malware,” ars technica,
February 21 2007.

[18] C. Reis, S. Gribble, and H. Levy, “Architectural principles for safe web
programs,” in Sixth Workshop on Hot Topics in Networks (HotNets)
2007, 2007.

[19] C. Reis, J. Dunagan, H. J. Wang, O. Dubrovsky, and S. Esmeir,
“Browsershield: Vulnerability-driven filtering of dynamic html,” in IEEE
Symposium on Security and Privacy, Oakland, CA, May 2006.

[20] B. Schneier, “Real story of the rogue rootkit,” Wired, 2005.
[21] P. Vogt, F. Nentwich, N. Jovanovic, C. Kruegel, E. Kirda, and G. Vigna,

“Cross site scripting prevention with dynamic data tainting and static
analysis,” in 14th Annual Network and Distributed System Security
Symposium (NDSS 2007), San Diego, CA, February 2007.


