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Abstract

Mobile devices store immense amounts of personal and sensitive data, and so have

become targets for attackers. The first line of defence against attacks is authentication

— verifying the identity of an agent accessing the device. We examine behavioural

biometrics as an effective authentication mechanism on mobile devices. Behavioural

biometrics observe and model an agent’s behaviours to establish their identity. We

construct an authentication system based on profiling the device sensors (touch screen,

accelerometer and gyroscope) during a swipe, defined as a quick, simple movement

across a touch screen. In addition, we explore the relationship between problem

setting and evaluation methodology in authentication systems, producing a list of

requirements necessary for accurate evaluation. Finally, we perform a user study to

ascertain the effectiveness of our behavioural biometric mechanism. We conclude that

this system is resistant to attacks which trivially bypass standard mechanisms such as

PINs, while also potentially lightening the usability load imposed by authentication.

1



Chapter 1

Introduction

1.1 Introduction

Smartphones store immense amounts of personal, financial and other sensitive in-

formation. Additionally, in many systems the device itself acts as a token which

authenticates the user. In light of this, device authentication — determining whether

the person holding the phone should be granted access to the device — is a task of

critical importance.

To date, most authentication systems on consumer smartphones are direct ports

or simple adaptations of authentication techniques from desktop systems. In par-

ticular, passwords and PINs dominate the authentication landscape. However, the

implementation of these schemes has left many users unsatisfied with the usability of

authentication [57]. In particular, the constraints of frequent access (and by exten-

sion frequent authentication), small screen sizes and touch input make an approach

based on text entry a difficult process [40]. Though some alternatives exist, such as

Android’s swipe pattern unlock, many users still choose weak credentials or disable

authentication completely to lighten the usability load of the system [28]. In fact,

researchers have shown that less than half of users have their devices protected by

locks [36].

Mobile devices have an additional factor which heavily effects the design of authen-

tication systems. The devices are often used in public spaces and carried around with

users, where it is possible for them to be lost or stolen. This means that the threat

of an attacker attempting to gain physical access to a device is significantly increased

from a desktop context. Moreover, it is more than possible that the attacker has

observed the user entering their authentication credentials, and so is able to imitate

some portion of authentication. Researchers have shown that this kind of shoulder

surfing attack can greatly reduce the security offered by authentication mechanisms,

2
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particularly those which rely solely on an alphanumeric credential [70, 63].

This leaves us with a situation where strong authentication is a primary concern.

Unfortunately, the added usability constraints of mobile devices often lead to com-

prises in authentication strength. We previously mentioned that many users opt out

of authentication completely. Of those who elect to lock their devices, many select

weak credentials [40]. There are two main sources of friction which influence users

towards simpler, lower entropy credentials. They are the number of times devices

require authentication, and the difficulty of entering alphanumeric input and special

characters in on-screen keyboards. These usability considerations have a direct effect

on the practical security of authentication. The difficult problem the research com-

munity faces is how to subvert the usability-security tradeoff to achieve a solution

which satisfies both usability and security concerns.

1.2 Biometrics

In parallel to the trend toward user adoption of mobile devices, advances in hard-

ware and software have made consumer grade biometric authentication a possibility.

In classic biometric authentication, a physical measurement of a person is used for

authentication. A typical example is a fingerprint. By using a specialized hardware

sensor, unique physical characteristics of a fingerprint pattern, such as the number

and location of ridges, can reliably identify an individual. Biometrics have long been

used in high security environments, however their introduction at the consumer level

has led some commentators to raise concerns, particularly about privacy. For exam-

ple, the ubiquity of CCTV cameras in the UK, capable of facial recognition, has led

to many arguments in the public media [58, 5].

There are also security considerations raised by the prevalent use of biometrics for

authentication. In particular, if the biometric is compromised it is difficult for users

to recover. It is much easier to rotate a password than a fingerprint, much less a face

or eye. There exist storage techniques by which the exposure of the data used to

verify a biometric does not necessarily reveal the biometric itself (similar to storing

the hash of a password) [61], however this technology may not always be in use. For

example, in the security breach of the United States’ Office of Personnel Management
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(OPM), an organization which manages government employees. More than 5 million

employee fingerprints were exposed as a result of a data breach [31].

1.3 Behavioural Authentication

In response to this problem, a recent area of research focuses on behavioural authen-

tication. Rather than explicitly prompting the user for credentials, a behavioural

authentication system will attempt to use the behaviour of a user as a means to

recognize them. This is done by observing user behaviour over some period of time

and constructing a model of that behaviour. When new behaviour is observed, it

is compared to the user model to judge whether it is typical of the user. In other

words, the algorithms perform anomaly detection on the data stream of the user’s

behaviour. Typical examples of systems may observe the pattern of phone calls the

user makes [41], the sequence of touch points as a user interacts with the screen [10],

or even the way the user walks [23] as a means of recognition. By observing and

characterizing behaviour which the user normally performs during operation of the

device, researcher’s hope to sidestep the security-usability tradeoff by avoiding the

need to explicitly prompt for authentication.

Broadly, two categories of behavioural authentication emerge from the literature

and from real world implementations. The first category consists of continuous au-

thentication systems. In continuous systems, user behaviour is constantly monitored

and characterized. For example, every call which a user makes [41], or every website

the user accesses [65] or some combination of multiple behaviours, is incorporated

into the model of user behaviour. In this way, the authentication system takes a

macro view of the user and their behaviour.

The second category is task-based authentication. Whereas continuous schemes

take a macro view of user behaviour, task-based authentication takes a micro view.

Task-based authentication observes and characterizes how a user performs a single

task — for example, how the user slides the unlock bar [21]. This single task consti-

tutes the basis for authentication.
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1.4 Requirements for a Solution

At this point, we observe that behavioural authentication is a subset of anomaly de-

tection. In brief, anomaly detection attempts to build a statistical model of patterns

in an input stream (representing “normal” operation), and then uses that model to

detect new input which is abnormal. This is useful because deviations from normal

operation often warrant a manual response: for example, they may represent unan-

ticipated errors or failure conditions. In the context of behavioural biometrics, the

system attempts to learn and model user behaviour, then use that knowledge to rec-

ognize when anomalous behaviour occurs. If the behaviour is sufficiently anomalous,

it is judged to be an attack and whatever appropriate response is taken.

With this background, we assert that there are three properties necessary for a be-

havioural solution to effectively solve the usability-security problem of authentication.

These requirements are:

1. Model stable observables. In order to accurately characterize normal and ab-

normal behaviour, it is important for the behaviour to be something the user

performs without excessive variation. Moreover, the algorithm should represent

sensor data in such a way that the invariant components of the behaviour are

obvious and the variant components can be looked over. This is because, if a

highly variant behaviour is modelled, the algorithm will acquire a model which

is too broad, opening the path for an attacker to match the behaviour as well

as the legitimate user.

2. Imitation resistance. If a solution is going to be an improvement over passwords

or PINs, it should exhibit some amount of imitation resistance. This means

that solely observing the authentication process (or having knowledge of the

credential by some other means) should not be enough to reliably authenticate.

3. Non-intrusive authentication. Authentication which occurs without the user

performing an explicit action is to be preferred. This is because explicit au-

thentication is an action which interrupts the task the user wants to perform,

and so user’s tend to disable the mechanism or lighten it’s effects. If authen-

tication is non-intrusive, it will not disturb the users workflow and so the user
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will not compromise its security.

The first requirement ensures that the algorithm is able to accurately identify users

and distinguish them from each other. The second requirement serves to elevate the

security of the system above that of existing solutions, while the third requirement

allows it to improve overall usability.

1.5 Evaluation Requirements and Philosophy

We contend that the true challenge of implicit authentication lies not in the design

of an authentication algorithm, but rather in design and evaluation methodologies.

In this way, the conceptualization of a threat model and a usability model deserve as

much attention as the technical specifications of an authentication algorithm. A well

defined threat model is necessary to be able to meaningfully determine the strength of

the authentication system, as well as to meaningfully contrast the strength of different

schemes under similar conditions. If the threat model does not capture the attacks

which the system is meant to protect against, it is difficult to determine if progress is

being made. In tandem with a threat model, all systems make assumptions about how

users will interact with the system. For example, a typical password-based system

might contain the assumptions that users are able to remember high entropy strings

of characters and that such character strings are easy to enter into the system. We

refer to these assumptions as a usability model. Even if these assumptions are not

explicitly stated, every authentication mechanism intended for commodity use has

implicit assumptions that the mechanism does not interfere significantly with normal

use of the system. This is because if it does, users will opt to disable it, and the

mechanism will not achieve its purpose of protecting the device. We are not aware

of security and usability literature which explores this concept. We note it here as a

consequence of our analysis of evaluation methodologies, however as our focus is on

security analysis we leave a full exploration of this area to future research.

To construct a threat model, one must sketch out the different scenarios under

which an attacker can interact with the system. Since we are considering an authen-

tication mechanism, we assume that an attacker has gained physical possession of

the device while it is in a locked state. In this scenario, we can vary the amount of
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knowledge the attacker possesses. For simplicity, we can consider two attackers: one

which has no knowledge of the credential, and one who has observed the entire cre-

dential input process. Now we have a simple threat model which we can use to make

informed measurements of the locking mechanisms strength. It should be noted, how-

ever, that there are many other nuances which could be added to this threat model.

For example, you could vary the amount of knowledge the attacker has (perhaps they

have only observed the credential partially, or obstructed in some way). You could

also constrict the amount of time the attacker has, or the number of attempts an

attacker can make.

1.6 Swipes as an Authentication Task

In the previous sections we have set the problem of mobile device authentication and

gave an overview of evaluation methodology. Here we discuss some considerations for

algorithmic design. We previously classified behavioural biometrics into continuous

and task-based approaches. An example of a single task is the swipe. Swiping is

a common UI element of many mobile applications. It is often used to transition

between screens or items, for example in the Android or iOS photo gallery applications

and home screens. It is also used in both iPhone and Android unlock screens, which

unlock the device by sliding a bar or moving a lock icon across the screen.

From the device’s perspective, swipes have two broad components. The first

component is the shape of the swipe drawn on the screen. The device typically

reports this as a series of Cartesian coordinate points separated unequally in time.

The second component is the physical movement of the device. While the swipe is

happening, the device will move in the user’s hand. This movement is reported in the

device’s accelerometer and gyroscope sensors, which return a series of (x, y, z) points

capturing some property of physical movement.

We hypothesize that, because swipes are a ubiquitous part of touch-screen inter-

faces, users are habituated to the gesture and perform it subconsciously. Furthermore,

because the action is subconscious, users perform it in a consistent way. This means

that User A’s swipes consistently have similar properties, and are distinct and recog-

nizable from the properties of another user’s swipes.
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We further hypothesize that this task is difficult for an attacker to imitate. This

is for two reasons. First, the physical motion of the device happens at a scale which

is difficult for an attacker to perceive. Second, when an attacker tries to imitate a

swipe, the action moves from being subconscious muscle memory to being conscious

imitation. This change will have effects on the form of the swipe. For example, if an

attacker is consciously attempting to imitate the shape of the swipe on the screen,

it may result in the swipe taking a longer than average amount of time to complete.

Similar processes have been observed in handwriting forgery [16, 17]. Researchers

have also noted difficulties in imitating gait patterns [34, 30]. In order for an attacker

to come near imitating a person’s gait, it is typically necessary for the attacker to

have a similar physical makeup as the legitimate user, or in some cases be wearing

similar clothing.

Considering the hypotheses that users will swipe consistently and that they will be

difficult to imitate, swipes seem to be a prime candidate for task-based behavioural

authentication. We developed several algorithmic implementations of swipe-based

authentication. These schemes take the touchscreen, accelerometer and gyroscope

sensors and transform them into a feature representation. The algorithms observe a

small number of the user’s swipes, and then construct a model of expected values for

the features. When a new swipe comes in, the algorithm then compares these values

to the expected values to make an authentication decision.

1.7 Contribution

We make several key contributions. First, we give an extensive treatment of the

evaluation framework necessary to make meaningful statements about the security of

behavioural biometrics, going into detail about the proper design of attacker models

and techniques for formulating accurate studies. Then, we give a treatment of swipes

as a task for authentication. The form of swipes, as well as their suitability to

authentication, is given in detail. Next, we construct an authentication scheme with

swipes as the basic task. To our knowledge, this is the earliest work which uses swipes

as a behavioural biometric in a primary authentication system. We evaluate this

system in a laboratory user study and compare it to PINs, the current authentication
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standard on mobile devices. Once we have this worked out, we proceed to describe

the actual design of the evaluation studies. This framework, taking the form of a set

of guidelines (see Chapter 3), is intended to ensure that research moves in a direction

which produces ecologically valid and effective authentication for mobile users which

provides usability and security without compromise.

1.8 Organization

The rest of this thesis is structured as follows. In Chapter 2, we give background

information on authentication and the new concerns introduced by the mobile context.

Within this context, we move on to discuss the specific evaluation challenges inherent

to this domain in Chapter 3. Chapter 4 begins by outlining several features that

a behavioural authentication solution on a mobile platform should exhibit. It then

continues by describing the physical characteristics of swipes and how they meet

these features. Next, Chapter 5 introduces our candidate authentication algorithms

and describes the motivations for their design. In order to validate the performance of

our algorithms, we performed a user study which is described in Chapter 6. Finally,

Chapter 7 concludes the thesis while presenting limitations and future work.

1.9 Statement of Joint Work

Several people have made contributions to aspects of the work presented in this thesis.

Sarah Liske collaborated on a Java implementation of the Bit Vector version of the

algorithm as an Android lock screen. Bheesham Persaud worked on technical infras-

tructure to run the user study. Sarah Dorey ran numerous participants for both user

studies and collaborated on the ethics applications. Reid Van Melle designed the user

interface for the second user study application. Shiven Sharma designed several key

elements of the Mean Distance version of the algorithm. In particular, he contributed

the accelerometer and gyroscope features and the design of the authentication deci-

sion. His analysis also aided in the selection of touch features for the Dynamic Range

and Mean Distance versions.



Chapter 2

Background

The issue of user authentication has been a pernicious problem for security researchers

since personal computing first brought users in contact with computer systems. In

this chapter, we first discuss the problems researchers face with user authentication

to provide the motivation for behavioural biometrics. We then introduce the concept

of behavioural biometrics and their application on mobile devices. Finally we present

related work which has constructed behavioural authentication systems for mobile

devices.

2.1 Desktop Authentication

The most common form of user authentication is the password. Passwords are con-

ceptually simple and inexpensive to operate. They are also familiar to users and

easy to create and rotate. These factors may explain their resilience as the mecha-

nism of choice for almost all computing environments [37]. Nevertheless, passwords

have been criticized by researchers on many fronts, including both their security and

their usability. For example, passwords are ideally long strings of random characters.

However, the literature has shown that humans perform poorly at remembering these

sequences [77, 1]. To compensate, many users choose passwords that are short and

less random [26].

The security properties of a password are typically measured using the concept of

entropy. Entropy is meant to be a measure of the randomness, or information, that

is contained in a password. A higher level of entropy implies that an attacker would

take more attempts to guess the correct password than with a lower level of entropy.

This concept can be quantified in several ways. For example, it could be modelled

using Shannon’s measure of information [48], or by simulating an attacker guessing

against a population of passwords [43].

10
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A number of high profile security breaches have underscored these weaknesses

with passwords. It is not uncommon for password databases to be leaked, either

in hashed or unhashed form. Low entropy passwords are much more susceptible to

cracking than those with high entropy. Additionally, password re-use, where a user

reuses the same credentials for multiple online services, often means that once an

attacker has gained knowledge of a single account’s password they can compromise

additional accounts which share the same credentials.

Despite these problems, passwords remain a stable part of desktop authentica-

tion [37] and most implemented advances involve securely reducing the frequency of

authentication rather than replacing passwords completely. One way this is done is

through Single Sign On (SSO), which relies on a central authentication server which

may give the user a token (for example, a cookie) which the client can automati-

cally present to services to gain access [60]. Another solution is the use of password

managers, software which stores or procedurally generates passwords for arbitrary

services, which are put behind a single master password the user knows [56].

2.2 Biometrics

Advances in hardware have opened up the possibility of biometrics being a consumer-

grade authentication option. Physical biometrics (as opposed to the behavioural bio-

metrics which we will discuss presently) are distinctive measurements of some physical

characteristic of the human body. The most basic form is that of a single static image,

a common example being fingerprint recognition. Fingerprint patterns as a system-

atic means of identification has been in use since at least the 19th century [39]. More

recently, recognition uses a specialized scanner to detect unique characteristics in the

pattern of ridges on the fingerprint or other physiological phenomena [53]. Iris pat-

terns have similar properties and can also be used for recognition [12, 15]. Rather

than a static images, biometrics can also be a dynamic stream of data. A popular

example of this is voice recognition [51]. Still others may use both static and dynamic

measurements. For example, facial recognition may be based off of a static image of a

persons face, or it may consist of a video stream of the persons face (perhaps for the

purpose of liveness detection — discussed below) [38]. It is also common to combine
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multiple biometric factors (for example, face and voice) into one mechanism, called

multimodal biometrics or biometric fusion [64, 20, 75].

Biometrics represent a usability advance in that users do not need to remember a

credential, and can also be seen as a security advance in that the credential is closely

tied to a person’s identity. However, biometrics also introduce their own issues. From

a usability perspective, biometrics still constitute an explicit authentication action,

which users will still choose to disable in large numbers if given the option. Moreover,

because biometrics take unique physical measurements, users may find them to be

overly invasive. From a security perspective, biometrics in practice have proven to

be unable to resist replay attacks. Since biometric recognition comes down to taking

a picture (in the case of fingerprint or facial recognition) or a recording (in the case

of voice), it is always possible for an attacker to replay input to the sensor [13]. For

example, an attacker may take a picture of a face [18, 49] or a recording of a voice

[47]. In general, as long as the replay data stream is of a higher resolution than the

sensor is capable of reading, biometric recognition can be defeated.

To mitigate these attacks, biometric mechanisms have implemented various “live-

ness detection” features. For example, fingerprint liveness detection may work by

attempting to measure a pulse in the finger, or by detecting perspiration across mul-

tiple image frames [19]. Though these techniques advance the field beyond standard

attacks, it is difficult to see how defenders could reliably win an arms race between

the resolution of biometric detectors and the various replay vectors for attackers.

An additional dimension to security considerations is that, once a biometric has

been compromised, it is unclear how the user is to recover from the breach. In the

case of a password, the user can simply change the credential to restore security.

A fingerprint, face or voice is not so easily changed. Rigid credentials can benefit

security, but may also harm the ability of users to recover from breaches, and con-

sequently impair the overall usability of the system. Though there exist techniques

to limit the harm caused by a breach of the information used to validate a biometric

[61], disclosure of biometric credentials can happen in other ways. For example, an

attacker may lift a fingerprint off of a surface and create a replica, or may take a

picture of person’s face [9]. Additionally, as biometrics become more common, it is
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conceivable that attackers would begin phishing for biometric credentials.

2.3 Mobile Authentication

At first, mobile authentication seems to be a simple case of standard authentication.

However, many issues with authentication are exacerbated by the characteristics of

mobile platforms. In particular smaller on-screen keyboards make text entry, par-

ticularly text entry including non standard characters, challenging for users. Unfor-

tunately, achieving the level of entropy required for secure passwords necessitates a

large number of unique characters. However, because of the small screen sizes of

mobile devices, these characters are often placed on alternate keyboards where they

are even less accessible. Moreover, users authenticate on mobile devices much more

frequently than in a desktop environment, which means users encounter authentica-

tion friction more frequently as well. The standard response to this issue is the use

of PINs (short sequences of numbers) rather than passwords. However, this greatly

reduces the potential entropy of the credential. Additionally, the large size of the key

pad may increase the visibility of the authentication process for an attacker.

Mobile devices also highlight new security concerns. The devices are often used in

public places, where they are lost or stolen. This means an attacker who has physical

access to the device is the principle threat model. Additionally, the risk of shoulder

surfing — where the attacker observes the credentials as they are being entered — is

elevated. This is a problem for standard password / PIN schemes because knowledge

of the credential (which can be directly gained from observation) is the only thing

needed to authenticate. This leaves traditional what-you-know authentication in a

difficult place, a concern shared and further examined by Ben-Asher et al [6].

To date, the standard mechanisms for authentication on mobile devices remains a

PIN or password unlock. Besides these mechanisms, another option available to users

is the swipe pattern unlock screen, the prototypical example of which was introduced

on Android devices. This mechanism substitutes alphanumeric character entry for

an ordered sequence of connected points. Research has shown that this method

constitutes a usability improvement on touch screen devices, particularly in the way

it allows users to recover from an input error [74]. However, because it is not in
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principle different from PIN entry, the same security issues (observation, low entropy

credentials) remain. Additionally, new avenues of attack, such as reconstruction of

the pattern from smudges left on the screen [3], are opened.

2.4 Mobile Biometrics

Mobile devices have also moved to incorporate biometric authentication. Recently,

Apple has incorporated fingerprint recognition into many of its consumer products

[69]. Samsung has made similar moves [32]. Research has also explored facial recog-

nition [25], voice recognition [73], or multimodal authentication combining different

biometrics [35, 72] using hardware available on commodity mobile devices.

Biometric authentication on mobile devices is attractive because it removes the

need for the user to remember an authentication credential and many devices are

already equipped with the necessary hardware. In many practical applications, how-

ever, biometrics are used as a way to avoid entering a PIN or password, rather than

completely replacing it. For example, Apple still requires users of its fingerprint recog-

nition system to occasionally reauthenticate with a knowledge-based credential [2].

As discussed previously, these biometric sensors are also vulnerable to spoofing and

replay attacks.

2.5 Behavioural Authentication

As discussed previously, mobile devices have more difficult usability and security

considerations than a typical desktop environment. Behavioural authentication is

one recent approach to overcoming these unique circumstances. This approach takes

the techniques of anomaly detection and applies them to an authentication context.

Anomaly detection is the process of determining whether a pattern deviates from

“normal behaviour”. Anomaly detection has a long history in the security literature,

particularly for intrusion detection at both the network [50] and host [67] levels.

In broad strokes, anomaly detection (and by extension behavioural authentica-

tion) has the following components. First, the incoming data is deconstructed into

features in a process termed feature extraction. This often takes the form of a vector
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of meaningful measurements from the data. Next, the algorithm constructs a model

of how it expects the system to behave. This model takes some amount of previously

observed behaviour as input, called learning or training data. The algorithm then

contains a component which is able to compare new behaviour to the model. Typ-

ically, features are extracted from the new behaviour and their values are compared

to the distribution of values from the model. If the new behaviour is close enough

to the modelled behaviour, then the behaviour is considered normal. Otherwise, it is

considered anomalous.

Though we will exclusively be considering a mobile context, research into be-

havioural authentication has roots going back much further. One example of this is

keystroke timing analysis, which uses the amount of time between different keystrokes

as the basic features for anomaly detection [46]. Another classic example of a be-

havioural biometric is gait recognition, where the movement pattern of a person’s

gait is used for identification [29].

Mobile devices have a wide range of sensors which can be used to gather data

on the behaviour of the user. The user interacts directly with the touch screen of

the device. Physical movements in the device can be recorded by accelerometer and

gyroscope. Positioning of a device can be captured by a magnetometer and its location

is available by GPS. Most devices are also equipped with front facing and rear facing

cameras, as well as a microphone. Additionally, software events like network, cellular

and application activity can be monitored. A behavioural authentication algorithm

can extract features from these sensors to characterize the behaviour of a user.

Given the number of sensors and possible behaviours, the design space of be-

havioural authentication algorithms is exceedingly large. However, we can group

solutions together based on their approach to the problem. Specifically, we define

three broad classes of behavioural authentication schemes based on the scope of user

behaviour observed. These are continuous, secondary and task-based systems. Con-

tinuous schemes observe all user behaviour at all times from some subset of the

device’s sensors. In this way, the whole behaviour of a user on the device is the target

of the model. Secondary schemes overlay a layer of behavioural authentication on top

of an existing method of authentication. These schemes model how the user performs
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another authentication action and add additional security. An example of such a

scheme would be performing keystroke timing analysis on the user as they enter a

password. Task-based schemes observe user behaviour as they perform a specific task

on the device. It can be seen as an analogous to secondary authentication, except

that the observed task is not limited to authentication (such as entering a password),

but can be any task the user performs on the device.

2.5.1 Continuous Authentication

Continuous authentication schemes apply a broad lens to user behaviour by continu-

ously monitoring sensors to construct the user model. The work done by Jakobsson

et al [41] explicitly frames continuous authentication in terms of anomaly detection.

More specifically, the approach is highly reminiscent of network intrusion detection

systems (NIDS). NIDS sit at some point on the network and monitor packets trav-

elling through them. Typically, they decompose a packet into its constituent parts

(various headers and potentially payload) which is used as the basis for anomaly

detection.

Some systems, such as Yazji et al [78] operate in a way directly analogous to NIDS

by monitoring the network activity (as well as a similar technique for file access)

for intrusion detection, the assumption being that any meaningful activity from an

attacker would exhibit an anomalous effect on these data streams. The same principle

can be applied to many other sensors on the phone. For example, an attacker who

picks up the phone will have a different gait, and so continuous monitoring of gait

patterns could detect a change in user [66] [73], or an attacker may use cellular

services differently [65]. Additionally, when a user interacts with a mobile device,

much of their interaction occurs through the touch screen. In response, systems may

incorporate some kind of continuous monitoring of touch screen gestures to detect

an intrusion [27]. In this work, touch screen gestures are represented as 31 discrete

features, including measurements such as the starting and stopping points, pressure,

and speed. This is then fed into a binary classifier to create a discriminator which

classifies gestures as belonging to one of several observed users. Since monitoring is

continuous, it follows that the space of patterns in the behaviour is large and complex
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— because every possible action from the user has an effect on the sensor. Similar

work is done by Bo et al [10]. Bo et al consider three distinct touch gestures: tapping,

scrolling and flinging. For each gesture, they build a seven feature representation. The

first two features are the application currently in use and the type of gesture. The next

three features are extracted from the touch screen: the coordinate of the gesture, the

duration (in milliseconds), and the pressure. They also consider one feature extracted

from the accelerometer and one feature extracted from the gyroscope. This data is

fed into a support vector machine (SVM) (one or two-class depending on if data from

another user is available). After observing a small number of gestures the system

identifies whether it is being used by the owner or a guest.

In general terms, a continuous scheme will monitor data streams for anomalous

events and raise a security event when behaviour moves outside of its expected pat-

terns. In a classic intrusion detection architecture, a log or report would be sent to

a systems administrator for analysis. This approach does not translate directly to

a consumer mobile context. Instead, designers take different approaches as to when

a security point should be enforced. For example, if recent behaviour is anomalous,

explicit authentication (such as a password) can be required on the next device unlock

[65], or it may be done at regular intervals during usage [78]. An increasingly com-

mon approach is to only enforce a security point when the user attempts to perform

a “secure” operation [73] [62], such as launching an application which has access to

personal information.

2.5.2 Secondary Authentication

Secondary authentication acts as an overlay on top of an existing authentication

scheme. It characterizes the way that the user performs the authentication action

itself. For example, the way that the user performs the Android swipe unlock pattern

can be modelled and is distinct between users, even if they use the same pattern, as

examined in the work of De Luca et al[21]. From each unlock action, the authors

collect a time series of touch coordinates. During a training window, the application

learns a reference set containing five timeseries. When the application transitions

from training to testing, it uses Dynamic Time Warping (DTW)[7] to calculate a
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distance between this reference set and the incoming authentication attempt. If this

distance is too large, the authentication fails.

Secondary authentication attaches an additional layer of security onto an already

existing scheme, so that it can be made more secure without requiring users or devel-

opers to change their behaviour. Whereas continuous authentication applies a broad

lens to user behaviour, secondary authentication applies a narrow lens. This reduces

the space of patterns in the behaviour, both in terms of size and complexity. Addi-

tionally, since the mechanism is predicated upon an existing explicit authentication

scheme, a non-authentication result can be enforced immediately without unexpect-

edly interrupting the user’s workflow.

2.5.3 Task-Based Authentication

Like secondary authentication, task-based authentication takes a narrow, well defined

view of user behaviour. The algorithm focuses in on a single action that the user

typically performs and characterizes it. Given that touch screen gestures are the

most common form of interaction between user and device, most task-based systems

use them as the observed behaviour. This task can be imposed (either explicitly

or implicitly as part of the user interface) at the point where authentication would

typically happen, such as when the device is being unlocked or when an application

is accessed. One example of this is the work of Lin et al [52]. In this work, the

authors focus exclusively on the orientation sensor of the device. As a user “flicks” in

either an up-down or left-right direction, the system collects a sequence of orientation

readings (consisting of pitch, roll and azimuth). It then extracts features representing

the mean, maximum, minimum, range, and standard deviation of these values. This

feature representation is fed into a k-nearest neighbour classifier to discriminate flicks

between known classes of users.

Besides this narrower focus, the design of a task-based authentication algorithm is

not significantly different in principle from that of continuous or secondary schemes.

The system will observe tasks for some defined training period, and construct a model

of how the user performs that task, as reported by sensors on the device. When a new

task is observed, the system will decide whether to authenticate based on whether
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that task was anomalous.

2.5.4 Summary

There are a wide range of approaches to solving the authentication problem, par-

ticularly on mobile devices. The most familiar remain the PIN and password, with

pattern unlocks gaining traction. These typical solutions however have been unsatis-

fying to many users. In response, researchers have sought to leverage the numerous

sensors of mobile devices for authentication. Biometric authentication, particularly

fingerprint and facial recognition, is currently available to consumers. Notably re-

searchers have also attempted to recognize users based on how their behaviours are

recorded in the various sensors. We have divided these efforts into three categories:

continuous, secondary and task-based. For a complete picture of the research, how-

ever, it is necessary to explore in depth the evaluation methodologies. We do this in

the next chapter.



Chapter 3

Evaluation Principles and Framework

3.1 Evaluation of Authentication Systems

In order to decide between different authentication systems, it is imperative to estab-

lish criteria by which the schemes can be compared. Moreover, it is necessary that

the criteria accurately represent performance in a real world usage scenario — that is,

that the methodology for evaluating the systems maintain ecological validity. Though

determining the strength of an authentication system may seem like a straightforward

problem, the examination of the field in this section will demonstrate otherwise.

First, consider a typical password. Assume that the password is composed of

n characters, and the password is created from a typical keyboard containing 62

characters (as considered in, for example, [26]). Then the total size of the password

space — meaning, the number of unique passwords — is 62n. Given this information,

we can construct a simple security analysis using the following assumptions:

1. Each user selects a password randomly from the password space.

2. An attacker, for each attack attempt, selects a password randomly from the

password space.

Assumption 1 implies that each user will choose a password with probability 1/62n.

Similarly, given that a user has chosen password p, the probability that an attacker

will guess p is also 1/62n. Assuming (for example) an 8 character password, then

roughly one out of every 218 trillion attacks will succeed, which is rater extraordinary

performance.

Unfortunately, neither Assumption 1 nor Assumption 2 are observed in real usage

patterns and attack scenarios. Studies of leaked or anonymized password corpora have

shown that the probability of a user selecting a password from the password space

is far from a uniform distribution — users tend to cluster toward certain password

20
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patterns (see [26, 11] for discussion). Attackers are able to leverage this discrepancy

to make huge gains for themselves. In particular, dictionary based guessing attacks,

where an attacker constructs a dictionary of commonly used passwords, are effective

tools. As can be expected, these attacks continue to improve over time (the interested

reader is directed to [55] and [22] for analyses of password guessing attacks).

Looking closer at the real world usage of passwords, an additional problem emerges.

When using a password based authentication system, just knowing the password isn’t

adequate for authentication — a user has to use whatever input method is available to

them to enter the password. A number of errors can be introduced at this stage. For

example, the user could incorrectly enter an adjacent letter, or a user may transpose

two or more letters. Any of these errors will result in non-authentication, which should

be registered in a measurement of the performance of an authentication system.

Given these two observations, new evaluations of password security in light of their

practical security have been suggested in the literature. In particular, researchers such

as Kelley et al [43] have proposed password strength evaluations based on how resis-

tant a password is to cracking attempts. Using this methodology, one can determine

the security of a password against an online attacker (where the number of guesses

may be limited) or against an offline attacker (for example, one who has compromised

a hashed password database).

It is unclear, then, what the correct empirical measurement of security is for

passwords. Looking solely at the theoretical size of the password space cannot be

sufficient, because the practical size of the password space is much reduced. However,

it cannot be discounted, because a security-conscious user could construct a random

(or pseudorandom) password which does approach the theoretical security properties.

3.1.1 Evaluation of Behavioural Biometric Systems

Since it is important to compare behavioural biometric schemes to each other, as

well as to more typical authentication schemes like passwords, it is also necessary to

discuss their evaluation criteria.

The theoretical space of most behavioural biometrics is very difficult to accurately

define. In some cases, however, it is possible to construct a theoretical limit. For
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example, assuming that there are n independent features, and each feature can take

one of x values, then the theoretical behaviour space is xn. In practice, however,

features may be continuous or unbounded (making determining x difficult), and each

feature may not be completely independent, introducing complexities in calculating

each features space. Finally, though an individual biometric may be able to take xn

different values, the sensitivity of the machine learning algorithm may treat many

different values similarly. Still, it is not unreasonable to conclude that, for most

behavioural biometrics, the theoretical limit is as large or larger than an 8 character

password.

Considering this difficulty in evaluating the theoretical space of behavioural bio-

metrics, it is more practical to use alternate evaluation techniques. One common ap-

proach in the previous work is to report results as the level of discrimination achieved

by a binary classifier which is trained and evaluated on input from two users. This

approach can give important insight — particularly, it provides an upper bound on

the level of performance one can expect from the system. However, since this evalua-

tion methodology assumes that there are only two possible classes of input (namely,

the two users), it does not accurately encapsulate real world usage. This is because,

in a typical scenario, the system only has knowledge of one user (the device owner),

and the second class comprises of every other person who may come in contact with

the device.

A second technique involves training a one-class classifier on a user’s data and then

testing it against data collected from other users. This approach effectively captures

the knowledge that a system has in the real world (i.e, that its knowledge is limited to

one user). This approach also accurately models a random attacker — one who has

no prior knowledge of the legitimate users behaviour. However, this approach rests

on the assumption that an attacker is going to behave the same way that a normal

user would. Though for some systems this assumption is defensible, for others it is

instructive to consider more involved attacker models.

A third technique is to train a one-class classifier on a user’s data and then perform

predetermined attacks (for example, the researcher could try to imitate the user’s

behaviour, or the methodology could involve two participants who imitate each other).
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This technique most closely matches a real world attack scenario. However, since it

involves the engagement and coordination of multiple people, it is the most complex

and the most susceptible to various biases and methodological flaws.

As previously mentioned, the literature takes all three of these evaluation ap-

proaches. Though multiple evaluation techniques are useful for illustrating various di-

mensions of system performance, it makes cross comparison of authentication schemes

at best difficult and at worst misleading. Useful work has been done by Khan et al

[45, 44] et al contemporary to our own to reconcile this difficult problem. We discuss

these results in more detail below.

3.2 Threat Modelling and Evaluation Methodology

From the above discussion, one emergent theme is the importance of threat and at-

tacker modelling. It has long been noted that systems are not secure in and of them-

selves: rather, systems are secure against defined attacks [59]. Measuring security is

always comprised of comparing a system against predefined threats and attacks. In

the case of behavioural biometrics, much of the limitations with evaluation method-

ology can be ascribed to ill-defined threat modelling.

For example, measuring security as the result of a binary classifier fails to take

into account the presence of an attacker who is unknown to the system. Measur-

ing security as simple user confusion of a one-class classifier fails to consider an

attacker who has some knowledge of the credential. To set the correct course for

evaluation methodology, we propose the following systematization of threat models

for behavioural biometrics. First, we start with the assumption that the attacker has

unhindered physical access to the device. This is because physical access is the only

way an attacker can attempt authentication against a locking mechanism.

With this assumption, we develop two main attacker models. They are:

• random attacker. This attacker has physical access, but no other knowledge of

the authentication process or credential.

• imitation attacker. This attacker has physical access and full knowledge of the

authentication process. That is, they have observed the user entering their
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credential.

These attacker models are realistic. The random attacker could be someone who

has found a lost device and attempts to gain entry. The second could represent

an attacker who has stolen a device after watching the user authenticate. More

importantly, though, these attackers represent a weak attacker and a strong attacker.

Meaning, we would expect the random attacker to have a low chance of success

compared to other attackers because they have less knowledge. The imitation attacker

we would expect to be stronger, because they have observed the authentication process

or otherwise have complete knowledge of the behaviour used to authenticate. These

two models are the baseline necessary to make accurate statements about behavioural

biometric security.

It is important to note, however, that they are not the only conceivable attacker

models. Rather, these two models book-end a spectrum of possible attackers. At one

end is the random attacker, and at the other is the imitation attacker. In between are

numerous gradations of attackers who have partial knowledge of the authentication

process. Perhaps an attacker who has observed the authentication process for a

limited amount of time, or one who had their observation obstructed somehow. The

reason we describe these two attacker models as the minimum necessary is because

the represent the maximum and minimum security performance.

There are also other variables which we could vary to construct additional attacker

models. For example, we could relax our initial assumption of unhindered physical

access. We could consider an attacker who has a limited amount of time with the

device, or intermittent access. For simplicity at the moment we will concern ourselves

just with the random and imitation attackers.

Finally, it is important to note that the random attacker does not necessarily

select their attack from a uniform distribution of all possible behaviours. Since we

are considering that these attacks will be carried out by a human, their attacks will

tend towards whatever distribution is typical for that behaviour. For example, under

a typist recognition system a random attacker would not have an equal chance of

selecting an attack which has several seconds between keystrokes. This is because
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human typing behaviours follows a non-uniform distribution. It is possible to con-

struct such an attacker; however we do not believe it is practical for evaluating the

real world security implications of behavioural biometrics.

3.2.1 Measurements and Result Reporting

Now that we have established a threat model we can discuss how to report measure-

ments against this threat model. As stated previously, behavioural biometrics are a

special case of anomaly detection. In all anomaly detection, the goal of the detector is

to distinguish between two classes: the normal class, and the anomalous class. There

are two kinds of errors that can be made. First, an instance of the normal class may

be mistaken for an instance of the anomalous class. This is typically referred to as

a Type I error or a false positive (FP ). Second, an instance of the anomalous class

may be mistaken for an instance of the normal class. This is a Type II error or a false

negative (FN).

Results in anomaly detection are reported as some measure of these FP s and

FNs. Additionally, the detector typically has controls which tradeoff between FP s

and FNs, such that there are multiple pairs of results (i.e, at configuration x the FP

rate is FPx and the FN rate is FNx, while at configuration y the FP rate is FPy

and the FN rate is FNy). To get a full picture of the performance of the system,

multiple measurements must be taken at different configurations. It is useful to plot

these measurements as a receiver operating characteristic (ROC), which form a curve

illustrating the systems performance and the tradeoff between FP s and FNs.

An account must be made, however, of the limitations of ROC reporting when

applied to a security domain. The form of ROC reporting tends to implicitly give

equal weighting to false positive and false negatives (or Type I and Type II errors).

Though in many situations this is a useful perspective to judge success, when applied

to security this assumption may no longer be justified. In general, a false negative

has a much more adverse security impact than a false positive. Consider: in au-

thentication, a false positive implies that an attacker successfully gained entry into a

phone, which has a much higher cost than prompting a user for additional factors of

authentication. In a security administration context, a false negative may mean that
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an attack is able to persist well beyond when it should have been discovered, which

has a much higher cost than alerting an administrator to a false positive. Taking this

into account ROC reporting, along with its derivative the Equal Error Rate (ERR),

should not be the only measure of success. We propose that, in security domains,

along with ROC reporting the researcher should establish a goal for the false negative

rate — that is, the rate of attacks succeeding, and compare schemes based on their

corresponding false positive rate (the additional cost to the user or administrator).

Though it is possible to deduce this from a ROC, stating it explicitly is is clearer,

more direct, and has less risk of unknowingly falling into the assumption of equally

weighting FP and FN rates.

Additionally, in order to make the terminology clearer for our domain, we propose

to replace the terms false positive and false negative with domain specific terms. We

will refer to the user acceptance rate (UAR), and the attack reject rate (ARR). The

user acceptance rate is defined as (1 − FP )/N , where FP is the number of false

positives and N is the total number of user authentication attempts. The AAR is

defined as FN/N , where FN is the number of false negatives and N is the total

number of attack attempts. So, at a glance, a well performing system will have a

high UAR and a low AAR. These metrics, and their corresponding terminology in

the machine learning and biometric literature, are summarized here:

1. User Acceptance Rate. The user acceptance rate (UAR) is the number of times,

out of the total number of attempts, the legitimate user was authenticated. It

is equivalent to the true negative rate in standard machine learning. A higher

UAR is more usable, since it means that the user does not encounter undue

difficulty in accessing the service. The UAR is collected for both swipes and

PINs.

2. User Reject Rate. The user reject rate (URR) is the number of times, out of the

total, the legitimate user was not authenticated. It is calculated as 1 — UAR.

It is equivalent to the false positive rate in standard machine learning, and is a

Type I error in statistics.

3. Attack Acceptance Rate. The attack acceptance rate (AAR) is the number of
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times, out of the total number of attempts, that an attacker was authenticated.

This metric encapsulates the system’s imitation resistance. It is equivalent

to the false negative rate in standard machine learning, and a type II error in

statistics. A low AAR is more secure, because it is more difficult for the attacker

to gain access. The AAR is collected for both swipes and PINs.

4. Attack Reject Rate. The attack reject rate (ARR) is the number of times, out

of the total, that an attacker was not authenticated. It is calculated as 1 —

AAR. It is equivalent to a true positive in machine learning, and is a Type II

error in statistics.

5. Input Time. The input time is the amount of time it takes for the user to input

their authentication credentials. For both swipes and PINs this is measured

from the first touch event to the last touch event. A lower input time is a sign of

usability, because it implies that the user spends less time in the authentication

process and more time actively using the service.

3.2.2 Principles of Accurate Study Design

Now that we have discussed the form evaluation measurements should take, we can

step down another level and discuss how these measurements should be taken —

that is, how a study should be set up so that measurements of UAR and AAR are

meaningful.

As a starting point, significant literature exists on evaluating application interfaces

for usability and the effectiveness of different evaluation methods (see for example

[4, 33, 54]). General principles, such as having a sizable and varied population of

users, and not biasing user behaviour in certain directions, will crossover. However,

our focus in this paper is not on evaluating the usability of behavioural biometric

systems, but rather on evaluating their security properties.

Significantly less literature exists on the evaluation of security systems in gen-

eral and authentication systems in particular. The most closely related and largest

body of research is likely that of graphical passwords. Graphical passwords [8], like



28

behavioural biometrics, are proposed as a replacement for traditional passwords, par-

ticularly on mobile devices. Rather than the input mode being a keyboard, the user

inputs credentials on an image. For example, a user may select an ordered sequence of

points on an image [76]. In this way, graphical passwords intend to leverage findings

from cognitive sciences which imply human memory is more suited to images than

text [42].

Evaluation of graphical passwords proceeds in a few directions. It will typically

begin with a theoretical analysis of the credential/password space — essentially, the

number of possible unique credentials. This establishes a baseline comparison with

passwords, whose password space is easily calculable. However, researchers acknowl-

edge two realities: first, the practical size of the password space (that is, the number

of unique credentials users actually choose) is significantly smaller than the theoreti-

cal space. In the domain of graphical passwords, a standard example is that of “hot

spots” — regions of the image which are more often selected than others [71]. Second,

the presence of an attacker can substantially reduce the security of the system. For

example, if an attacker is watching the user input credentials, they may be able to

narrow down the users password to one of several options, rather than one of the

many theoretically possible options.

The impact of these issues on security is evaluated by conducting a user study. A

number of participants will use a graphical password scheme, which researchers will

use to approximate the size of the practical password space. Additionally, the study

will be designed to accommodate some sort of attacker. The role of the attacker is

well defined and consists of trying to compromise the user’s password.

These methods ensure that, as well as knowing about the theoretical security

properties of the scheme, researchers also obtain results in an ecologically valid setting

— a setting which corresponds in some key ways to the way the system would be used

in the real world. Taking cues from this research, and from our previous discussion,

we here formulate a list of requirements for the effective evaluation of a behavioural

biometric system:

• Result Measurement. Results should be based on empirical measurement of the

performance of the system in a user study.
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• Result Reporting Format. Among whatever other results researchers wish to

present, the UAR and AAR should be included. These measurements should

be given for multiple configuration settings, and plotted for comparison. Addi-

tionally, researchers should establish a target AAR, and compare their schemes

to other ones based on the corresponding UAR.

• User Population. The user population should be at least a comparable size to

populations in the related literature (typically 20 to 30 people) and should be

demographically varied.

• Usage Scenarios. The participants usage of the device should correspond to how

they would use it in the field. In particular, an excessive number of tasks should

not be performed in a short period of time and users should not be biased to

behave in one way.

• Attack Scenarios. The study should have well defined attack scenarios and

results for the attack scenarios should be included. At a minimum, two attackers

should be considered: first, an attacker who naively tries to authenticate to the

system, and second, an attacker who has knowledge of the user’s behavioural

pattern and attempts to imitate it.

Khan et al [45, 44] have done considerable work in the problem of accurate com-

parisons of implicit authentication schemes. They have presented a couple of im-

portant considerations. The first is what they term “data availability”. This deals

with whether it is possible for a scheme to collect enough data over a typical usage

period to make an authentication decision. This corresponds to our requirement for

usage scenarios. A second they call “detection delay”. This is the amount of time an

attacker has, once they have gained access, until the scheme detects an attack and

takes action. The authors rightly note that a scheme with high accuracy is useless if

an attack is able to persist for enough time that the attacker is able to accomplish

whatever goals they had. This is a highly important consideration for continuous

authentication schemes in particular and a full security analysis would not be possi-

ble without it. Indeed, this is one reason why we propose task-based authentication

as the best suited approach to device authentication. In a task-based system, the
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detection delay is essentially zero, since sensitive tasks should always be behind an

authentication barrier.

Finally, though it is not the focus of this analysis, usability considerations in

evaluation are important. The usability concerns of authentication systems [14] tend

to focus on the failure rate (how many times the user fails to authenticate, which is

here called the URR), which is typically tied to the memorability of the credential.

Additionally there may be some quantification of the users’ difficuly in interacting

with the authentication mechanism itself.

At a high-level, a perfectly usable authentication system would impose no friction

between the user and whatever task the user is trying to accomplish. The usability

cost then can be measured as anything which adds friction. Authentication failures

require the user to spend time and effort undergoing the authentication task again,

but there are other areas that can be considered. As above, we look at the input

time, since the longer the user spends authenticating the more time there is between

them and their desired task.

3.3 Review of Previous Methodologies

Now that we have established and organized some important considerations for eval-

uating authentication systems, we can use this basis to compare previous approaches

to evaluation methodology. We begin with a quick summarization of previous work,

focusing especially on evaluation methodologies. Then we move on to compare the

body of research to our above requirements.

3.3.1 Overview of Previous Work

One of the earliest entries in the field of behavioural biometrics is the work of Jakob-

sson et al [41], followed by the work of E. Shi et al [65]. These systems monitor some

event stream (for example, phone calls made from or to the device) to detect anoma-

lies. When enough anomalous events are observed, the user is locked out of the device.

E. Shi performs a more thorough evaluation. User data is collected from an app in

the Android Market. In total, 50 users were used in the evaluation of user models,

while additional users were included to evaluate attackers. Results are reported as
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the number of times a legitimate user uses the device before failed authentication, vs

the number of times an attacker uses the device before failed authentication. Two

attack models are considered: an uninformed attacker, who does not know anything

about the security of the system, and an informed attacker, who does. The unin-

formed attacker is modelled off-line by splicing data from other users directly into the

input stream of a legitimate user and trained user profile. The informed attacker is

modelled by splicing known-good events into the attacker event stream, so that the

attacker is able to pollute one authentication feature (for example, browser history).

The work of Riva et al [62] continues in a similar vein. Device sensors are mon-

itored to establish a level of confidence that the device is in the possession of a

legitimate user (for example, monitoring the microphone for voice recognition, or

monitoring bluetooth for proximity to other trusted devices). Nine users, all involved

in the research group, were involved in the user study. In the first component of the

study, data is collected from each user to train a model of behaviour. In the second

part, the system is evaluated. The system is fed data to determine if it can recognize

legitimate users. The researchers also conduct a number of attack scenarios to gather

attack data. Again, two different attackers are modelled: one who is unaware of the

security system, and so behaves as they normally would otherwise, and one who is

aware of the security mechanism, and so tries to compensate for it (for example, by

not speaking, so as to hopefully not trip the voice recognition system).

A third similar work is that of W. Shi et al [66], which attempts to prompt for

explicit authentication only when it is confident that they user has changed, based

on observation of the accelerometer, touch screen, voice recognition, and location

history. Data was collected from the accelerometer monitoring eight users walking

gait, and from seven users performing touch gestures. Results are reported as the

success of binary classification (in the case of the accelerometer), or are not reported

directly (voice, touchscreen). No results are given for a fusion of these elements, and

no participants use a full prototype.

Other research, rather than attempting to fuse the results of multiple sensors

together to come to an authentication decision, take a narrower focus and consider

only a specific action or sensor. Recent examples of this work include Feng et al [24],
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Lin et al [52] and Bo et al [10]. Feng et al analyze touch screen gestures to perform

user authentication. Features include x and y coordinates, finger speed, and finger

pressure. Forty users provided samples of touch gestures. Classifiers were trained on

the resulting data, and the results reported are the results of these classifiers. Lin

et al propose a similar system, however they focus on the orientation sensors rather

than the touch screen. Twenty participants provided over 1,800 samples each. Again,

results are reported as the results of a classifier on the participant data.

Bo et al extract features for user identification from the touch screen, as well as

small movements in the accelerometer and gyroscope. In their usage scenario, there

is a user who acts as the owner and several users who act as guests. Similar to the

previous two systems, results are reported as the classification accuracy between the

owner and the guests. Accuracy is reported after observing a single swipe, as well

as after observing a sequence of swipes. Frank et al [27], similar to Feng et al [24],

extract a large number of features from touch screen input to perform authentication.

Subjects participated in two sessions one week apart where they used a mobile device,

performing tasks which involve swipes. Results are reported as the classification

accuracy between different users.

3.3.2 Previous Work compared to Requirements

• Result Measurement: Most of the systems discussed previously base their re-

sults, at least in part, off of empirical measurement from a user study. However,

there are several subtle ways this requirement can be avoided. One way is to

measure the results from various components of the system, but not from the

system as a whole (c.f W. Shi et al).

• Result Reporting: Most authors ([24], [52], [10], [27], [21]) report the FP and

FN rates. Some authors, particularly those which perform authentication con-

tinually over an extended usage period, tailor their results by, for example,

reporting the length of time until an attacker is prompted for explicit authen-

tication ([65]).

• User Population: Many evaluations include 30 or more participants ([65], [24],
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System Result Measurement Result Reporting User Population Usage Scenarios Attack Scenarios
Jakobsson et al. yes N/A unknown yes none
E. Shi et al. yes ERR 50 yes partial
Riva et al. yes confusion matrix 9 yes partial
W. Shi et al. no confusion matrix 7 yes none
Feng et al. partial FP/FN of binary classifier 40 yes none
Lin et al. yes FP/FN of kNN 20 no none
Bo et al. yes FP/FN/ERR of one and two class SVM 10 yes none
Frank et al. yes FP/FN/ERR of binary classifier 41 yes none
De Luca et al. yes FP/FN of DTW distance 48 yes none

Table 3.1: Summary of Related Evaluation Methodologies

[27], [21]), however some include less than 10 ([62], [66]). With less than ten it

may be possible to obtain preliminary information on the feasibility of a design,

however it is not possible to draw concrete conclusions or accurate comparisons.

• Usage Scenarios: Previous work varies in the amount of detail that is given

on how data is collected. Some authors, for example E. Shi et al, collect data

from a field study, where some data collection application is given to users who

then use their devices as they normally would. Most authors, however, opt for

a laboratory study where participants come in explicitly to collect data. In

these situations care must be taken that the way data is collected does not

impact the effectiveness of the results. In particular, collecting a large number

of sample (for example, Feng et al [24]) without compensating for user fatigue

or artificially high consistency induced by repetition has a negative impact on

effectiveness.

• Attack Scenarios: Previous work varies even more in its approach to attack

evaluation. One common approach is to simulate an attacker by constructing

a detector for each participant, and then simulating an attacker by feeding

the detector data from other participants. Though this may approximate an

attacker who has no knowledge of the system or legitimate user’s behaviour, it

can not judge the success of a knowledgeable attacker. Of the systems which do

attempt to approximate a knowledgeable attacker, some ([65]) do so by splicing

other user’s normal usage data into a stream of usage data from the legitimate

user. Again, though this may approximate a knowledgeable attacker, it can not

be considered a true substitute for an ecologically valid attack.
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This analysis is summarized in Table 3.1. There is no one scheme which meets all

the evaluation criteria. There are two main areas where previous work is particularly

lacking. First, results are reported in a number of different formats, which makes

cross comparison difficult. Moreover, almost all of the results are reported as the

result of binary classifiers, which as we discussed previously would not be possible

in a real world scenario since only one class of data (that of the legitimate user) is

available to the device. Notable exceptions to this are the work of Bo et al [10],

who present both one class and binary classification results, and De Luca et al [21],

whose DTW classifier is one-class. Second, attack scenarios are largely missing from

methodologies. Most evaluations simply imply the binary classification results as

being representative of an attacker. This is a weak case of the random attacker,

however still suffers from being based on binary classification. Notable attempts at

more formal attacker modelling is made by E. Shi et al [65], who splice legitimate user

data into data collected from other users to represent an attacker who can imitate

some forms of user behaviour. Riva et al [62] are the only scheme which attempts

to model legitimate attack scenarios. In their laboratory study, once the user has

trained the device, they leave the room and the attacker enters. The attacker either

uses the phone normally (similar to a random attacker) or uses the phone while

attempting to evade security measures (for example, by not speaking and triggering

voice recognition).

We present our own methodology in Chapter 6. Before a discussion of our study

can make sense, however, we must first discuss the specific behaviour we have chosen

to target in Chapter 4 and the algorithmic approach we take to building the anomaly

detector in Chapter 5.



Chapter 4

Swipes as a Behavioural Biometric

In this chapter, we begin by reviewing the requirements for a behavioural authen-

tication solution outlined in Chapter 1 and connecting these requirements to the

continuous, secondary and task-based classification in Chapter 2. We then describe

how we can fulfill these requirements using the concept of a swipe. In this way, we

have ensured that the behaviour we are targeting is derived from our problem setting

and is able to be judged against an evaluation methodology which will flow from that.

In the rest of the chapter we provide an in-depth analysis of the form of swipes from

the perspective of the device’s sensors.

4.1 Requirements for a Solution

In the introduction, we introduced three requirements for behavioural authentication

solutions. The first requirement is to model stable observables. The behaviours which

the mechanism is targeting should not have excessive variation. Trying to model a

highly variant behaviour has a significant security risk in the model becoming too

broad and losing its security properties. The second requirement is imitation resis-

tance. Given the unique constraints of mobile devices (such as frequent public use),

an attacker observing and imitating a legitimate user’s actions should not be suffi-

cient for reliable authentication. The third and final requirement is non-intrusiveness.

Authentication tasks that can be baked into the normal use of an application should

be preferred for not imposing additional friction on users.

Requirement Stable Observables Imitation Resistance Non-intrusive
Continuous x
Secondary x x
Task-Based x x x

Table 4.1: Requirement fulfillment for continuous, secondary and task-based solutions

35
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With the requirements given in Chapter 1 and outlined above, we can compare

the three approaches (continuous, secondary and task-based) discussed in the earlier

chapters. This comparison is outlined in Table 4.1. We defined continuous authenti-

cation as those schemes which constantly monitor the behaviour of users. Given this

broad view of behaviour, it is unlikely that the input from the sensor will qualify as a

stable observable. This is because, when a larger scale is considered, the space of pos-

sible behaviours is exceedingly large and the amount of dimensions in the behaviours

make them complex. This makes it difficult for an algorithm to hone in on a clear

pattern in the user’s behaviour. Moreover, some approaches to continuous authenti-

cation do not meet the requirement for non-intrusiveness, particularly if an explicit

authentication event can be triggered any time the authentication score falls below

a certain threshold. This is because, from the user’s perspective, the occurrence of

explicit authentication is unpredictable — it can interrupt them at any point in their

workflow. This unpredictability means that the user is not able to form an accurate

mental model of the behaviour of the system, which is critical for usability [68]. This

effect can be lessened by only triggering explicit authentication at security barriers

(such as at application launch), however because of the continuous property these

events are still partially unpredictable.

Secondary authentication schemes do not satisfy the third requirement, since they

are based on a preexisting explicit authentication mechanism. However, they do sat-

isfy the first two requirements. Since the space of possible behaviour is tightly con-

strained, it is much more likely for the behaviour to constitute a stable observable.

Additionally, since the authentication is layered on top of an explicit mechanism,

knowledge of the credential is not the sole means of authentication — which is imi-

tation resistance.

Since task-based authentication is essentially secondary authentication but with-

out being constrained to an explicit mechanism, it inherits the first two requirements.

Additionally, by dropping the basis of an explicit authentication action for some other

action, it fulfills the third requirement as well.
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4.2 Swipes

We decided to select swipes as the targeted behavioural biometric which fulfills our

requirements. Swipes are a standard navigational gesture on touch-based mobile

platforms. They consist of a quick movement sliding the finger along the screen. We

do not place restrictions on the direction or length of the swipe. We hypothesize

that, since this action is a standard navigational task which users perform frequently,

they become habitualized into the user’s muscle memory. We further posit that this

implies the user will perform the task subconsciously with physical regularity —

meaning the motion will be very similar each time the user performs it, making it

a stable observable in accordance with the requirement to model stable observables.

An additional corollary to this is that the exact action is difficult for an attacker to

imitate, giving imitation resistance. This is because, when imitating an action, the

action moves from a person’s subconscious muscle memory to their explicit attention,

which may manifest itself in physical differences in the swipe. As noted in Chapter 1,

researchers have observed these effects in similar habitual actions, such as handwriting

and walking. Finally, since swipes are a standard part of touchscreen navigation

and UI design, most applications requiring authentication can easily instrument a

screen to act as the authentication mechanism without disrupting the workflow of

the application, which is in accordance with non-intrusivity.

4.2.1 Other Candidate Tasks

Swipes are not the only possible task which could be the subject of behavioural

authentication, though we do believe at this point it is the approach which holds the

most promise. Other potential behaviours include:

1. keystroke dynamics. Keyboards are still a typical input modality for mobile

devices. However, the usability of mobile device keyboards has been heavily

criticized. In fact, the design of mobile application interfaces will often try to

mitigate the need for text input so as to avoid the usability strain of a keyboard.

Basing a usable authentication solution on an input modality with significant

usability problems will not advance the overall balance of usability in the system.
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2. application navigation. It could also be possible to profile the way the user pro-

gresses through the application (for instance, the time between various button

presses or menu selections). However, this tightly couples the authentication

algorithm to a specific interface design, reducing its general applicability and

usefulness.

3. other interface widgets. Swipes are one example of an interface widget which

users commonly encounter, however there are numerous other ones which could

be suitable for authentication. For example, dragging and pinching are common

gestures in mobile platforms. Typically, however, these actions are much more

contextualized than swiping because they interact directly with an on screen

element, or may have different effects depending on where they occur in the

interface.

4.2.2 Form of Swipes

To capture the swipe, three timeseries are read from the devices sensors as the user

swipes. The first is from the touchscreen. The touchscreen reports the location of

the users finger on the screen as a Cartesian coordinate at a given timepoint. The

second sensor is the accelerometer. This reports the accelerational force (essentially,

a velocity) acting on the device along the three physical axes. The third sensor is the

gyroscope. This measures the rotational velocity around the three physical axes. It

is important to note that, though the sampling rate is specified by the developer, the

actual series of events returned are not necessarily uniform time intervals.

With these three sensors, we hope to capture the crucial information about the

way the user interacts with the device when swiping. The touchscreen timeseries

will capture, to the finest granularity available to the device, the shape of the users

movement on the screen. The other two sensors are meant to capture the physical

movement of the device in the user’s hand. This includes things such as how the

user turns the device as their wrist moves (captured by the gyroscope), and how

the device moves back and forth with small movements in the user’s arm (by the

accelerometer). In the next section we give examples of these three sensors from data

collected during our user study and pull out a number of observations. The purpose
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Figure 4.1: Cartesian coordinates of touch points

of this is to give an example of the kind of close-up analysis which forms the basis of

feature extraction.

4.2.3 Touchscreen

Figure 4.1 gives a visual example of the touch timeseries to gain a better understand-

ing of the space. Each point represents a single reading from the touchscreen sensor

of the swipe. The figure shows data for two different users. Though the series for

User A is small, we can note a couple of properties. First, the points have a slight

upward trend from left to right. This trend is common when the phone is held with

the right hand and the user swipes from right to left with the thumb, primarily due

to the physical anatomy of the thumb which moves upward as it is rotated. We can

also observe that the points toward the end of the series are spaced closer together

than the first two points. This suggests that the velocity of movement may decrease

over the course of the swipe (though this would have to be confirmed by analyzing

the timestamps, since the readings are not necessarily uniform time intervals).

User B’s swipe is quite distinct from User A’s. First, the number of coordinates

leads us to conclude that the swipe is longer (both in physical distance as well as in

time) than that of User A. Second, the swipe has a reversed trend from that of User

A — meaning it goes downward when viewed from left to right, rather than upward.
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Figure 4.2: Acceleration along the x axis

This occurs because of the same property which caused the upward trend it User A —

handedness. User B swiped with the left hand from left to right, causing a downward

trend. Finally, similar to User A, the points become closer together towards the right

end of the swipe, indicating an increase in velocity.

In summary, the two user’s touch timeseries illustrate two important points. First,

that user’s swipes are distinct. Second, that physical differences between the users

(in this case handedness, but equally other differences such as hand size and finger

positioning) has noticeable effects on the timeseries.

4.2.4 Accelerometer

Figure 4.2 gives the timeseries for the x-axis accelerometer readings over the same

swipes as Figure 4.1. Again, it is visible that User B’s swipe is longer (in this case,

only that it takes more time) than User A’s because of the number of readings in

each series. Besides this, there are several important observations. First, User A’s

values are much less variable than User B’s, which have comparatively large and steep

changes in acceleration velocity. This indicates that the phone was much more stable

in User A’s hand, whereas over the course of User B’s swipe much more movement

occurred. Second, the range of values for each user is distinct (visually, the lines do

not cross).
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Figure 4.3: Rotational velocity (gyroscopic readings) along the x axis

More observations can be made by taking a closer look at the trends. Both se-

ries begin with a downward trend, which bottoms out before rising temporarily and

then falling again. After that, however, the trends diverge with User A continuing

downward and User B fluctuating. We can also not that User A’s values temporar-

ily reaching negative values. This indicates that, for a short time, User A’s device

began accelerating in the opposite direction (note that, because we are dealing with

acceleration, this means that the device’s movement was slowing down, not that the

device itself was moving in the opposite direction).

Similar to the touch timeseries discussed previously, the key point is that two

different user’s accelerometer timeseries, and by extension the movement of the device

itself, are distinct from each other. This means that physical differences in how the

users handle the device have visible effects. The y and z axes are not different in

principle from the x axis illustrated here.

4.2.5 Gyroscope

Figure 4.3 gives the timeseries for the x-axis gyroscope readings over the same swipes

as the previous figures. The analysis for this is much the same as for the accelerometer

readings so it will not be repeated in full. However, we can not that both swipes share

a generally parabolic trend — however the trend is much more pronounced in User
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B’s swipe than it that of User A. Again, the y and z axes do not vary in analysis from

the axis illustrated here.

4.2.6 Swipes for Authentication

From the observations above, swipes emerge as a prime candidate behaviour to target

for authentication. This is because they have the potential to be the basis for a scheme

which fits the requirements derived from the problem setting. In particular, since they

are quick, repetitive, near unconscious movements, it is likely that their reflection in

the device’s sensors will be stable for one user, but variant across a population of

users. This same property makes them difficult to imitate, especially when imitation

brings the action to a conscious level and so changes its characteristics. Finally,

because they are a ubiquitous interface element of touch enabled devices, it is simple

to insert them at any point where authentication is desired.



Chapter 5

Algorithms for Swipe-Based Behavioural Authentication

In this chapter, we present several designs for authenticating using swipes. Each

successive design is based on refining the previous design with performance feedback

from testing. In total there are three versions. The first and simplest version derives

features as discretized static ranges represented by bitstrings. In the second version,

static ranges are traded for a dynamic range calculated from a retained history of

past features. In addition, the second version includes additional features for the

accelerometer and gyroscope data streams. In the third and final version, rather than

comparing a feature directly to the history of features, the algorithm compares the

distance of that feature from a mean to the history of feature’s distance’s to the mean.

For each algorithm, we discuss its approach to feature extraction, its user model and

its authentication decision.

5.1 Sensor Readings

We consider three data streams collected from the device’s sensors: the accelerom-

eter, the gyroscope, and the touch screen. During a swipe (which begins when the

touch screen first reports a touch, and ends when the finger is lifted from the screen)

the sensors report readings to a given callback point at uneven intervals. For the ac-

celerometer and gyroscope, these readings are reported in the form {x, y, z, t} where
x, y, and z are sensor measurements along the respective axes, and t is a timestamp.

The touch screen, these readings are reported as {x, y, t} where x and y are Cartesian

coordinates with respect to the top left corner of the screen, and t is a timestamp.

When the swipe is complete, these sensor readings have been collected into three

arrays, one for each sensor. These structure of these arrays is shown in Table 5.1. All

the following algorithmic descriptions assume the availability of data in this form.

43
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accelerometer [{x0, y0, z0, t0}, {x1, y1, z1, t1}, ..., {xna , yna , zna , tna}]
gyroscope [{x0, y0, z0, t0}, {x1, y1, z1, t1}, ..., {xng , yng , zng , tng}]
touch screen [{x0, y0, t0}{x1, y1, t1}, ..., {xnt , ynt , tnt}]

Table 5.1: sensor reading structure

In the following sections, we will refer to these arrays as accel, gyro, and touch. An

individual reading is then referenced as, for example, accel[n]. The per axis readings

are accessed by, for example, accel[n].x.

5.1.1 Approach to Feature Extraction

We chose to leverage domain specific knowledge to manually define and select features

for authentication. Since we begin with a small amount of data and data collection

is relatively slow and expensive, this approach allows us to prototype and iterate

quickly. From previous experimental experience, this approach allows the creation of

tighter models that can learn quickly under the constraints of limited data.

5.1.2 Preprocessing

Prior to performing feature extraction there are a few steps of preprocessing. In

the first we determine the peak point of the touch array. The peak point is the

point of maximum distance (in pixels) from any point in the touch array to a linear

interpolation from touch[0] to touch[nt]. To calculate the distance, we can begin with

the point-slope form of a line

y − y1 = m(x− x1) (5.1)

where y1 and x1 are any point on the line, and m is the slope of the line. Since we are

calculating the linear interpolation, we by definition know two points: (touch[0].x,

touch[0].y) and (touch[nt].x, touch[nt].y). These are the beginning and the ending

points of the line segment. Since we know these two points (call them (x1, y1) and

(x2, y2) respectively) we can determine the slope m as ∆y/∆x, or

y − y1 =
y2 − y1
x2 − x1

(x− x1) (5.2)



45

We can then derive the standard form of the line in the following way:

(x2 − x1) · (y − y1) = (x2 − x1) · (
y2 − y1
x2 − x1

· (x− x1))

x2 · y − x1 · y − x2 · y1 + x1 · y1 = x · y2 − x1 · y2 − x · y1 + x1 · y1

y · (x2 − x1)− x2 · y1 + x1 · y1 = x · (y2 − y1)− x1 · y2 + x1 · y1

x1 · y2 − x2 · y1 = x · (y2 − y1)− y · (x2 − x1)

Given that the standard form of a line is ax+ by+ c = 0, we can re-arrange the above

for:

(y2 − y1) · x− (x2 − x1) · y − x1 · y2 + x2 · y1 = 0

(−1) · (y2 − y1) · x− (x2 − x1) · y − x1 · y2 + x2 · y1 = (−1) · 0

(y1 − y2)x+ (x2 − x1)y + (x1 · y2 − x2 · y1) = 0

Substituting (touch[0].x, touch[0].y) and (touch[nt].x, touch[nt].y) for (x1, y1) and (x2, y2)

results in:

(touch[0].y− touch[nt].y)x+ (touch[nt].x− touch[0].x)y

+(touch[0].x · touch[nt].y− touch[nt].x · touch[0].y)
(5.3)

Once in the standard form, the distance from an arbitrary point (xp, yp) to this

line is calculated with

|a · xp + b · yp + c|√
a2 + b2

(5.4)

Where a, b and c are taken from Equation (5.3). The point of maximum distance is

the peak point, which we refer to as (xp, yp, tp) which has a distance of dp.

In the second step we calculate the band sizes based on the screens physical di-

mensions. The band sizes divide the screen (horizontally and vertically) into eight

spatial ranges and are used to discretize the first four features. Assume that the

horizontal length of the screen (in pixels) is sizehoriz and the vertical length is sizevert.

Then the horizontal band size is bandhoriz = sizehoriz/8 and similarly the vertical band

size is bandvert = sizevert/8.
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5.2 Bit Vector Version

The first version of the algorithm represents a swipe as a bit vector of discretized

features. There are 36 total features, comprising measurements from touch screen

data (such as the starting and ending points) as well as from the accelerometer. This

version did not incorporate gyroscope measurements. The overall design goal was

to be conceptually simple and lightweight, which motivated the representation as a

bit vector. This representation reduces the authentication decision to a hamming

distance measurement, which is easy to understand and compute.

5.2.1 Feature Definitions

Features were selected by inspection of the timeseries data from a small (3-5) initial

group of participants. Most features correlate closely to the geomtric shape of a

swipe. In particular the starting and ending points locate the swipe on the screen,

and the curvature is captured in the peak features. The accelerometer is treated as a

simple indication of which way the device moved during the swipe. Each feature was

constructed so that it would be discrete. This means that the value of a feature is

an integer representing which range a measurement falls into. For example, consider

the amount of time (in ms) a swipe takes. We construct four ranges for this feature:

0-100ms, 100ms-200ms, 200-300ms, and 300 or more ms. In this case, the feature is

an integer in the range [1−4]. The specific ranges for each feature (for example, eight

ranges for the screen size, three ranges for the peak size) were determined empirically

by observing and balacing such that a user would typically stay within the same range,

while mulitple users would fall into different ranges. These features are defined below:

The first group of features concern the starting and ending coordinates. Each x and

y coordinate point fits into one of eight ranges defined by bandhoriz and bandvert.
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starting x coordinate ← ⌊touch[0].x
bandhoriz

⌋

starting y coordinate ← ⌊touch[0].y
bandvert

⌋

ending x coordinate ← ⌊touch[nt].x

bandhoriz

⌋

ending y coordinate ← ⌊touch[nt].y

bandvert

⌋

The second group concern the peak point (see Equation 5.4). From the peak point

(xp, yp) which occupies index pi in the touch array, the following features are extracted.

peak size horizontal ← dp > bandhoriz

peak size vertical ← dp > bandvert

peak location ← ⌊ pi
(nt/3)

⌋

peak time ← tp >
touch[nt].t

2

The next feature is extracted from the angle of the swipe. The angle is from the

starting point to the ending point, relative to a horizontal line, and measured in de-

grees from 0o to 360o and discretized into eight ranges.

direction ←
tan−1

(
touch[nt].x− touch[0].x

touch[nt].y− touch[0].y

)
360o/8

The below features detect whether the swipe has touched one of the four borders of

the screen.

left bound ← touch[nt].x == 0

top bound ← touch[nt].y == 0

right bound ← touch[nt].x == sizehoriz

bottom bound ← touch[nt].y == sizevert

The total time of the swipe (in ms) is discretized into four categories of 100ms each.

The final range is open ended and includes all swipes longer than 300ms.
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time ← ⌊touch[nt].t

100
⌋

The next three features concern the accelerometer. They represent whether the phone

has made a definitive move in a positive or negative direction over the course of the

swipe. A definitive move occurs when the magnitude of a vector represented by

(xi, yi, zi) is greater than a threshold (empirically set to be 0.4).

x-axis acceleration ←
√

touch[i].x2 + touch[i].y2 + touch[i].z2 > 0.4 AND touch[i].x > 0

y-axis acceleration ←
√

touch[i].x2 + touch[i].y2 + touch[i].z2 > 0.4 AND touch[i].y > 1

z-axis acceleration ←
√

touch[i].x2 + touch[i].y2 + touch[i].z2 > 0.4 AND touch[i].z > 1

5.2.2 Feature Representation

For each of the features above, the feature extraction is either an equation which

evaluates to an integer number in some range [0...n] or a boolean conditional. In

order to make the comparison of swipes conceptually simple, we represent each swipe

as a bitstring. Each feature is represented as a sequence bits equal to the number of

discrete states that feature can occupy. The bit at the index corresponding to the

state occupied by the feature is set to 1. For example, the screen’s length is divided

into eight equal ranges. If the starting x coordinate occupies the second range the

bit representation will be 01000000, which has the second bit set to 1. The entire

swipe is represented as the concatenation of these feature level bitstrings into a single

bitstring. An full example of a swipe with its corresponding bitstring representations

is given in Table 5.2.

In this example, assume that the screen is 50px x 100px. Coordinates are given

relative to the top left corner, which is standard for touch screen measurements (note

that this is different from a typical Cartesian plane, where coordinates are relative

to the bottom left corner). Then the horizontal band size is 50/8 = 6.25 pixels.

The vertical band size is 100/8 = 12.5 pixels. This means the starting y coordinate

is in the 6th band, giving a bit representation of 00000100 (that is, the sixth bit

is set to one). Similarly, the starting x coordinate occupies the 2nd band, giving a

representation of 01000000 (the second bit is set to one). Using the same calculations
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Feature name value bit representation
starting point y coordinate 76 00000100
starting point x coordinate 10 01000000
ending point y coordinate 20 00000100
ending point x coordinate 50 00000001
peak size 12.79 11
peak location (x, y) (20, 40) 100
peak time 80ms 10
direction 305.54 degrees 00000010
bounding collision screen right 0010
time 300ms 0010
x-axis acceleration 0.98 10
y-axis acceleration -0.23 01
z-axis acceleration 0.53 10

Table 5.2: feature decomposition of a swipe

we find the ending x and y coordinate bands.

The peak size is the maximum distance from the true curve (that is, the series of

points reported from the touch screen) compared to a linear interpolation from the

starting to ending point. Using the equations explained above, this gives a peak size

of approximately 12.79 pixels. This size is larger than both the horizontal band and

the vertical band, so both bits get set to 1. The peak location coordinate is in the

first third of the swipe, giving it a value of 100. Given that the total time is 300ms,

the peak time of 80ms is in the first half (300ms/2 = 150ms), meaning we set the

first bit in the two bit representation.

The angle of the line is calculated using the arctangent as shown above. This

calculation gives an angle of approximately −54.46◦, which is equivalent to 360◦ −
54.46◦ = 305.54◦. This falls into the seventh angle range, and so the resulting bit

sequence is 00000010.

Note that the ending x coordinate is 50, which is the same as the width of the

screen. This means the swipe has collided with the right edge of the screen. For this

reason, the third bit is set in the bounding feature. The time, at 300ms, occupies

the third range (200-300ms). The overall x-axis and z-axis acceleration are positive,

giving a representation of 10, while the y-axis acceleration is negative, giving the

opposite representation of 01.
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The overall representation is achieved by concatenating all the feature level bit-

strings in the last column into one bitstring.

5.2.3 User Model

The user model is also represented by a bitstring. The algorithm keeps track of a

rolling window of the past ten swipes in their bitstring representation. The user model

is constructed with the following algorithm:

Algorithm 1 Bit Vector Version User Model Construction

1: procedure UserModel

2: length← number of swipes in history

3: numBits← total number of bits

4: for i = 0; i < length; i++ do

5: for j = 0; j < numBits; j ++ do

6: bitCount[j]+ = history[i][j]

7: for i = 0; i < numBits; i++ do

8: if numBits[i] > (length/2) then

9: userModel[i]← 1

10: else

11: userModel[i]← 0

12: return userModel

Essentially, the user model is a bitstring where each bit position is set to 1 if the

majority of bits in that position in the history are also set to 1. In the case of a tie

(for example, 5 swipes have it set to 1 and 5 swipes have it set to 0) the bit is set

to 0. This arbitrary decision could be avoided by enforcing an odd number of swipes

retained in the history, however in practice we observed few cases where features were

evenly split. Finally, once a new swipe is observed, it is added to the history and the

oldest swipe in the history is removed (that is, the history acts as a circular buffer).
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5.2.4 Authentication Decision

Since both the new swipe and the user model are represented as equal length bit-

strings, calculating a distance between them is simple. We chose to use the hamming

distance, the number of positions which differ between the two strings. If the ham-

ming distance exceeds a threshold value, the swipe is considered anomalous and the

user is not authenticated.

Since we are using the hamming distance and only one bit is set in each feature

at a time, the size of each feature in bits is not important. For example, the starting

x coordinate feature is eight bits, while the x-axis acceleration feature is one bit.

However, this does not mean that the starting x coordinate has more weight. Rather,

a one bit change in either feature will have equal effect.

5.2.5 Discussion

The goal of this algorithms design was to keep authentication as lightweight and

simple as possible. The majority of the complexity is isolated in the feature extraction

— both the user model construction and authentication decision are simple bitwise

operations. The price of this simplicity is in the discretization of features. In order

for this algorithm to function well, the discretization should be fine-grained enough

that different users will occupy different ranges for enough features to make them

distinguishable, but coarse enough that the same user will consistently occupy the

same range.

The main task then is to determine the correct ranges for each feature. For a small

user population this is possible, either by empirical observation or by a search of the

possible ranges looking for the optimal values. When the user population grows,

however, it’s possible that the feature ranges do not sufficiently capture the variation

between users. Our next model addresses these shortcomings as explained below.

5.3 Dynamic Range Version

This algorithm provides a response to the fragility of static ranges for features when

the user population grows. For a large user population, determining static ranges
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which capture the variation between users is difficult. Instead of each feature having

static discretization that is applied to every user, the features have a dynamic range

per user which is based on the user’s history of swipes. From the history, the algorithm

calculates an expected range of values (interpreted as a standard deviation window

around the mean). If enough of the features fall in this expected range, the user

authenticates. We hypothesized this dynamic range would allow the model to adapt

more tightly to each user, since it is based off of the user’s unique history.

There are also significant changes to the feature set. A number of features which

we judged to not be effective were removed, and a number of new features were

added. In particular, the accelerometer is significantly modified and the gyroscope

is added. We hypothesized that extracting more information about the physical

movements of the device would capture characteristic patterns in the user’s physical

movement, which we expect to be characteristic of them. The new accelerometer and

gyroscope features attempt to capture more fine grained information about physical

movement by treating each reading as a vector (with an angle and magnitude), rather

than just as a indication of direction as the previous algorithm does. Additionally

we consider features locating these vectors in time (such as when the smallest and

largest vectors were), capturing any characteristic information about how the user’s

movement changes through the swipe.

5.3.1 Feature Definitions

This version takes a different approach to calculating features than the Bit Vector

Version. Rather than discretizing a value into multiple buckets, the value is left as is.

Version two also leverages the gyroscope for feature extraction. All the features are

listed below.

Like the Bit Vector Version, the starting and ending x and y coordinates are four

features.

starting x coordinate ← touch[0].x

starting y coordinate ← touch[0].y

ending x coordinate ← touch[nt].x

ending y coordinate ← touch[nt].y
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Assume we have the following function to compute distances between two indices a

and b in the touch array:

distance(a, b) =
√

touch[a].x− touch[b].x)2 + (touch[a].y− touch[b].y)2 (5.5)

Then we can define the length of a swipe as the total distance (in pixels) traversed

by the swipe, while the magnitude is the distance of the linear interpolation from the

starting to ending points.

length ←
nt∑
i=1

distance(i, i− 1)

magnitude ← distance(nt, 0)

The peak point is calculated in the same way as for the Bit Vector Version.

peak size ← dp

peak location ← pi

peak time ← tp

Direction and time are also the same as Bit Vector Version.

direction ← tan−1

(
touch[nt].x− touch[0].x

touch[nt].y− touch[0].y

)
time ← touch[nt].t

For each sensor three features are calculated: the sum total of the sensor readings for

the x, y, and z axis.

x-axis acceleration ←
na∑
i=0

accel[i].x

y-axis acceleration ←
na∑
i=0

accel[i].y

z-axis acceleration ←
na∑
i=0

accel[i].z

x-axis gyroscope ←
ng∑
i=0

gyro[i].x

y-axis gyroscope ←
ng∑
i=0

gyro[i].y

z-axis gyroscope ←
ng∑
i=0

gyro[i].z

The next three features are simply the number of intervals for each sensor, where an

interval is the gap between one recording and the next. Since the amount of time
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between sensor readings is not strictly uniform, these features are not a function of

the total time of the swipe.

touch intervals ← number of touch intervals

accel intervals ← number of accel intervals

gyro intervals ← number of gyroscope intervals

For a zero-indexed array of length n, the number of intervals is n. So, in the above

features, the number of touch, accel and gyro intervals are nt, na, and ng respectively.

For the next set of features, we will define a function to compute the magnitude of a

vector using the Pythagorean Theorem. The function takes an array and and index

into the array:

vector size(array, i) =
√
array[i].x2 + array[i].y2 + array[i].z2 (5.6)

The next features treat each element of the accel and gyro arrays as a three dimen-

sional vector. Each vector has a magnitude and an angle. If we calculate these values

for each reading, we can further derive the mean magnitude and angle.

mean accel vector magnitude ←

na∑
i=0

vector size(accel, i)

na

mean gyro vector magnitude ←

na∑
i=0

vector size(gyro, i)

ng

mean accel vector angle ←

na∑
i=0

cos−1accel[i] · [1, 0, 0]

na

mean gyro vector angle ←

ng∑
i=0

cos−1gyro[i] · [1, 0, 0]

ng

Similar to above, we can also derive the largest and smallest vector magnitudes.

largest accel vector ← max({vector size(accel, i)∀ i ∈ [0...na]})
smallest accel vector ← min({vector size(accel, i)∀ i ∈ [0...na]})
largest gyro vector ← max({vector size(gyro, i)∀ i ∈ [0...na]})
smallest gyro vector ← min({vector size(gyro, i)∀ i ∈ [0...na]})

Furthermore we can find the indices of the largest and smallest values in the accel

and gyro arrays.
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largest accel vector location ← indexof(largest accel vector)

smallest accel vector location ← indexof(smallest accel vector)

largest gyro vector location ← indexof(largest gyro vector)

smallest gyro vector location ← indexof(smallest gyro vector)

For the touch array, consider the longest time between sensor readings.

longest interval time ← max({touch[i].t− touch[i− 1].t,∀ i ∈ [1...nt]})
longest interval location ← indexof(longest interval time))

Since the touch screen reports Cartesian coordinates along with a timestamp, we can

calculate the velocity for each point. From this we extract the highest velocity (in

pixels per millisecond) and the index in the touch array of this high velocity point.

highest velocity ← max

({
distance(i, i− 1)

touch[i].t− touch[i− 1].t
i ∈ [1...nt]

})
highest velocity location ← indexof(highest velocity)

To illustrate these calculations an example swipe is given at the top of Table 5.3.

Note that in this specific example, for simplicity, the gyroscope reports the same

values as the accelerometer. The rest of the table gives the feature decomposition for

the swipe.

5.3.2 User Model

The user model consists of all the features for the past fifteen swipes. A range of

expected values is then calculated for each feature based on this history. Given

history[x] as an array comprising all the measurements for a single feature x in the

history, then this range is defined as:

mean(history[x])± k ∗ std(history[x])

In other words, the range is k standard deviations around the mean, where k is a

configurable number. Like with the Bit Vector Version, the history acts as a circular

buffer. When a new swipe from the user is recorded it is added to the queue and the

oldest swipe is removed.
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sensors
accelerometer (1, 0, 2, 0.1) (2, 1, 2, 0.2) (3, 4, 3, 0.3)
gyroscope (1, 0, 2, 0.1) (2, 1, 2, 0.2) (3, 4, 3, 0.3)
touch screen (10, 10, 0.1) (15, 12, 0.15) (20, 20, 0.3)

features

starting x coordinate 10
starting y coordinate 10
ending x coordinate 20
ending y coordinate 20
length 16.70
magnitude 14.14
peak size 0.16
peak location 1
peak time 0.2
direction 0.79 rad
time 0.3
x-axis acceleration 6
y-axis acceleration 5
z-axis acceleration 7
x-axis gyroscope 6
y-axis gyroscope 5
z-axis gyroscope 7
touch intervals 2
accel intervals 2
gyro intervals 2
mean accel vector magnitude 3.69
mean gyro vector magnitude 3.69
mean accel vector angle 1.03
mean gyro vector angle 1.03
largest accel vector 5.83
smallest accel vector 2.24
largest gyro vector 5.83
smallest gyro vector 2.24
largest accel vector location 2
smallest accel vector location 0
largest gyro vector location 2
smallest gyro vector location 0
longest interval time 0.15
longest interval location 2
highest velocity 107.70
highest velocity location 1

Table 5.3: feature decomposition of a swipe for Dynamic Range Version
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5.3.3 Authentication Decision

To reach an authentication decision, the algorithm first transforms the incoming data

streams (accelerometer, gyroscope and touch) into its feature representation according

to the equations above. For each feature, it checks whether the value for the swipe

fits within the range specified by the user model. The algorithm keeps track of how

many of these values fall outside the range. If this number is below some threshold,

then the user authenticates.

The following below shows the process of authentication for the Dynamic Range

Version. Note that k, threshold and the size of the history array are all configurable:

Algorithm 2 Dynamic Range Version Authentication

1: procedure Authenticate

2: history[][] : array of arrays of features

3: swipe[] : array of features

4: count← 0

5: k ← 1.3

6: threshold← 15

7: for i = 0; i < swipe.length; i++ do

8: min← mean(history[i])− k ∗ std(history[i])
9: max← mean(history[i]) + k ∗ std(history[i])
10: if min <= swipe[i] <= max then

11: count++

12: return count > threshold

5.3.4 Discussion

As stated previously, the motivation of this design is to give more flexibility to the

features by allowing the range of accepted values to vary across users. The calculation

above attempts to capture the range of the user’s behaviour for that feature. The

configuration of the k value is key, since it directly controls how broad the range is.

Additionally, the number of past swipes included in the history is an important factor.
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A smaller history size means that future behaviour must match past behaviour very

tightly, whereas a larger history size tends to accept more — which can apply to

attack swipes as well as legitimate swipes.

The introduction of means and standard deviations to the user model introduces

outliers as a problem. A single outlier can skew both the mean and standard deviation

significantly, which can cause the mean to move to some region of the space that the

user’s values do not occupy (and so causing the user to not authenticate) or causing the

standard deviation to broaden to such a level that nearly all input will authenticate,

including attack swipes.

There are several approaches one can take to mitigating the effect of outliers. The

algorithm can refuse to add certain swipes to the history if they cause the mean or

standard deviation of some features to move significantly from their previous values,

however what constitutes a significant movement may be difficult to configure. The

algorithm could also calculate a distance (such as the euclidean distance) between

all the swipes in the history and ignore the top n largest distances. However, that

approach assumes that the number of outliers is exactly n, otherwise either an outlier

is still included in the history (if the true number of outliers is greater than n) or a

legitimate non-outlier is removed from the calculation (if the true number of outliers

is less than n). In any outlier removal scheme, however, more parameters are added

to the algorithm which increases the configuration complexity.

The last note is the addition of features. Most of the new features are extracted

from the accelerometer and gyroscope. This is because, from inspection of the data,

we came to believe that these sensor inputs were being under-utilized in the algorithm

design and so more information could be pulled out of them.

5.4 Mean Distance Version

The next iteration of the algorithm was developed after repeated small scale pilot test-

ing of the Dynamic Range Version. In this testing, we observed that the accelerometer

and gyroscope features were not contributing to the success of authentication as much

as we believed possible. In response to this we significantly reworked these features.

In particular, we wanted to capture more information about how the readings from
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the sensors changed over the course of the swipe. Additionally, the touch features

were behaving well for some users but performing sporadically for others. We hy-

pothesized that basing the feature level authentication window on the mean distance,

rather than directly on the value, could add flexibility to the user model by allowing

it to adapt more to each user.

5.4.1 Feature Extraction

The full set of features for this version are presented here. There are no new touch

features, however several touch features have been removed. The remaining features

are given below:

T1 starting x coordinate ← touch[0].x

T2 starting y coordinate ← touch[0].y

T3 ending x coordinate ← touch[nt].x

T4 ending y coordinate ← touch[nt].y

T5 peak size ← dp

T6 peak time ← tp

T7 direction ← tan−1

(
touch[nt].x− touch[0].x

touch[nt].y− touch[0].y

)
T8 time ← touch[nt].t

T9 length ←
nt∑
i=1

distance(i, i− 1)

T10 magnitude ← distance(nt, 0)

T11 longest interval time ← max ({touch[i].t− touch[i− 1].t, ∀ i ∈ [1...nt]})

T12 highest velocity ← max

({
distance(i, i− 1)

touch[i].t− touch[i− 1].t
∀ i ∈ [1...nt]

})
The accelerometer and gyroscope features have been significantly reworked. First,

the swipe is divided into three segments, each containing an equal number of sensor

readings (in the case where the length is not evenly divisible by 3, the final segment

has fewer readings). Then, within these segments, for each axis we calculate the

slope and axis of the sensor readings. When the sensor readings are interpreted as

a series of coordinates (where the x-axis is the index in the array, and the y-axis is

the sensor reading) one can calculate the slope of a simple linear regression through
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these points, as well as the area underneath the points using the trapezoidal rule.

The two equations (defined as ψ and µ) are given below give the formula for deriving

these measurements. Note that each equation takes array of the length n, which

will be a subarray corresponding to the values for one axis of one segment of the

accelerometer or gyroscope array. ρ represents the Pearson correlation, and σ the

standard deviation.

ψ = ρ(array[0, ..., n], [0, ..., n]) · σ(array[0, ..., n])
σ([0, ..., n])

(5.7)

µ =

array[0] + array[n] + 2 ·
n∑

i=0

array[i]

2
(5.8)

The three segments we are going to use are [0, ...,
na

3
], [

na

3
, ..., 2· na

3
], and [2· na

3
, ..., na].

We represent these ranges as α, β and γ, respectively. Since we deal with each axis

independently, we will notate all of the n-axis values for a segment of an array as

array[segment].n. So, for example, an array consisting of all the x-axis measurements

for the first segment of the accelerometer array is denoted accel[α].x.

Using the above equations, we can represent each feature for the accelerometer and

gyroscope. First take the accelerometer. For each segment, and for each axis, we

calculate ψ and µ. For example, consider the first segment (α). Here we would calcu-

late ψ and µ for the x, y, and z-axis with ψ(accel[α].x), µ(accel[α].x), ψ(accel[α].y),

µ(accel[α].y), ψ(accel[α].z), and µ(accel[α].z). We would repeat these measurements

for β and γ, and then repeat them all for the gyroscope. An explicit listing is given

in the next section.

5.4.2 User Model

The user model consists of an expected distance from a swipe to a exemplar vector of

features derived from a history of the past fifteen swipes. To begin, for each swipe,

we create seven vectors which are concatenations of related features. There are three

vectors for the accelerometer, three for the gyroscope, and one for the touch features.

For later reference these vectors are labelled V1 through V7. For the accelerometer

the three vectors consist of the ϕ and µ measurements for each of the three axes.
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They are:

V1 first segment accelerometer ← [ψ(accel[α].x), µ(accel[α].x),

ψ(accel[α].y), µ(accel[α].y),

ψ(accel[α].z), µ(accel[α].z)]

V2 second segment accelerometer ← [ψ(accel[β].x), µ(accel[β].x),

ψ(accel[β].y), µ(accel[β].y),

ψ(accel[β].z), µ(accel[β].z)]

V3 third segment accelerometer ← [ψ(accel[γ].x), µ(accel[γ].x),

ψ(accel[γ].y), µ(accel[γ].y),

ψ(accel[γ].z), µ(accel[γ].z)]

Similarly for the gyroscope:

V4 first segment gyroscope ← [ψ(gyro[α].x), µ(gyro[α].x),

ψ(gyro[α].y), µ(gyro[α].y),

ψ(gyro[α].z), µ(gyro[α].z)]

V5 second segment gyroscope ← [ψ(gyro[β].x), µ(gyro[β].x),

ψ(gyro[β].y), µ(gyro[β].y),

ψ(gyro[β].z), µ(gyro[β].z)]

V6 third segment gyroscope ← [ψ(gyro[γ].x), µ(gyro[γ].x),

ψ(gyro[γ].y), µ(gyro[γ].y),

ψ(gyro[γ].z), µ(gyro[γ].z)]

And finally the touch features:

V7 touch features ← [T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12]

These feature groupings are how a swipe will be represented for authentication.

The algorithm retains 15 swipes in its history. The history is represented as a 2

dimensional array illustrated in Table 5.4. Each index in the array is an array of the

feature grouping vectors for the previous 15 swipes.

Now that we have a data representation for the history, we can construct the user
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history[0] history[1] history[2] ... history[6]
1st swipe V11 V21 V31 ... V71
2nd swipe V12 V22 V32 ... V72
3rd swipe V13 V23 V33 ... V73
... ... ... ... ... ...
15th swipe V115 V215 V315 ... V715

Table 5.4: 2 dimensional history array for Mean Distance Version

model which is illustrated in the code below.

Algorithm 3 Mean Distance Version User Model Construction

1: procedure Mean Distance Version User Model

2: history

3: meanV ectors

4: distancesFromMean

5: meanDistances

6: for i = 0; i < 15; i++ do

7: history[6][i] = z-score(history[6][i], history[6])

8: for i = 0; i < 6; i++ do

9: meanV ectors[i] = mean(history[i])

10: for i = 0; i < 6; i++ do

11: for j = 0; j < 15; j ++ do

12: distancesFromMean[j][i] = distance(history[j][i],meanV ectors[i])

13: for i = 0; i < 6; i++ do

14: meanDistances[i] = mean(distancesFromMean[i])

The first step in the above code is to normalize the touch features by converting

them to their z-score with respect to the history. The z-score measures how many

standard deviations from the mean a value is (with positive meaning it is to the

right of the mean, and negative meaning it is to the left). This is because we will be

considering all the touch features as a vector when calculating a euclidean distance,

and so we require each value in the vector to have the same scale. Next for each index

in the history (that is, for each history of feature grouping vectors) we calculate the

mean vector of the history. This is so that, in the next step, we can calculate the
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euclidean distance from each feature grouping vector in the history to the mean vector

for that grouping. This results in a two dimensional array with the same structure

as the history array, however with euclidean distances instead of the feature vectors

themselves. Finally, for each feature grouping, we calculate the mean distance. Like

in Versions 1 and 2, the history acts as a queue. When a new swipe from the user is

recorded, it is added to the queue and the oldest swipe is removed.

5.4.3 Authentication Decision

It is these mean distances which we will use to make the actual authentication de-

cision, which is represented in the code below. Assume that swipe represents the

swipe being authenticated against and the array variables defined in the code above

are available.

Algorithm 4 Mean Distance Version Authentication Decision

1: procedure Mean Distance Version Authentication

2: swipe

3: distThresholds

4: authThreshold

5: count

6: swipe[6] = z-score(swipe[6], history[6])

7: for i = 0; i < 6; i++ do

8: dist = distance(swipe[i],meanV ectors[i])

9: if dist > distThresholds[i] then

10: count++

return count < authThreshold

Like with user model construction, the touch features are first normalized using the

z-score. Then the distance from the swipes feature grouping vectors are compared to

the mean vector for that feature grouping. If the euclidean distance is above a certain

threshold, the count is increased. If, after going through all the feature groupings,

this count exceeds a certain amount, the authentication fails.
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5.4.4 Discussion

The additional complexity added into the user model and authentication decision give

this version of the algorithm more flexibility than previous versions. This is because

the authentication decision is not made based on the values of the feature itself, but

rather based on the distribution of distances which the system has observed from the

user in the past. This means that if the user has been highly variable in the past,

then the algorithm will be more tolerant of variable input. If the user has been highly

consistent in the past, then the algorithm will expect values tightly clustered around

the mean.

This additional flexibility can break the system in a couple of different ways.

Consider the case where a user has highly variable input. This can lead to a couple

different outcomes. First, highly variable input can cause the standard deviation of

the history distances to grow to such a level that it will accept practically everything,

effectively removing any security provided by the system. Secondly, the user may

have a complex feature value distribution, for example consider a bimodal distribu-

tion which is tightly clustered around two points. In this case, the mean will fall

somewhere between the two clusters and the standard deviation (depending on how

the k multiplier is set) may not stretch far enough to cover a large portion of the

user’s input. Though the security of the system is maintained, the ability of the user

to authenticate is significantly compromised.

Now consider the case where a user has tightly clustered input. However, over

time the values undergo concept shifts which change their distribution. Initially, the

algorithm comes to a tight model of user behaviour, and is able to sustain tight

security bounds while allowing the user access. However, the user puts the device

down and does not interact with it for some time. When the user begins using the

device again, the values are slightly outside the tight bounds defined by the previous

history. Initially, the algorithm will reject virtually all swipes entered by the user.

Though the algorithm will eventually learn and adapt to the new behaviour, it is

possible that the user will put the device down and undergo another concept shift

before the algorithm has fully adapted. This pattern of behaviour would lead to a

perpetual cycle of non-authentication for the user and poor results.
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There are a couple approaches one can take to dealing with the first problem,

that of highly variable input. The simplest is for input which may cause the standard

deviation to grow above some pre-defined threshold can be automatically rejected

(meaning, not appended to the history). This ensures that there is a maximum range

of acceptable values, putting a lower bound on the security of the system, however it

hampers the ability of the algorithm to learn from new input and may exacerbate the

problem of a complex (for example, bimodal) distribution. In a related way, input

could be included in the history so that the algorithm can learn from it in the future,

however if the ranges exceed a certain bound they can be reduced to some maximum

value.

5.5 Analysis

The roadmap for algorithmic design was to begin with as simple an algorithm as

possible and, from there, add complexity only when it was shown to be necessary

from testing. This is borne out in the progression of algorithm design in the three

version detailed above.

There are a few general trends which cut across all three algorithm versions which

we can pull out for discussion. These are:

1. outliers. An outlier swipe, if it is included in the history, will always skew

the user model. The problem then becomes how to identify outliers, and what

to do with them once they are detected. Unfortunately, outlier detection is

a tricky process in an anomaly detection system. This is because detecting a

true outlier — that is, a swipe which is performed by the user, but from which

the algorithm should not learn information about normal user behaviour, is

equivalent to doing authentication. After all, the process of anomaly detection

is that of characterizing outliers and labelling them as anomalous. For this

reason, the best approach is a heuristic one — for example, assume that a user

will have no more than two outliers in their past behaviour, and so remove the

two furthest out swipes from consideration.

2. flexibility tradeoff. All three versions of the algorithm are based on constructed
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a range of acceptable values for a feature. This naturally leads to a tradeoff

between how forgiving the system is for the user (i.e, how much variability it

will recognize as the user’s swipe) and how secure the system is against attack-

ers. A larger range necessarily means the forgiveness increases and the security

decreases, while a smaller range necessarily means the forgiveness decreases and

the security increases.

3. quality of user data. No amount of algorithmic invention can pull a signal out

of data where no signal exists. If the user’s behaviour has no underlying con-

sistency to it, any attempt to find consistency is an exercise in futility. For this

reason, there may be some subset of users for whom behavioural authentication

will not be a viable option. Conversely, some data may be of such high quality

that the signal is trivial to pull out. For this class of user, virtually any feature

representation and authentication algorithm will have exceptional performance.

The main motivation for algorithmic tinkering is the average user’s where the

signal is obscured by various amounts of noise. In this case more refined al-

gorithms can focus in on the pattern. The goal should not be to increase the

performance of the worst performing users, nor should the performance of the

best performing users be an indication of the algorithms overall performance.

Each of the three algorithm versions have different approaches to representing a

swipe and making an authentication decision. In this way, each version has built

in assumptions about what is unique about users’ behaviour and what is consistent

about swipes performed by the same user. In order to determine which assumptions

are the most correct, we will compare their performance in a user study conducted

according to the principles laid out in Chapter 3. This is the subject of the next

chapter.



Chapter 6

User Study Methodology and Results

At the outset we discussed the importance of establishing a framework for evalua-

tion prior to designing an algorithm to solve a problem. We did this in Chapter 3,

especially in the list of requirements we formulated. In this chapter, we present in

detail the design and results of our user study, which we derived directly from these

principles.

6.1 User Study

In Chapter 3, we developed several requirements necessary for effective evaluation.

For reference, we list these requirements here again:

• Result Measurement. Results should be based on empirical measurement of the

performance of the system in a user study.

• Result Reporting Format. Among whatever other results researchers wish to

present, the UAR and AAR should be included. These measurements should

be given for multiple configuration settings, and plotted for comparison. Addi-

tionally, researchers should establish a target AAR and compare their schemes

to other ones based on the corresponding UAR.

• User Population. The user population should be at least a comparable size to

populations in the related literature (typically 20 to 30 people) and should be

demographically varied.

• Usage Scenarios. The participants usage of the device should correspond to how

they would use it in the field. In particular, an excessive number of tasks should

not be performed in a short period of time and users should not be biased to

behave in one way.

67
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• Attack Scenarios. The study should have well defined attack scenarios and

results for the attack scenarios should be included. At a minimum, two attackers

should be considered: first, an attacker who naively tries to authenticate to the

system, and second, an attacker who has knowledge of the users behavioural

pattern and attempts to imitate it.

6.1.1 Design

We decided to perform two laboratory studies over the course of our research for

several reasons. Since this is the first set of studies we are performing, a laboratory

study allows quicker access to results because they are available immediately after the

user’s session. Additionally, we desired tightly controlled conditions. This is because

our knowledge of the system’s performance is initially very limited, and so the extra

variability introduced from a field study would not be well understood.

Moreover we decided that, in the beginning, we did not want to test the online

performance of a specific version of our algorithm, but rather wanted to collect large

samples of swipes from a diverse user population. We chose this approach because we

did not want the results we gathered to be tied to one specific version of our interface

or our algorithm — rather, we wanted to be able to use the user data and simulate

it through multiple versions of our algorithm. We also did not want users to get

frustrated with the performance of the system, which may affect the way they would

swipe if the system performed poorly.

This meant that, when designing the apparatus (the application which would col-

lect data from the participants about their swipes), we needed an interface which

would elicit swipes from the user similar to the swipes we wanted to use for authenti-

cation. As stated in Chapter 4, navigational swipes to transition between screens are

a common interface component on mobile applications. We decided to replicate this

by having the participant swipe through a number of text screens. When the applica-

tion loaded, it would show the participant text and instruct them to navigate to the

next screen. At the bottom of the screen were standard navigational dots, indicating

that the user could swipe to the left or to the right to continue. The participants
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would continue through 10 text screens, at which point they were instructed to con-

tinue swiping as they were doing but without the text changing. Instead, two figures

appeared on the screen. Originally, the two position of the two figures was meant to

be a rough indication of the consistency of the user’s swipes. However, during pilot

testing we discovered that the figures were not accurately representing consistency,

and so when the study began participants were instructed that the position of the

figures had no purpose or that the purpose was only meaningful to the experimenter.

In this way they functioned solely as additional screens for collecting swipe data.

The exact sequence of the first study can be found in Appendix B. In total, be-

tween 45 and 50 swipes were collected from each participant. After every five swipes

participants were instructed to put the device down and perform a distractor task,

either playing with a ball or writing a sentence on a piece of paper. Additionally, at

various points the experimenter would attempt to imitate the participants swipe a

total of ten times. The experimenter would also demonstrate a swipe to the partici-

pant and ask the participant to imitate it, again for a total of 10 times. Twenty-seven

users participated in this study.

In order to ensure that any findings we concluded from the first study were genuine

and not merely artifacts of our user population, as well as to collect additional data,

we performed a second smaller scale user study with seven users. In this study users

used a mock payment prototype we developed which incorporated a swipe authenti-

cation algorithm tuned based on feedback from the first study. Users were shown a

receipt, which they swiped away to complete a payment. Participants performed a

similar total number of swipes as in the first study (45 to 50). In addition to the dis-

tractor tasks mentioned above, participants also used a mock PIN screen application

developed by the researchers. Participants were assigned a PIN, and at various points

both the experimenter and participant performed shoulder-surfing attacks (that is,

imitation attacks) according to the same form as imitation attacks for swipes. The

purpose of collecting this information on PINs was to compare PINs — the standard

authentication mechanism for mobile devices — to swipes along several key metrics:

entry time, success rate, and imitation resistance.
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6.1.2 Studies Compared to Requirements

The studies were designed to flow naturally out of the requirements stated previously

in Chapter 3. First, the results are empirical: they are based solely on measurement

from participants using the apparatus. This includes results for the authentication

rate of the users themselves, as well as the success of attacks. In the detailed results

section below, results are presented in terms of UAR, AAR, and input time — in line

with the second requirement. Across both user studies 34 individuals participated

(27 participants in the first study and 7 participants in the second study), fitting in

with the third requirement. From this, one participant in the first study and one

participant in the second study had data recording issues during the session which

compromised their accuracy and so were not included in the analysis below.

Since we had two studies, we had two usage scenarios. Both were closely modelled

on how the a user would interact with the application in the real world. In the

first study, users swiped on an application with a screen displaying text and some

images. The format of the text screen, and especially the standard navigational dots

included at the bottom, was meant to elicit a navigational swipe — one of the common

interaction modalities with touch screen devices. In the second study, we sought

to create a typical usage flow where authentication is inserted: paying for a good.

In this case the swipe is less explicitly navigational; however, by still retaining the

concept of moving the application forward through standard use case the navigational

component is still present. Furthermore, by employing distractor tasks and collecting

a moderate number of swipes from each user, we avoided introducing an artificial

effect from the user swiping repeatedly many times in a row. Repeating the same

action over and over again in quick succession can lead the participant to unnatural

behaviour. For example, the participant might swipe more quickly because they are

focused on getting through a large number of swipes.

It is important to note that, because of the nature of a laboratory study, there are

several aspects of typical usage which we were not able to capture. In particular, the

many distractions introduced by being in a real environment, such as noise, walking,

and visual stimulation were not present. Though this does diminish the ecological

validity of the study, we believe the tradeoff is justified in an early study where tighter
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control and observation are necessary.

Finally we will elaborate on our attack scenarios in light of requirement 5 above.

Our attack scenarios are well defined: for an informed attacker, the attacker (at

various points the researchers and the participants) sat beside the authenticating user

and observed the user entering the credential (swiping, or entering a PIN) multiple

times. This represents a best-case scenario for the attacker: they have unhindered

observation of multiple authentication attempts. An example of when this may occur

is on a long plane or train ride, where someone is sitting closely next to you and

can observe multiple authentications. For our uninformed (or random) attacker, we

used user confusion: testing swipes from all other users against a behavioural model

constructed and trained for a particular user. These attacker models were consistent

across both studies.

6.2 Results and Analysis

In this section we present the results obtained from the user study. The results are

presented and analyzed along several axes to give us a complete understanding of the

data. A full table of results can be found in Appendix A. Throughout the text the

versions are referred to as “Bit Vector”, “Dynamic Range” and “Mean Distance”.

6.2.1 ROC curves and Machine Learning

All three versions of the algorithm we presented in Chapter 5 have an internal, con-

figurable threshold which controls the size of the space of swipes acceptable to the

algorithm — for example Bit Vector has a threshold size for the hamming distance,

Dynamic Range has a maximum number of features which can fall outside a defined

range, and Mean Distance computes a maximum size for the distance from a mean for

each feature. It is insufficient to simply compare the performance for one configura-

tion of each algorithm because it could be the case that, under a different combination

of configurations, performance would be significantly different.

This threshold which adjusts the size of the authenticated input space inherently

controls a tradeoff between the UAR and the AAR. Consider a swipe to be an n-

dimensional vector (as it is in a feature representation). Then the task of an anomaly
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detection algorithm is to draw a “box” around acceptable input. If a new swipe falls

into this box, then it is authenticated (i.e, it is not anomalous). The configuration

controls the size of the box. If the box is bigger, it is likely to encompass more of

the user’s input — however, it is also more likely to encompass attacker input which

looks similar (note that in this instance similarity is well defined — it is the euclidean

distance between two feature representations). Hence, the larger the box and the

more accepting of user input, the more accepting of attacker input the algorithm is

likely to be as well.

Receiver Operating Characteristic (ROC) curves are often used in machine learn-

ing scholarship as a way to compare the extent of this tradeoff for different algorithms

under different configurations. An ROC plot measures the False Positive (in our case,

the URR) rate along the x-axis and the True Positive (in this case, the ARR) rate

along the y-axis. For each configuration of an algorithm, a point is placed on the

graph corresponding to (URR, ARR). All the points for all the configurations of an

algorithm constitute a kind of curve representing the tradeoff between URR and ARR

as the threshold is changed.

In order to judge relative performance, a diagonal line y = x is plotted as well.

This represents the performance of a random anomaly detector, which will reject an

equal proportion of user and attacker swipes. The more an algorithm’s points are able

to “curve” above this diagonal line towards the top left corner (the top left corner

being the point where URR is 0 and ARR is 1), the better the detector is performing.

In a typical ROC curve, the detector is trained and then is immutable while it is

evaluated against the testing set. Since our algorithms perform online learning, we al-

low the detector to continue learning while it is evaluating the testing set. This means

that the curves we present below may exhibit properties not typical of ROC curves

used in other contexts; however, they remain useful for comparatively evaluating our

algorithm versions.

At this point, we also recall the discussion of ROC reporting given in Chapter 3.

In particular, it is important to, along with ROC reporting, give a target ARR and

judge schemes based on the corresponding UAR. In this case, we establish a baseline

ARR of 0.8 (meaning, roughly, that 80% of attacks are rejected). Though we compare
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Figure 6.1: ROC curve comparing three versions of the algorithm for random data in
the first study

the ROC for each algorithm to get a sense of overall performance and the tradeoffs

between the rates, it is this judgment that we hold to be definitive of performance.

6.2.2 Comparisons for all versions For Study 1

The ROC curves for the first study are shown in Figures 6.1 and 6.2, representing a

random attacker and an informed attacker, respectively. In both figures, Bit Vector

occupies the space closest to the diagonal, implying that it is the worst performing.

Dynamic Range occupies the space furthest from the diagonal, indicating the best

performance. Mean Distance performs in between Bit Vector and Dynamic Range.

The most curious feature of these graphs is the cluster of points for Mean Distance

around 0.25 URR. This means that adjusting the parameters of Mean Distance (in

this case, the size of the standard deviation window) had a non-linear effect on the

performance. In other words, when the parameter was tightened, it did not always

have the effect of increasing the URR and lowering the ARR.

Next we consider the 0.8 ARR baseline to make a direct comparison. These are

shown in Tables 6.1 and 6.2 for a random and informed attacker, respectively. This

table shows clearly that Dynamic Range has the highest UAR for the desired level of
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Figure 6.2: ROC curve comparing three versions of the algorithm for imitation data
in the first study

Version UAR at 0.8 ARR
Bit Vector 0.29
Dynamic Range 0.79
Mean Distance 0.66

Table 6.1: Baseline comparison for random attacker

Version UAR at 0.8 ARR
Bit Vector 0.29
Dynamic Range 0.57
Mean Distance 0.42

Table 6.2: Baseline comparison for imitation attacker
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Figure 6.3: ROC curve comparing three versions of the algorithm for random data in
the second study

security, followed by Mean Distance. Bit Vector is able to achieve a high ARR only

by also rejecting many legitimate authentication attempts, resulting in a low UAR.

6.2.3 Comparisons for all versions For Study 2

Figures 6.3 and 6.4 show the ROC curves derived from the results of the second study

(again, for random and informed attackers). A similar story emerges from these re-

sults as from the results from the first study. In Figure 6.3 it is clear that Dynamic

Range performs the best, Bit Vector performs the worst, and Mean Distance performs

in between. Mean Distance has a larger variance of performance, beginning close to

Bit Vector and peaking close to the performance of Dynamic Range. Looking at Fig-

ure 6.4 paints a more confusion picture. Bit Vector again performs the worst, however

Dynamic Range and Mean Distance occupy much the same space, particularly on the

left side of the figure.

Comparing the results in Tables 6.3 and 6.4 may lead to more clarity. Focusing

only on the performance which achieves our acceptable level of security shows that

Dynamic Range is able to achieve a higher UAR than either Bit Vector or Mean

Distance under these constraints. Interestingly, Dynamic Range performs much better
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Figure 6.4: ROC curve comparing three versions of the algorithm for imitation data
in the second study

Version UAR at 0.8 ARR
Bit Vector N/A
Dynamic Range 0.78
Mean Distance 0.0.68

Table 6.3: Baseline comparison for random attacker

Version UAR at 0.8 ARR
Bit Vector N/A
Dynamic Range 0.61
Mean Distance 0.34

Table 6.4: Baseline comparison for imitation attacker
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Figure 6.5: ROC curve comparing three versions of the algorithm for imitation data

against an informed attacker in Table 6.4 than Mean Distance.

6.2.4 Comparisons For all versions For Both Studies

We now apply ROC curves to compare the performance of the three versions of the

algorithm to each other, combining the results from the first and second study. As

we see above, both the first and second study tell a similar story about which version

performs the best. Though the interface presented to the participant during data

collection differs between the two studies, the swipe collection and representation is

the same. Figure 6.5 shows the plot under an informed attacker. As we can by now

expect, the points representing Bit Vector occupy the space closest to the diagonal.

This indicates performance slightly better than random. Dynamic Range occupies

the space furthest from the diagonal, indicating the best performance. Between the

two is Mean Distance, which also contains a cluster of points around 0.2 URR whose

performance varies between being as good as Mean Distance and being little better

than Bit Vector. Figure 6.6 shows the plot for a random attacker. The story is very

similar to that of Figure 6.5 (and of all the previous figures). Bit Vector performs

close to the diagonal. Dynamic Range performs furthest out, and Mean Distance

performs in between the two.
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Figure 6.6: ROC curve comparing three versions of the algorithm for random data

Version UAR at 0.8 ARR
Bit Vector N/A
Dynamic Range 0.79
Mean Distance 0.63

Table 6.5: Baseline comparison for random attacker

Version UAR at 0.8 ARR
Bit Vector 0.28
Dynamic Range 0.67
Mean Distance 0.59

Table 6.6: Baseline comparison for imitation attacker
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We now turn again to our 0.8 ARR baseline to judge performance. The results for

a random attacker are given in table 6.5 and for an imitation attacker in 6.6. First

consider 6.5. In this table, we can quickly and easily see that, given the security

constraint we have put in place, Dynamic Range imposes the least usability cost on

users, followed by Mean Distance. Bit Vector at no point is able to achieve near rate

of security we desire, so it is not considered.

Now consider table 6.6. Again, Dynamic Range imposes the smallest usability

cost, followed by Mean Distance. Bit Vector is able to meet the level of security

required by the baseline, however it does so at a very high cost: nearly three quarters

of authentication attempts would end by prompting the user for additional credentials.

A clear picture emerges from looking at the results from the first study, second

study, and the combination of the two studies. Dynamic Range unambiguously per-

forms the best under almost every scenario analysed (the exception being imitation

attacks for the second study, where Dynamic Range and 3 perform similarly). Bit

Vector performs the worst, little better than a random authentication decision, and

Mean Distance performs somewhere between Bit Vector and Dynamic Range. This

becomes clearer by inspecting the comparison tables. In the tables for random at-

tackers (Tables 6.1, 6.3, 6.5) Dynamic Range achieves 0.78 and 0.79 UAR when we

desire an ARR of 0.8. This means that, against this attacker model, if we desire 8 out

of 10 attacks to fail, roughly 8 out of 10 user authentication attempts will succeed.

Against an imitation attacker, this figure drops to 0.67 (meaning, roughly 7 in 10

legitimate authentication attempts will succeed) in Table 6.6. The next section will

examine in more detail the differences between these two attacker models.

6.2.5 Performance against Attacker Models

It is also instructive to compare the same algorithms performance against our two

attacker models. In this case, rather than comparing two different algorithms against

each other over the same data set, we are comparing the same algorithm to itself

over different data sets. From this we can gain insight into the differences between

the two attacker models and their ramifications for security analysis. In this section

we consider both the first and second studies together, we do not perform separate
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Figure 6.7: ROC curve comparing version 1 for two different attacker datasets

Figure 6.8: ROC curve comparing version 2 for two different attacker datasets
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Figure 6.9: ROC curve comparing version 3 for two different attacker datasets

analysis for the two studies as we did in the previous section.

Figures 6.7, 6.8 and 6.9 contrast the performance of each version against the

two attacker datasets. In all three charts, the blue represents performance against a

random attacker and red represents performance against an informed attacker. Figure

6.7 provides the ROC curve for Bit Vector. For the first two points, the algorithm

performs similarly for both datasets. Continuing on, however, the algorithm performs

slightly better against imitation attacks (meaning, it correctly rejects more imitation

attacks) than against random attacks.

Figure 6.8 provides the ROC plot for Dynamic Range. Under all configurations,

Dynamic Range is able to achieve higher performance against random attacks than

against imitation attacks. This is especially true from 0 to 0.3 URR. However, when

we configure URR to grow past 0.3, the performance of the two versions begins to

converge. Figure 6.9 provides the same plot for Mean Distance. Like Dynamic Range,

the algorithm achieves higher performance against random attacks than against im-

itations, though the distance between the two is not as large. Interestingly, the

distance between the two curves is almost the same at every point, implying that the

performance difference is consistent across different URR levels.

In general, we expected to see the algorithm perform better (again, meaning re-

jecting a higher proportion of attacker swipes) against a random attacker than against
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UAR AAR
Inc. Corrections 0.986 1.0
Exc. Corrections 0.942 1.0

Table 6.7: UAR and AAR for PIN-based authentication

an informed attacker. For Bit Vector, this did not match up with the results. How-

ever, given Bit Vector’s poor performance on the whole, it is perhaps not surprising

that it is aberrant. One possible explanation could involve the algorithmic design.

Since Bit Vector relies on static feature discretizations, if an attacker is consistently

off by a small amount which puts the features in a different range, it would lead

to consistently poor results. For the random attacks, however, the attacks are less

“consistent”, and so are more likely to fall in a variety of discretization ranges. Dy-

namic Range and Mean Distance tell a more consistent story. In both versions, the

algorithms are able to correctly reject a random attacker more consistently than an

informed attacker. On balance, this supports our hypothesis that an informed at-

tacker is a stronger threat model than a random attacker. Moreover, it illustrates

that a security analysis which only takes into consideration a random attacker will

overstate its performance against an important class of attackers.

6.2.6 Comparisons to PIN authentication

Next we move on to comparing the performance of swipe-based authentication to

the performance of PIN authentication. PIN authentication and attacks were part

of the second study. In particular, we are interested in the effectiveness of imitation

attacks against the two systems. Table 6.7 gives the results for UAR and AAR

for PIN entry from users participating in the second study. As expected, UAR is

very high, with very few authentication attempts being submitted with the wrong

credentials. However, along with a high UAR comes an exceedingly high AAR. Every

imitation attempt performed by the participants was successful. This implies that the

participants were even more successful at attacking than they were at authentication.

It is possible that explicitly asking the participants to observe and repeat a pattern

encouraged them to focus more, and thus make less mistakes, than when participants

are normally authenticating.
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Figure 6.10: Comparison of input times to enter a swipe vs a PIN

Figure 6.11: Box plot showing the average and standard deviations of Likert-scale
responses

Finally we can compare the total input time as a rough heuristic for usability.

Figure 6.10 shows the amount of time it takes to input a single swipe, a single PIN,

and two consecutive PINs. A single swipe occurs very quickly, on average 0.144

seconds, which is 7 to 8 times faster than a PIN at 1.189 seconds. Additionally, we

can see the effect of an incorrectly entered digit on the input time of a PIN. With an

incorrectly entered digit, the input time of a PIN more than double to 2.7 seconds.

This high cost of an error has been identified by previous authors [74] as an important

usability issue.
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Question Average Standard Deviation Significance
Speed 3 0.926 0.5
Ease of Use 3.29 0.7 0.1608
Obtrusiveness 2.57 0.904 0.1281
Preference 3.14 1.0 0.3579
Imitation 1.8 0.4 0.00129

Table 6.8: Values for Likert Scale Responses

6.2.7 User Perception

As part of the user study, participants completed a questionnaire on their perception

of swipe based authentication. After using a mock payment authentication prototype,

the seven users who participated in the second phase of the user study answered a

questionnaire on their experience with the system. In total they answered five five-

point Likert scale questions comparing their perception of swipe-based authentication

to PIN authentication. These questions compared user’s perception of swipe and PIN

authentication according to the categories of speed, ease of use, obtrusiveness, general

preference and imitation resistance. The full questionnaire is available in Appendix

B. We report on these results here.

Figure 6.11 provides a visual interpretation of the user’s responses. For each

category, the plot presents the range around the average to one standard deviation.

Since this data is based only on the responses of seven users, it cannot be held as

conclusive. However, it can provide us some useful direction for further research.

The first question compares users’ perception of the speed of authentication. Re-

sponses in this category were relatively scattered, spanning a range from 4 to 2 with

a high standard deviation. The average response was 3. Some users noted in their

responses that they would consider swipe authentication to be faster than PIN au-

thentication if the algorithm was more successful at recognizing them — that is, if

there were consistently able to authenticate on the first try. This implies that, given

algorithmic improvements, the user’s perception of the speed of authentication would

increase substantially.

The second question compares the users’ perception of the general ease of use.

The average response was 3.2, with a smaller standard deviation than the previous
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Authors URR AAR anomaly detection
De Luca et al [21] 19% 21% yes
Feng et al [24] 18.92% 14.02% no
Lin et al [52] 6.85% 6.85% no
Bo et al [10] 27.64% 24.99% yes
Frank et al [27] 13% 13% no
Our Work 21% 20% yes

Table 6.9: Results in the Literature

question. The users also considered swipes to be slightly less obtrusive than PINs

(2.5 response on average). When asked whether they prefer to use swipes to PINs,

the responses edged slightly towards swipes (3.2 average response). In contrast to

these more mixed responses, user perception of the security of swipes as compared

to PINs were quite consistent. Overall, users perceived that it was easier to observe

and imitate PINs at an average response of 4.2.

6.2.8 Comparison to Literature

Due to the large number of approaches take to evaluation methodology and reporting

results, comparing our work to that in the literature is not a straightforward task.

Out of the authors discussed in the background section, there are five authors who

evaluate a scheme based in some way on touch screen input. These authors are given

in Table 6.9. For comparison our results for a uninformed attacker model are given in

the last row. Out of these, two (De Luca et al [21] and Bo et al [10]) report numbers

for an anomaly detection algorithm, while the others (Feng et al [24], Lin et al [52],

Frank et al [27]) report numbers only for binary classifiers. All results from these five

authors use only a random attacker model, with no testing of an informed attacker

model.

The most direct comparison is between those authors using an anomaly detection

approach and our uninformed attacker model. De Luca et al [21] report an AAR of

21% (just above our results of 20%) and a URR of 19% (just below our result of 21%),

giving largely similar results to our own. The authors analyze a touch gesture laid

overtop of an authentication mechanism, such as a pattern unlock or slide-to-unlock
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feature using Dynamic Time Warping to compute a distance between a sample au-

thentication and a reference set. Under the criteria described in Chapter 2, this is

classified as a secondary authentication mechanism. The distinguishing feature of

secondary mechanisms is that, since they are layered overtop of an existing authen-

tication mechanism, they are necessarily explicit. Given that explicit authentication

imposes a friction cost on users, an implicit approach (such as our task-based mech-

anism) is preferred for its lower security cost, especially when the performance is

similar.

Bo et al [10] also analyse a touch gesture and report results for both anomaly

detection and binary classification. For a single gesture under anomaly detection, Bo

et al perform worse for both AAR and URR than our system. The authors further

report results considering multiple consecutive swipes and under binary classifica-

tion, which significantly improves performance, but which does not align with the

requirements we have outlined.

As stated above, Feng [24], Lin [52] and Frank [27] report results for a single touch

action, however only under binary classification and without considering informed

attackers. These results are better for both AAR and URR than our own, however

that is not surprising given knowledge of the attacker’s swipes.

Overall, our performance is consistent with the best results available in the liter-

ature which are closest to the requirements laid out above for accurate evaluation.

Though we do not report numbers for binary classification or multiple consecutive

swipes, this also suggests that our approach is a promising foundation for building

an implicit, swipe based authentication mechanism which is secure and imposes little

authentication burden on users.

6.2.9 Analysis and Conclusions

From the results illustrated in the previous section, we can pull out several key ob-

servations and conclusions. We list the key findings here:

• Comparative performance of V 1, 2 and 3. First, we observe that, under both

attacker models, the relative performance of the three versions is the same:

Bit Vector performs the worst, Dynamic Range performs the best, and Mean
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Distance performs slightly worse than Dynamic Range. Though any inference

about the cause of the performance differences is at some level speculation,

several potential reasons can be identified. The first is that Dynamic Range

incorporates the most domain specific information in the form of its 36 fea-

tures. Mean Distance, by using the regression line slope and trapezoidal area

of the timeseries, moves away from highly contextual measurements — particu-

larly for the accelerometer and gyroscope. It is possible that highly contextual

measurements are the best performing. Additionally, Mean Distance introduces

more flexibility in that the authentication threshold is based on the mean of the

distances to an exemplar vector. This is in contrast to Dynamic Range, where

the threshold is more static (rather than a mean derived from the history). Its

possible that this additional flexibility this introduced was proportionately more

useful to the attacker than to the legitimate user.

• Importance of attacker models. In Chapter 1 and in this Chapter, we asserted

that it is important to measure the performance of authentication systems in

the presence of attackers. Specifically, we considered an informed attacker who

had observed the authentication process. Our results illustrate the importance

of this evaluation methodology. If one did not consider an informed attacker

and only used the results of a user confusion analysis to judge the security of

an authentication scheme (or worse, used user confusion as a proxy for imita-

tion resistance), one would be misled about the mechanism’s security perfor-

mance. This is illustrated by the comparative performance of Dynamic Range

and Mean Distance against both our attacker models. In both cases, the algo-

rithm performs worse in the presence of an informed attacker as compared to

an uninformed attacker. Bit Vector is an aberration to this, however Bit Vector

performs quite poorly against both attackers, and in any case the point still

stands that there is a difference between the two.

• Comparative performance against PINs. The difference between attacker models

is especially pertinent to the evaluation of PIN authentication. Against an

uninformed attacker, PIN authentication is relatively strong — in theoretical
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terms, a password space of 104. However, this security dissolves in the presence

of an informed attacker, with our study reporting a 100% success rate for an

informed attacker.

• Usability. Usability is a difficult concept to capture in a measurement. The us-

ability of the system is impacted by a number of factors. First, a system is not

usable if it is exceedingly difficult for the user to authenticate. That is, if the

UAR is below a certain amount, users will be frustrated with frequent authenti-

cation failures. The amount of usability that is lost per point-decrease in UAR

is beyond the scope of this study. However, we can make some observations on

other areas of usability.



Chapter 7

Conclusion

Authentication on mobile devices is an area of research which cannot be ignored.

The wealth of personal and sensitive information on mobile devices is highly valuable

to an attacker, while devices’ frequent use in public means they are often lost or

susceptible to being stolen. Moreover, the constraints of a small screen, frequent

access, and difficult keyboard input makes standard forms of authentication, such

as the password, untenable. In this environment, researchers need a solution which

offers security, particularly security against imitation attacks, as well as usability.

7.1 Contributions

We proposed behavioural biometrics, and in particular task based behavioural bio-

metrics, as a solution to the mobile authentication problem. Behavioural biometrics

have the potential to increase usability when they are implemented transparently —

that is, when the behaviour that is being observed is incorporated into the normal

task flow of a user. Behavioural biometrics also have the possibility of achieving high

levels of security against imitation attacks, since an attacker must not only imitate

the user’s actions at a surface level, but must also imitate how the user performs

those actions. Additional, some aspects of how the user performs an action may be

very difficult to perceive, such as small timing variations and exact hand positioning.

Upon reviewing the literature, we recognized large discrepancies between the var-

ious evaluation methodologies employed by researchers. These discrepancies made it

difficult to effectively compare the performance of authentication systems. To rectify

this, we proposed in Chapter 3 a framework for effective evaluation.

To illustrate the correct approach to solving and evaluation this problem, we

developed and refined a behavioural authentication algorithm over three different

iterations. Each of these versions was designed to be as lightweight as possible while

89
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providing the necessary security properties. We also ran a user study to evaluate

the effectiveness of our algorithm versions, compared to each other as well as to PIN

authentication. This study showed different performance levels between the three

versions, with the Dynamic Range Version performing the best. It also highlighted

the importance of attacker models by showing how the Dynamic Range Version and

the Mean Distance Version performed worse against imitation attacks than against

random attacks. Finally, it highlighted the insufficiency of PIN authentication against

imitation attacks.

7.2 Limitations

There are several limitations to our work. First, our studies, at 34 participants total,

does not achieve the scale necessary to make final and conclusive statements. We

intend rather for the work to be indicative of the direction research should take.

Second, our work consists solely of laboratory studies. These studies have known

limitations, especially when trying to observe “normal” or implicit behaviours. We

attempted to mitigate the laboratory effect by embedding our data collection within

use cases which were not explicitly authentication and by introducing distractor tasks,

however it is impossible to completely remove the effect of observation. Additionally,

the small time scale of our studies (approximately one hour sessions) is unable to

observe any drifts in user behaviour that may happen over extended periods of time.

Task-based behavioural biometrics themselves also have a few weaknesses. In

particular, the application or device developer must be able to work the task into the

system’s normal workflow. This may not be possible in all situations. For example,

an application which displays sensitive information immediately upon launching does

not have an obvious point to insert a task. It is possible to artificially insert a

screen which the user must dismiss by swiping it away (similar to “slide to unlock”

functionality), however this turns the task from being completely implicit to semi-

explicit, and is artificially inserted into the application rather than being a natural

navigation modality, so has a negative (if small) impact on usability.
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7.3 Future Work

Since our work is intended to be a roadmap and framework for upcoming research in

the field, it is important to outline a few avenues research should take. There are two

ways future research could complement our efforts. The first is by supplementing them

with a long term field study. This would give insight into more typical usage outside

of a laboratory context, as well as information on how the algorithms adjust to long

term shifts in user behaviour. The second is to expand the number of participants.

This would allow for stronger claims on algorithmic performance.

More experimental research could examine other possible tasks on mobile devices.

Though swipes comprise a large part of user input, there are a rich variety of input

modalities to explore. Actions such as dragging, scrolling, and pressing are all po-

tential targets for behavioural biometrics. Research should establish the amount of

entropy and consistency in these tasks. Additionally, the authentication properties

of sequences of tasks is an interesting research question.

Finally, our efforts have been solely focused on mobile devices. However, there

is no reason why other platforms would not be able to gain similar advantages from

task based behavioural authentication. Reappropriating these insights back into a

desktop context could help make usability advances. Additionally, users increasingly

encounter a large number of other computing contexts which require authentication,

particularly with the trend towards smart devices and the internet of things. As

more things come online, more things have security concerns, and more things need

authentication as a first line defence. Applying our insights might help make this

reality more secure and more usable.



Glossary

Anomaly Detection

A system which attempts to detect abnormal behaviour by building a model of

expected behaviour.

Attacker Acceptance Rate

A measure of how many times the attacker correctly authenticates. Equivalent

to the false negative rate.

Attacker Reject Rate

A measure of how many times the attacker fails to authenticate. Equivalent to

the true positive rate.

Authentication

The process of verifying the identity of an agent using a system.

Behavioural Biometric

A subject’s behaviour used to identify them for authentication.

Biometric

A physical measurement which is used to identify a subject for authentication.

Continuous Authentication

An authentication system which observe and characterize user behaviour at all

times.

Credential

The response presented to an authentication task.

Entropy

A measure of the randomness, or information, contained in a credential.

92
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Imitation Attacker

An attacker who has witnessed the target user authenticating, for example by

shoulder surfing.

Imitation Resistance

A feature of an authentication system where observation of the user inputting

the credential does not lead directly to reliable attacks.

Implicit Behavioural Biometric

A task-based authentication system where the user action is a typical action for

the user in the course of using the system.

Intrusion Detection

A system which attempts to detect attacks occuring in a monitored environ-

ment.

Random Attacker

An attacker who has not witnessed the target user authenticating.

Secondary Behavioural Biometric

A task-based authentication system where the user action is a separate authen-

tication action, such as inputting a password.

Shoulder-Surfing

An attack where the attacker observes a user inputting a credential, for example

by looking over their shoulder.

Stable Observable

A feature of behaviour which can be modelled without excessive variation for

the same user.

Task-Based Behavioural Biometric

An authentication system which observes and characterizes the user performing

a specific action.
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Threat Model

A formalized characterization of how attackers may attack a system.

User Acceptance Rate

A measure of how many times the legitimate user correctly authenticates.

Equivalent to the true negative rate.

User Reject Rate

A measure of how many times the legitimate user fails to authenticate. Equiv-

alent to the false positive rate.



Appendix A

Tables of Results

Table A.1: Results Table for Figure 6.2
version threshold URR ARR

1

6 0.1472958333 0.2402095833
5 0.2300290529 0.3814644513
4 0.4199231963 0.6265624938
3 0.7057668956 0.8366319404

2

17 0.3951317164 0.8782339325
18 0.3315800745 0.8063385076
20 0.2119676068 0.6345928649
21 0.1662513194 0.5347416744
22 0.1276683945 0.4122388539

3

2.0 0.2631002715 0.6035231953
2.4 0.2357323734 0.5446910313
1.8 0.2853792145 0.6316054888
1.4 0.3421135932 0.6948580588
2.8 0.238235425 0.4795169214
1.0 0.3955015576 0.7677064628
3.2 0.2690475151 0.495337284
0.8 0.433336184 0.8270746987
0.6 0.4971864682 0.8658311052
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Table A.2: Results Table for Figure 6.4
version threshold URR ARR

1

6 0.1323333333 0.2921683333
5 0.2197064683 0.4228758
4 0.5137503038 0.486928095
3 0.7877091368 0.76666666

2

17 0.3871721345 0.7941176471
18 0.3172592318 0.7078431373
20 0.2190696003 0.477124183
21 0.1675638265 0.3882352941
22 0.1059967309 0.3104575163

3

2.0 0.1802694406 0.4608776844
2.4 0.1662099265 0.4267507003
1.8 0.1802694406 0.4942110177
1.4 0.209796026 0.6133053221
2.8 0.1472718708 0.3605975724
1.0 0.2925842955 0.7204948646
3.2 0.1125696552 0.327264239
0.8 0.3243790582 0.7067693744
0.6 0.6609138627 0.8265934498
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Table A.3: Results Table for Figure 6.1
version threshold URR ARR

1

6 0.1472958333 0.2400416667
5 0.2300290529 0.3795440688
4 0.4199231963 0.5754974215
3 0.7057668956 0.7354222346

2

17 0.3951317164 0.947800871
18 0.3315800745 0.9274633496
20 0.2119676068 0.8290738833
21 0.1662513194 0.7757756288
22 0.1276683945 0.7100299247

3

2.0 0.2631002715 0.6783073858
2.4 0.2357323734 0.6172042006
1.8 0.2853792145 0.7333711488
1.4 0.3421135932 0.7925863524
2.8 0.238235425 0.5709922963
1.0 0.3955015576 0.8497095022
3.2 0.2690475151 0.5732498702
0.8 0.433336184 0.8803176387
0.6 0.4971864682 0.9240131951
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Table A.4: Results Table for Figure 6.3
version threshold URR ARR

1

6 0.1323333333 0.2356666667
5 0.2197064683 0.297551905
4 0.5137503038 0.4290929267
3 0.7877091368 0.6872286567

2

17 0.3871721345 0.9288961039
18 0.3172592318 0.8810525677
20 0.2190696003 0.8181507143
21 0.1675638265 0.7232674476
22 0.1059967309 0.6517510136

3

2.0 0.1802694406 0.516976215
2.4 0.1662099265 0.396121578
1.8 0.1802694406 0.541297262
1.4 0.209796026 0.6609424582
2.8 0.1472718708 0.3454340866
1.0 0.2925842955 0.753100568
3.2 0.1125696552 0.3241147736
0.8 0.3243790582 0.8267014508
0.6 0.6609138627 0.8495454431
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Table A.5: Results Table for Figure 6.6
version threshold URR ARR

1

6 0.1443033333 0.2391666667
5 0.227964536 0.363145636
4 0.4386886178 0.5462165225
3 0.7221553439 0.725783519

2

17 0.3935398 0.9440199175
18 0.328715906 0.9181811932
20 0.2133880055 0.8268892495
21 0.1665138208 0.7652739926
22 0.1233340618 0.6983741425

3

2.0 0.2465341053 0.6460411516
2.4 0.221827884 0.5729876761
1.8 0.2643572597 0.6949563714
1.4 0.3156500798 0.7662575736
2.8 0.2200427142 0.5258806544
1.0 0.3749181052 0.8303877153
3.2 0.2377519432 0.5234228509
0.8 0.4115447588 0.8695944012
0.6 0.4636601122 0.9091196447
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Table A.6: Results Table for Figure 6.5
version threshold URR ARR

1

6 0.1443033333 0.2506013333
5 0.227964536 0.389746721
4 0.4386886178 0.598635614
3 0.7221553439 0.8226388843

2

17 0.3935398 0.8614106754
18 0.328715906 0.7866394336
20 0.2133880055 0.6030991285
21 0.1665138208 0.5054403984
22 0.1233340618 0.3918825864

3

2.0 0.2465341053 0.5749940931
2.4 0.221827884 0.5211029651
1.8 0.2643572597 0.6041265946
1.4 0.3156500798 0.6785475115
2.8 0.2200427142 0.4557330516
1.0 0.3749181052 0.7582641432
3.2 0.2377519432 0.461722675
0.8 0.4115447588 0.8030136339
0.6 0.4636601122 0.8533931755

Table A.7: Results Table for Figure 6.7
attacker model threshold URR ARR

random

6 0.1443033333 0.2391666667
5 0.227964536 0.363145636
4 0.4386886178 0.5462165225
3 0.7221553439 0.725783519

imitation

6 0.1443033333 0.2506013333
5 0.227964536 0.389746721
4 0.4386886178 0.598635614
3 0.7221553439 0.8226388843
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Table A.8: Results Table for Figure 6.8
attacker model threshold URR ARR

random

17 0.3935398 0.9440199175
18 0.328715906 0.9181811932
20 0.2133880055 0.8268892495
21 0.1665138208 0.7652739926
22 0.1233340618 0.6983741425

imitation

17 0.3935398 0.8614106754
18 0.328715906 0.7866394336
20 0.2133880055 0.6030991285
21 0.1665138208 0.5054403984
22 0.1233340618 0.3918825864

Table A.9: Results Table for Figure 6.9
attacker model threshold URR ARR

random

2.0 0.2465341053 0.6460411516
2.4 0.221827884 0.5729876761
1.8 0.2643572597 0.6949563714
1.4 0.3156500798 0.7662575736
2.8 0.2200427142 0.5258806544
1.0 0.3749181052 0.8303877153
3.2 0.2377519432 0.5234228509
0.8 0.4115447588 0.8695944012
0.6 0.4636601122 0.9091196447

imitation

2.0 0.2465341053 0.5749940931
2.4 0.221827884 0.5211029651
1.8 0.2643572597 0.6041265946
1.4 0.3156500798 0.6785475115
2.8 0.2200427142 0.4557330516
1.0 0.3749181052 0.7582641432
3.2 0.2377519432 0.461722675
0.8 0.4115447588 0.8030136339
0.6 0.4636601122 0.8533931755
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Appendix B

Research Materials

B.1 Demographic Questionnaire

15 
Minimal risk application form September 2012 

Appendix 5: Session One Questionnaire 
 

1. Age:  

2. Sex: 

3. Education Level (check all that apply) 

Completed High School    Completed Some University or College   Completed Some post-graduate degree 

4. In what field did/do you study? 

 

5. Have you participated in a touch screen related usability study before? If yes, describe it. 

 
 

6. Do you own a touch screen phone or device:  Yes   No 

7. Do you own a tablet PC:  Yes        No 

8. What touch-based OS system do you use on a regular basis? (check all that apply) 

Windows (with touch)   IOS Android   Linex    Blackberry X    Other 

9. Do you protected your device(s) with a password, pin or other:   Yes        No 

10. What type of password system do you commonly use? 

11. Have you ever gesture-based passwords?  Yes        No 
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B.2 Participant Usability Impression Questionnaire

16 
Minimal risk application form September 2012 

Appendix 6: Session Two Questionnaire 
 
 

1. After using this application do you think swipe gesture passwords is faster than regular touch 
screen passwords? Why or why not? 

No   Not Sure  Maybe    Probably  Yes 
 

2. Would you use this method over your current password method? Why or why not? 

No   Not Sure  Maybe    Probably  Yes 

  
  
  
  
  
  
 

3. Do you think you'd easily be able to repeat this password in a few weeks? 

No   Not Sure  Maybe    Probably  Yes 

4.  In what situations do you think swipe-authentication should be used (if any?) 

 

5. Add any suggestions you have for improving the application. 
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